Modulation of Neurogenesis by PDE Inhibition

Total Page:16

File Type:pdf, Size:1020Kb

Modulation of Neurogenesis by PDE Inhibition (19) & (11) EP 2 377 530 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 19.10.2011 Bulletin 2011/42 A61K 31/40 (2006.01) A61K 45/06 (2006.01) A61K 31/4015 (2006.01) A61K 31/403 (2006.01) (2006.01) (2006.01) (21) Application number: 10013573.0 A61K 31/416 A61K 31/4166 A61K 31/4184 (2006.01) A61K 31/505 (2006.01) (2006.01) (2006.01) (22) Date of filing: 20.10.2006 A61P 25/00 A61K 31/401 (84) Designated Contracting States: • Lorrain, Kym, I. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR San Diego HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI California 92124 (US) SK TR • Pires, Jammieson, C. Chula Vista (30) Priority: 21.10.2005 US 729366 P CA 91911 (US) 21.03.2006 US 784605 P • Treuner, Kai 17.07.2006 US 807594 P San Diego California 92122 (US) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: (74) Representative: Roques, Sarah Elizabeth 06826395.3 / 1 940 389 J.A. Kemp & Co. 14 South Square (71) Applicant: Braincells, Inc. Gray’s Inn San Diego, CA 92121 (US) London WC1R 5JJ (GB) (72) Inventors: Remarks: • Barlow, Carrolee This application was filed on 12-10-2010 as a Del Mar divisional application to the application mentioned California 92014 (US) under INID code 62. • Carter, Todd, A. San Diego California 92129 (US) (54) Modulation of neurogenesis by PDE inhibition (57) The instant disclosure describes methods for methods based on use of a PDE agent, optionally in com- treating diseases and conditions of the central and pe- bination with one or more other neurogenic agents, to ripheral nervous system by stimulating or increasing neu- stimulate or activate the formation of new nerve cells. rogenesis. The disclosure includes compositions and EP 2 377 530 A2 Printed by Jouve, 75001 PARIS (FR) 1 EP 2 377 530 A2 2 Description ical and pharmacological properties of the encoded PDEs (e.g., specificity for cAMP and/or cGMP, response RELATED APPLICATIONS to modulatory compounds). [0005] PDE families that specifically/preferentially hy- [0001] This application claims benefit of priority from 5 drolyze cAMP include PDE4, PDE7, and PDE8, whereas U.S. Provisional Patent Applications 60/729,366, filed families that specifically/preferentially hydrolyze cGMP October 21, 2005, 60/784,605, filed March 21, 2006, and include PDE5, PDE6, and PDE9. The PDE1, PDE2, 60/807,594, filed July 17, 2006. All three of these appli- PDE3, PDE10, and PDE11 families show substantial ac- cations are hereby incorporated by reference as if fully tivity agonist both cAMP and cGMP. Many PDE gene set forth. 10 families comprise multiple genes, which give rise to dis- tinct isozymes. For example, the PDE3, PDE6, PDE7, FIELD OF THE DISCLOSURE and PDE8 families each comprise at least two genes (3A, 3B; 6A, 6B; 7A, 7B; 8A, 8B), while the PDE1 family com- [0002] The instant disclosure relates to methods for prises at least three genes (1A, 1B, 1C), and the PDE4 treating diseases and conditions of the central and pe- 15 family comprises at least four genes (4A, 4B, 4C, 4D). In ripheral nervous system by stimulating or increasing neu- addition, the majority of PDE gene transcripts are subject rogenesis via inhibition of cyclic nucleotide phosphodi- to alternative splicing, giving rise to multiple isozymes esterase ("PDE") activity, optionally in combination with within each family. PDE isozymes are differentially ex- another neurogenic agent. The disclosure includes meth- pressed in various tissues, cell types, and subcellular ods based on the application of an PDE inhibitor and20 locations, and numerous PDE isozymes have been de- another neurogenic agent to stimulate or activate the for- tected throughout the CNS. mation of new nerve cells. [0006] Citation of the above documents is not intended as an admission that any of the foregoing is pertinent BACKGROUND OF THE DISCLOSURE prior art. All statements as to the date or representation 25 as to the contents of these documents is based on the [0003] Neurogenesis is a vital process in the brains of information available to the applicant and does not con- animals and humans, whereby new nerve cells are con- stitute any admission as to the correctness of the dates tinuously generated throughout