WO 2017/182464 Al 26 October 2017 (26.10.2017) W !P O PCT

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/182464 Al 26 October 2017 (26.10.2017) W !P O PCT (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/182464 Al 26 October 2017 (26.10.2017) W !P O PCT (51) International Patent Classification: (74) Agent: CARBONELL VALLES, Enric; ABG PATEN C07D 401/14 (2006.01) C07D 209/70 (2006.01) TES, S.L., Avda. de Burgos, 16D , Edificio EUROMOR, A61K 31/403 (2006.01) C07D 209/72 (2006.01) E-28036 Madrid (ES). A61K 31/4439 (2006.01) A61P 3/00 (2006.01) (81) Designated States (unless otherwise indicated, for every A61K 31/454 {2006.01) A61P 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C07D 401/06 (2006.01) A61P 25/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, C07D 409/06 (2006.01) A61P 29/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C07D 409/14 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (21) International Application Number: HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, PCT/EP20 17/059 178 KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 18 April 2017 (18.04.2017) SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, TR, (25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Langi English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, 16382175.4 19 April 2016 (19.04.2016) EP UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicants: CIDQO 2012, S.L. [ES/ES]; Poligono Indus TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, trial Can Verdalet, Carred D, Nau 91, E-08490 Tordera EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, - Barcelona (ES). UNIVERSITAT DE BARCELONA MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, [ES/ES]; Centra de Patentes UB, Baldiri Reixac, 4, Torre TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, D, E-08028 Barcelona (ES). KM, ML, MR, NE, SN, TD, TG). (72) Inventors: VAZQUEZ CRUZ, Santiago; Avenida Can Published: Corts, 15, 3-2, E-08940 Cornelia - Barcelona (ES). LEI- — with international search report (Art. 21(3)) VA MARTINEZ, Rosana; Avenida Madrid, 51-53, 1° 5 A, E-08028 Barcelona (ES). VALVERDE MURILLO, Ele¬ na; Abat Escarre, 12, E-4371 1 Banyeres del Penedes - Tar ragona (ES). (54) Title: NEW AZA- TETRACYCLO DERIVATIVES R < (57) Abstract: The present invention relates to compounds of formula (I); which are capable of inhibiting the 11-beta-hydroxysteroid " dehydrogenase type 1 ( 11- beta-HSD 1), to processes for preparing these compounds, to pharmaceutical compositions comprising an effective amount of these compounds, to the use of the compounds in medicine in particular for the treatment of pathological conditions or diseases that can improve by inhibition of 11-beta-HSD 1, to the use of said compound for the manufacture of a medicament for the treatment of pathological conditions or diseases that can improve by inhibition of 11-beta-HSD 1 and to methods for the treatment or - prevention of a disease or conditions susceptible of improvement by inhibition of 11β-hydroxysteroid dehydrogenase type 1( 11β-HD 1) ® in a subject in need thereof comprising the administration to said subject of a therapeutically effective amount of said compounds. NEW AZA- TETRACYCLO DERIVATIVES FIELD OF THE INVENTION The invention relates to new aza-tetracyclo derivatives capable of inhibiting the 11-beta-hydroxysteroid dehydrogenase type 1 ( 11-beta-HSDl). Other objectives of the present invention are to provide a procedure for preparing these compounds; pharmaceutical compositions comprising an effective amount of these compounds; the use of the compounds for manufacturing a medicament for the treatment of pathological conditions or diseases that can improve by inhibition of 11-beta-HSDl, such as obesity, insulin resistance, metabolic syndrome, cognitive disfunction associated to Alzheimer's disease, HIV-associated dementia, Creutzfeld- Jakob disease, Parkinson's disease, Huntington's disease, vascular inflammation, atherosclerosis, diabetes type 2, cardiovascular disease, glaucoma, osteoporosis, myocardial infarction and for alcohol abuse treatment. BACKGROUND OF THE INVENTION Glucocorticoids (GCs) are well-known ubiquitous hormones playing a key role in modulating immune and inflammatory responses, regulating energy metabolism and cardiovascular homeostasis and are a key element of stress response. GCs act through the intracellular glucocorticoid receptors and, in some tissues, through mineralocorticoid receptors, both being nuclear transcription factors. The action of GCs on the target tissues depends not only on circulating steroid concentrations and the cellular expression of the receptors, but also on the intracellular enzymes which critically determine up to what point the glucocorticoids will have active access to the receptors. Opposing the action of insulin, GCs promote gluconeogenesis, inhibit β-cell insulin secretion and peripheral glucose uptake. Moreover, GCs contribute to lipolysis, with subsequent fatty acid mobilization, and proteolysis. Thus, overall, GCs prompt catabolic states (e.g., see Dallman, M . F. et al. "Feast and famine: critical role of glucocorticoids with insulin in daily energy flow" in Front. Neuroendocrinal. 1993, 14, 303-347, and Sapolsky, R . M . et al. "How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions" in Endocr. Rev. 2000, 21, 55-89). The active human GC Cortisol, is synthesized by the adrenal cortex with a strong circadian rhythm. Its secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis and induced in stressful conditions. Serum Cortisol readily passes cell membranes and exerts its intracellular functions by binding to GC receptors (GRs), which are ligand-activated nuclear receptors. GRs regulate, directly or indirectly, the expression of a plethora of genes involved in various physiological processes (e.g., see Rosen, E . D . "Adipocyte differentiation from the inside out" in Nat. Rev. Mol. Cell. Bio. 2006, 7, 697-706). Furthermore, GCs bind to mineralocorticoid receptors, which regulate blood pressure and sodium balance in the kidney (see Arriza, J. L. et al. "Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor" in Science 1987, 237, 268-275). Along with the F PA axis, GCs homeostasis is controlled by the 11β- hydroxysteroid dehydrogenase enzyme. Two isoforms of this enzyme, Ι ΐ β-HSD type 1 (Ι Ιβ-HSDl) and type 2 (l ip-HSD2), catalyse the interconversion between active 11- hydroxy forms (Cortisol in humans, and corticosterone in rodents) and inert 11- ketosteroids (cortisone in humans, and 11-dehydrocorticosterone in rodents). The 11β- HSD1 enzyme, mainly expressed in liver, adipose tissue, bone, pancreas, vasculature and brain, reconverts inactive glucocorticoids into active ones, thus playing an important role in modulating cellular agonist concentration and, therefore, in activating corticosteroid receptors in the target tissues. METABOLIC DISEASE SYNDROME AND DIABETES Type 2 diabetes mellitus (T2DM) is characterized by increased cellular insulin resistance with an initial phase of enhanced insulin secretion followed by pancreatic β- cell failure. Regarding obesity, a person with a body mass index of 30 or more is considered obese, entailing health risks. T2DM and obesity are considered as first-world epidemics and are nowadays great healthcare challenges in the developed countries. According to the World Health Organization (WHO), in 2014, 9% of the worldwide adult population had diabetes (see WHO web page. Diabetes Fact Sheet, htt ://www.who int/mediacentre/ factsheets/ fs3 2/en/ accessed on 2 1st March 2016). That same year, the percentage of total health expenditure in T2DM reached US $ 612 billion. The expected increase on the diabetic population by 2035 is about 205 million, which will elevate the total health cost still higher (see, European Comission web page. Major and chronic diseases: Diabetes. http://ec.europa.eu/health/major_chronic_diseases/diseases/diabetes/index__en.htm#frag ment7 accessed on 2 1st March 2016). Concerning obesity, in 2014 more than 1.9 billion adults were overweight, and of these, 600 million were obese (WHO web page. Obesity and overweight Fact Sheet http://www.who.int/mediacentre/factsheets/fs3 1l/en/ accessed on 2 1st March 2016). From another standpoint, the metabolic syndrome is a cluster of metabolic abnormalities including resistance to insulin, obesity, hyperglycemia, and hypertension that represents a major risk factor for type-2 diabetes and cardiovascular disease. It is diagnosed in a given patient if visceral obesity and two or more risk factors are present, including elevated fasting plasma glucose, elevated triglycerides, elevated blood pressure and reduced high-density lipoprotein (see Huang, P. L . "A comprehensive definition for metabolic syndrome" in Dis. Model Mech. 2009, 2, 231-237"). Among the mechanisms involved in its pathogenesis, glucocorticoid synthesis and metabolism have been proposed to play a key role (e.g., see Wamil, M . et al. "Inhibition of 11β- hydroxysteroid dehydrogenase type 1 as a promising therapeutic target" in Drug Discover. Today 2007, 12, 504-520). Currently, the predominant therapeutic strategy for preventing or managing T2DM and metabolic syndrome is the individual treatment of the set of risk factors instead of treating the disorder as a whole. The increase in the prevalence of T2DM and metabolic syndrome over the last few decades in the developed countries has propelled a growing need for the development of novel therapies to treat metabolic syndrome and its associated disorders.
Recommended publications
  • Synaptic GABAA Receptor Clustering Without the 2 Subunit
    The Journal of Neuroscience, July 30, 2014 • 34(31):10219–10233 • 10219 Cellular/Molecular ␥ Synaptic GABAA Receptor Clustering without the 2 Subunit Katalin Kerti-Szigeti, Zoltan Nusser, and X Mark D. Eyre Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1083, Hungary Rapid activation of postsynaptic GABAA receptors (GABAARs) is crucial in many neuronal functions, including the synchronization of neuronal ensembles and controlling the precise timing of action potentials. Although the ␥2 subunit is believed to be essential for the ␥ Ϫ/Ϫ postsynaptic clustering of GABAARs, synaptic currents have been detected in neurons obtained from 2 mice. To determine the role ␥ ␥ of the 2 subunit in synaptic GABAAR enrichment, we performed a spatially and temporally controlled 2 subunit deletion by injecting ␥ 77I Cre-expressing viral vectors into the neocortex of GABAAR 2 lox mice. Whole-cell recordings revealed the presence of miniature IPSCs in Cre ϩ layer 2/3 pyramidal cells (PCs) with unchanged amplitudes and rise times, but significantly prolonged decays. Such slowly decaying currents could be evoked in PCs by action potentials in presynaptic fast-spiking interneurons. Freeze-fracture replica immu- nogold labeling revealed the presence of the ␣1 and ␤3 subunits in perisomatic synapses of cells that lack the ␥2 subunit. Miniature IPSCs in Cre ϩ PCs were insensitive to low concentrations of flurazepam, providing a pharmacological confirmation of the lack of the ␥2 subunit. Receptors assembled from only ␣␤ subunits were unlikely because Zn 2ϩ did not block the synaptic currents. Pharmacological experiments indicated that the ␣␤␥3 receptor, rather than the ␣␤␦, ␣␤␧,or␣␤␥1 receptors, was responsible for the slowly decaying IPSCs.OurdatademonstratethepresenceofIPSCsandthesynapticenrichmentofthe␣1and␤3subunitsandsuggestthatthe␥3subunit ␥ is the most likely candidate for clustering GABAARs at synapses in the absence of the 2 subunit.
    [Show full text]
  • Texas Controlled Substances Act
    HEALTH AND SAFETY CODE TITLE 6. FOOD, DRUGS, ALCOHOL, AND HAZARDOUS SUBSTANCES SUBTITLE C. SUBSTANCE ABUSE REGULATION AND CRIMES CHAPTER 481. TEXAS CONTROLLED SUBSTANCES ACT SUBCHAPTER A. GENERAL PROVISIONS Sec.A481.001.AASHORT TITLE. This chapter may be cited as the Texas Controlled Substances Act. Acts 1989, 71st Leg., ch. 678, Sec. 1, eff. Sept. 1, 1989. Sec.A481.002.AADEFINITIONS. In this chapter: (1)AA"Administer" means to directly apply a controlled substance by injection, inhalation, ingestion, or other means to the body of a patient or research subject by: (A)AAa practitioner or an agent of the practitioner in the presence of the practitioner; or (B)AAthe patient or research subject at the direction and in the presence of a practitioner. (2)AA"Agent" means an authorized person who acts on behalf of or at the direction of a manufacturer, distributor, or dispenser. The term does not include a common or contract carrier, public warehouseman, or employee of a carrier or warehouseman acting in the usual and lawful course of employment. (3)AA"Commissioner" means the commissioner of state health services or the commissioner 's designee. (4)AA"Controlled premises" means: (A)AAa place where original or other records or documents required under this chapter are kept or are required to be kept; or (B)AAa place, including a factory, warehouse, other establishment, or conveyance, where a person registered under this chapter may lawfully hold, manufacture, distribute, dispense, administer, possess, or otherwise dispose of a controlled substance or other item governed by the federal Controlled Substances Act (21 U.S.C.
    [Show full text]
  • WO 2008/044045 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 17 April 2008 (17.04.2008) WO 2008/044045 Al (51) International Patent Classification: MURRAY, Christopher William [GB/GB]; 436 Cam A61K 31/438 (2006.01) C07D 491/10 (2006.01) bridge Science Park, Milton Road, Cambridge CB4 OQA A61K 31/439 (2006.01) C07D 471/04 (2006.01) (GB). A61K 31/403 (2006.01) C07D 471/10 (2006.01) A61K 31/00 (2006.01) C07D 491/08 (2006.01) (74) Agent: HUTCHINS, Michael, Richard; M. R. Hutchins C07D 209/44 (2006.01) C07D 401/04 (2006.01) & Co., 23 Mount Sion, Tunbridge Wells, Kent TN 1 ITZ C07D 209/08 (2006.01) C07D 401/12 (2006.01) (GB). C07D 215/08 (2006.01) C07D 419/10 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/GB2007/003891 AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, (22) International Filing Date: 12 October 2007 (12.10.2007) ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (25) Filing Language: English LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, (26) Publication Language: English PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (30) Priority Data: ZM, ZW 60/829.221 12 October 2006 (12.10.2006) US (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except US): ASTEX kind of regional protection available): ARIPO (BW, GH, THERAPEUTICS LIMITED [GB/GB]; 436 Cambridge GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Science Park, Milton Road, Cambridge CB4 OQA (GB).
    [Show full text]
  • TSPO in Steroid Neuroendocrinology
    231 1 V SELVARAJ and L N TU TSPO in neuroendocrinology 231:1 R1–R30 Review Current status and future perspectives: TSPO in steroid neuroendocrinology Correspondence should be addressed Vimal Selvaraj and Lan N Tu to V Selvaraj Email Department of Animal Science, Cornell University, Ithaca, New York, USA [email protected] Abstract The mitochondrial translocator protein (TSPO), previously known as the peripheral Key Words benzodiazepine receptor (PBR), has received significant attention both as a diagnostic f neurosteroid biomarker and as a therapeutic target for different neuronal disease pathologies. f steroid Recently, its functional basis believed to be mediating mitochondrial cholesterol import f brain for steroid hormone production has been refuted by studies examining both in vivo f spinal cord and in vitro genetic Tspo-deficient models. As a result, there now exists a fundamental f nervous system gap in the understanding of TSPO function in the nervous system, and its putative f mitochondria pharmacology in neurosteroid production. In this review, we discuss several recent f cholesterol Endocrinology findings in steroidogenic cells that are in direct contradiction to previous studies, and f hormone of necessitate a re-examination of the purported role for TSPO in de novo neurosteroid f inflammation biosynthesis. We critically examine the pharmacological effects of different TSPO- Journal binding drugs with particular focus on studies that measure neurosteroid levels. We highlight the basis of key misconceptions regarding TSPO that continue to pervade the literature, and the need for interpretation with caution to avoid negative impacts. We also summarize the emerging perspectives that point to new directions that need to be investigated for understanding the molecular function of TSPO, only after which the Journal of Endocrinology true potential of this therapeutic target in medicine may be realized.
    [Show full text]
  • WO 2013/092791 Al 27 June 2013 (27.06.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/092791 Al 27 June 2013 (27.06.2013) P O P C T (51) International Patent Classification: field Heath, Bishops Stortford, Hertfordshire CM22 7EG C07D 471/04 (2006.01) A61P 9/10 (2006.01) (GB). A61K 31/529 (2006.01) (74) Agent: NICHOL, Maria; Galapagos NV, Chesterford Re (21) International Application Number: search Park, Saffron Walden, Essex CB10 1XL (GB). PCT/EP2012/076275 (81) Designated States (unless otherwise indicated, for every (22) International Filing Date: kind of national protection available): AE, AG, AL, AM, 20 December 2012 (20. 12.2012) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (26) Publication Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 61/578,979 22 December 201 1 (22. 12.201 1) US NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (71) Applicant: GALAPAGOS NV [BE/BE]; Industriepark RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, Mechelen Noord, Generaal De Wittelaan L 11/A3, B-2800 TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, Mechelen (BE).
    [Show full text]
  • Modulation of Neurogenesis by PDE Inhibition
    (19) & (11) EP 2 377 530 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 19.10.2011 Bulletin 2011/42 A61K 31/40 (2006.01) A61K 45/06 (2006.01) A61K 31/4015 (2006.01) A61K 31/403 (2006.01) (2006.01) (2006.01) (21) Application number: 10013573.0 A61K 31/416 A61K 31/4166 A61K 31/4184 (2006.01) A61K 31/505 (2006.01) (2006.01) (2006.01) (22) Date of filing: 20.10.2006 A61P 25/00 A61K 31/401 (84) Designated Contracting States: • Lorrain, Kym, I. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR San Diego HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI California 92124 (US) SK TR • Pires, Jammieson, C. Chula Vista (30) Priority: 21.10.2005 US 729366 P CA 91911 (US) 21.03.2006 US 784605 P • Treuner, Kai 17.07.2006 US 807594 P San Diego California 92122 (US) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: (74) Representative: Roques, Sarah Elizabeth 06826395.3 / 1 940 389 J.A. Kemp & Co. 14 South Square (71) Applicant: Braincells, Inc. Gray’s Inn San Diego, CA 92121 (US) London WC1R 5JJ (GB) (72) Inventors: Remarks: • Barlow, Carrolee This application was filed on 12-10-2010 as a Del Mar divisional application to the application mentioned California 92014 (US) under INID code 62. • Carter, Todd, A. San Diego California 92129 (US) (54) Modulation of neurogenesis by PDE inhibition (57) The instant disclosure describes methods for methods based on use of a PDE agent, optionally in com- treating diseases and conditions of the central and pe- bination with one or more other neurogenic agents, to ripheral nervous system by stimulating or increasing neu- stimulate or activate the formation of new nerve cells.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8.263,610 B2 Ali Et Al
    US008263610B2 (12) United States Patent (10) Patent No.: US 8.263,610 B2 Ali et al. (45) Date of Patent: Sep. 11, 2012 (54) SUBSTITUTED (56) References Cited IMIDAZOLYL-5,6-DIHYDROBENZONISO QUINOLINE COMPOUNDS U.S. PATENT DOCUMENTS 4,522,811 A 6/1985 Eppstein et al. (75) Inventors: Syed M. Ali, North Andoyer, MA (US); 2005/01434424,612,318 AA1 * 9/19866/2005 WintersHudkins et........................ al. 514,293 Mark A. Ashwell, Carlisle, MA (US); 2008.0160028 A1 7/2008 Reicheltet al. Chris Brassard, Somerville, MA (US); Audra Dalton, Revere, MA (US); Anton FOREIGN PATENT DOCUMENTS Filikov, Stoneham, MA (US); Jason EP 104522 A2 4, 1984 Hill, Auburndale, MA (US); Nivedita EP 1238979 A1 9, 2002 Namdev, Westford, MA (US); Rocio E. A. is: Palma, North Andover, MA (US); SU 1626648 A1 9, 1995 Manish Tandon, Framingham, MA WO WO-O 144244 A1 6, 2001 (US); David Vensel, Boston, MA (US); WO WO-2005OO9389 A2 2/2005 JianqiangWang, Acton, MA (US); Neil WO WO-2006010567 A1 2/2006 Westlund, Groton, MA (US) WO WO-2007095628 A1 8, 2007 s s OTHER PUBLICATIONS (73) Assignee: ArCule, Inc., Woburn, MA (US) Diaz-ortizDaz-Ortiz etet al.,al., “Synthesis Tetrahedron, of Pyrazolo56(2000), 3,4-bipyridines pp. 1569-1577. by Cycload (*) b discl h f thi dition Reactions under Microwave Irradiation', Tetrahedron, Notice: Subject to any disclaimer, the term of this 56(11): 1569-1577 (2000). patent is extended or adjusted under 35 International Search Report and Written Opinion for PCT/US2009/ U.S.C. 154(b) by 165 days. 069821, mailed on Apr.
    [Show full text]
  • Synthesis and Pharmacological Activities of Pyrazole Derivatives: a Review
    Review Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review Khalid Karrouchi 1,2,3, Smaail Radi 2,*, Youssef Ramli 1, Jamal Taoufik 1, Yahia N. Mabkhot 4,*, Faiz A. Al-aizari 4 and M’hammed Ansar 1 1 Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco; [email protected] (K.K.); [email protected] (Y.R.); [email protected] (J.T.); [email protected] (M.A.) 2 LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco 3 Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco 4 Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; [email protected] * Correspondence: [email protected] or [email protected] (S.R.); [email protected] (Y.N.M.); Tel.: +212-536-500-601 (S.R.) Received: 22 November 2017; Accepted: 5 January 2018; Published: 12 January 2018 Abstract: Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives.
    [Show full text]
  • September 5-6, 2019 | Athens, Greece Book of Abstracts
    6th EFMC Young Medicinal Chemist Symposium September 5-6, 2019 | Athens, Greece Book of Abstracts YMCS19-BoA-Cover.indd 1 30/07/19 09:13 Organising Committees Chairman Dr Emmanouil FOUSTERIS (University of Patras, Patras, Greece) Members Dr David ALKER (David Alker Associates, Birchington, United Kingdom) Prof. Dennis GILLINGHAM (University of Basel, Basel, Switzerland) Dr Kristina GONCHARENKO (SpiroChem AG, Basel, Switzerland) Dr Cassandra LEE FLEMING (University of Gothenburg, Gothenburg, Sweden) Mr Brieuc MATAGNE (LD Organisation, Louvain-la-Neuve, Belgium) Dr Eleni PONTIKI (Aristotele University of Thessaloniki, Thessaloniki, Greece) Dr Matthew TOZER (Consultant, Cambridge, United Kingdom) Prof. Grigorios ZOIDIS (University of Athens, Athens, Greece) Content Welcome 2 Sponsors 3 Programme 5 Keynote Lectures 13 Oral Communications 19 Flash Poster Presentations 39 Posters Presentations 41 List of abstracts 153 List of participants 161 1 Welcome Dear participant, On behalf of the European Federation for Medicinal Chemistry (EFMC) and the Organising Committee, we warmly welcome you to Athens for the 6th edition of the EFMC Young Medicinal Chemist Symposium (EFMC-YMCS). Since the first edition of the EFMC-YMCS in 2014, the symposium has gone from strength to strength with increased participation from EFMC-National Adhering Organisations, and it is now firmly established as the premier forum in Europe for young Medicinal Chemistry and Chemical Biology researchers to promote their science. Our principal aims are: • Creating a network of young European investigators in Medicinal Chemistry and Chemical Biology • Stimulating young European investigators to share their scientific work with peers, and inspiring them to become leaders in their field • Creating competition, excellence and European Champions in Medicinal Chemistry and Chemical Biology This year, more than 170 scientists from 30 nations will gather in Athens for the latest edition.
    [Show full text]
  • Pharmscience Research & Development
    Scientific UNITED Group International Conference on PharmScience Research & Development March 04-06, 2019 Venue Paris Marriott Charles de Gaulle Airport Hotel 5 Allee du Verger, Zone Hoteliere Roissy en France, 95700 France Gold Sponsor Publication Partner We are excited to use Whova as our event platform. Attendees please download Whova event app. The event invitation code is: phaqv Floor Plan PARIS CHARLES DE GAULLE Gallery 1 Main Meeting Room WiFi Details Network : Marriott_conf Lunch Password : marriottroissy Gallery 2 Loft 3 Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Loft 2 Studio Studio Studio Studio Studio Studio Loft 1 1 2 3 Foyer 4 5 6 The Hellenic Society of Medicinal Chemistry (HSMC) supports the publication of the scientific journal ‘Pharmakeftiki’. The publication of the scientific journal ‘Pharmakeftiki’ started in 1987, within the Hellenic Society of Medicinal Chemistry. Later however, it followed an independent pathway as a quarterly edition on pharmaceutical sciences’ topics, always supported by HSMC and recently also by the Hellenic Pharmaceutical Society (HPS). Since 2012 ‘Pharmakeftiki’ is published both as hard copy and on line as an open access journal . The journal ‘Pharmakeftiki’ hosts review and research articles addressing all pharmaceutical topics and relevant scientific areas and promotes information on technological achievements and scientific events. Articles are published after peer-review in both English and Greek language –in the latter case an extended English abstract is required. Articles published in ‘Pharmakeftiki’ are indexed in CHEMICAL ABSTRACTS, EMBASE”, SCOPUS and EBSCO. The electronic version of ‘Pharmakeftiki’ is accessible in the website of HSMC (www.hsmc.gr/en/pharmakeftiki-journal/) and of HPS www.efe.org.gr ***All registered speakers of the Pharma R&D-2019 will be given an opportunity to publish their full-length manuscript as Conference Proceedings in Pharmakeftiki Journal (Scopus Indexed).
    [Show full text]
  • WO 2015/068856 Al 14 May 2015 (14.05.2015) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/068856 Al 14 May 2015 (14.05.2015) W P O P C T (51) International Patent Classification: Yusuke; c/o TAKEDA PHARMACEUTICAL COM C07D 401/14 (2006.01) C07D 409/14 (2006.01) PANY LIMITED, 26-1, Muraoka-Higashi 2-chome, C07D 413/14 (2006.01) C07D 417/14 (2006.01) Fujisawa-shi, Kanagawa, 25 10012 (JP). SHIOKAWA, A61K 31/4155 (2006.01) C07D 487/04 (2006.01) Zenyu; c/o TAKEDA PHARMACEUTICAL COMPANY C07D 401/04 (2006.01) C07D 487/10 (2006.01) LIMITED, 26-1, Muraoka-Higashi 2-chome, Fujisawa-shi, C07D 403/14 (2006.01) A61P 37/00 (2006.01) Kanagawa, 2510012 (JP). SHIBUYA, Akito; c/o TAKE DA PHARMACEUTICAL COMPANY LIMITED, 26-1, (21) International Application Number: Muraoka-Higashi 2-chome, Fujisawa-shi, Kanagawa, PCT/JP20 14/080005 25 10012 (JP). SASAKI, Yusuke; c/o TAKEDA PHAR (22) International Filing Date: MACEUTICAL COMPANY LIMITED, 26-1, Muraoka- 5 November 20 14 (05 .11.20 14) Higashi 2-chome, Fujisawa-shi, Kanagawa, 2510012 (JP). GIBSON, Tony; c/o TAKEDA CALIFORNIA, INC., (25) Filing Language: English 10410 Science Center Drive, San Diego, California, 92121 (26) Publication Language: English (US). TAKAGI, Terufumi; c/o TAKEDA PHARMA CEUTICAL COMPANY LIMITED, 26-1, Muraoka-Hi (30) Priority Data: gashi 2-chome, Fujisawa-shi, Kanagawa, 25 10012 (JP). 2013-232571 8 November 2013 (08. 11.2013) JP 2014- 128562 23 June 2014 (23.06.2014) JP (74) Agent: TAKASHIMA, Hajime; Meiji Yasuda Seimei Osaka Midosuji Bldg., 1-1, Fushimimachi 4-chome, Chuo- (71) Applicant: TAKEDA PHARMACEUTICAL COM¬ ku, Osaka-shi, Osaka, 5410044 (JP).
    [Show full text]
  • US 2016/0326102 A1 Kobayashi Et Al
    US 2016.03261 O2A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0326102 A1 Kobayashi et al. (43) Pub. Date: Nov. 10, 2016 (54) CYCLIC COMPOUNDS (52) U.S. Cl. CPC ........... C07C317/12 (2013.01); C07D 317/72 (71) Applicant: Takeda Pharmaceutical Company (2013.01); C07D 309/28 (2013.01); C07C Limited, Osaka (JP) 2102/08 (2013.01); C07C 2101/16 (2013.01) (72) Inventors: Toshitake Kobayashi, Kanagawa (JP); (57) ABSTRACT Morihisa SAITOH, Kanagawa (JP); Yasufumi WADA, Kanagawa (JP); The present invention provides compounds having a Toll Hiroshi NARA, Kanagawa (JP); like receptor 4 (TLR4) signaling inhibitory action useful as Nobuyuki NEGORO, Kanagawa (JP); preventive and therapeutic drugs of inflammatory disease and/or central nervous system disease or diseases such as Taisuke KATOH, Kanagawa (JP); chemotherapy-induced peripheral neuropathy (CIPN), che Masashi YAMASAKI, Kanagawa (JP): motherapy-induced neuropathic pain (CINP), liver injury, Takahiro TANAKA, Kanagawa (JP); ischemia-reperfusion injury (IRI) and the like. Naomi KITAMOTO, Kanagawa (JP) The present invention relates to a compound represented by (73) Assignee: Takeda Pharmaceutical Company formula (I) and a salt thereof: Limited, Osaka (JP) (21) Appl. No.: 15/148,210 (I) (22) Filed: May 6, 2016 (30) Foreign Application Priority Data May 8, 2015 (JP) ................................. 2015-095817 Publication Classification (51) Int. Cl. C07C 317/12 (2006.01) C07D 309/28 (2006.01) (wherein, each symbol is explained in greater detail in the C07D 31 7/72 (2006.01) specification). US 2016/0326102 A1 Nov. 10, 2016 CYCLIC COMPOUNDS 0007. In Patent Document 2 the following compound TECHNICAL FIELD (I) 0001.
    [Show full text]