the life span of the or- or contents of these documents. ganism. The newly born cells are able to differentiate into functional cells of the central nervous system and inte- 30 BRIEF SUMMARY OF THE DISCLOSURE grate into existing neural circuits in the brain. Neurogen- esis is known to persist throughout adulthood in two re- [0007] Disclosed herein are compositions and meth- gions of the mammalian brain: the subventricular zone ods for the prophylaxis and treatment of diseases, con- (SVZ) of the lateral ventricles and the dentate gyrus of ditions and injuries of the central and peripheral nervous the hippocampus. In these regions, multipotent neural 35 systems by stimulating or increasing neurogenesis. As- progenitor cells (NPCs) continue to divide and give rise pects of the methods, and activities of the compositions, to new functional neurons and glial cells (for review Gage include increasing or potentiating neurogenesis in cases 2000). It has been shown that a variety of factors can of a disease, disorder, or condition of the nervous system. stimulate adult hippocampal neurogenesis, e.g., adrena- Embodiments of the disclosure include methods of treat- lectomy, voluntary exercise, enriched environment, hip- 40 ing a neurodegenerative disorder, neurological trauma pocampus dependent learning and anti-depressants including brain or central nervous system trauma and/or (Yehuda 1989, van Praag 1999, Brown J 2003, Gould recovery therefrom, depression, anxiety, psychosis, 1999, Malberg 2000, Santarelli 2003). Other factors, learning and memory disorders, and ischemia of the cen- such as adrenal hormones, stress, age and drugs of tral and/or peripheral nervous systems. In other embod- abuse negatively influence neurogenesis (Cameron45 iments, the disclosed methods are used to improve cog- 1994, McEwen 1999, Kuhn 1996, Eisch 2004). nitive outcomes and mood disorders. [0004] Cyclic adenosine monophosphate (cAMP) and [0008] In one aspect, methods of modulating, such as cyclic guanosine monophosphate (cGMP) are ubiquitous by stimulating or increasing, neurogenesis are disclosed. second messengers that mediate a wide range of proc- The neurogenesis may be at the level of a cell or tissue. esses in mammalian cells, including vision, olfaction,50 The cell or tissue may be present in an animal subject or platelet aggregation, aldosterone synthesis, insulin se- a human being, or alternatively be in an in vitro or ex vivo cretion, T cell activation, and smooth muscle relaxation. setting. In some embodiments, neurogenesis is stimulat- Cyclic nucleotide phosphodiesterases ("PDEs") regulate ed or increased in a neural cell or tissue, such as that of intracellular levels of cAMP and cGMP by catalyzing their the central or peripheral nervous system of an animal or hydrolysis to the corresponding nucleotide 5’-monophos- 55 human being. In cases of an animal or human, the meth- phates. Over 20 PDE genes have been cloned, encoding ods may be practiced in connection with one or more 11 gene families (PDE1- PDE11), which are classified ac- diseases, disorders, or conditions of the nervous system cording to sequence homology, as well as the biochem- as present in the animal or human subject. Thus, em- 2 3 EP 2 377 530 A2 4 bodiments disclosed herein include methods of treating the method may be used to improve, maintain, or stabilize a disease, disorder, or condition by administering at least mood in a subject or patient Of course the method may one neurogenesis modulating agent having inhibitory ac- be optionally combined with any other therapy or condi- tivity against a cyclic nucleotide phosphodiesterase tion used in the treatment of a mood disorder. ("PDE"), hereinafter referred to as a "PDE agent". A PDE 5 [0014] In a third aspect, the disclosed methods include agent may be formulated or used alone, or in combination identifying a patient suffering from one or more diseases, with one or more additional neurogenic agents, such as disorders, or conditions, or a symptom thereof, and ad- another PDE agent or a non-PDE agent. ministering to the patient a PDE agent, optionally in com- [0009] The disclosure thus includes a method of using bination with one or more other neurogenic agents, as a chemical entity as a PDE agent to increase neurogen- 10 described herein. In some embodiments, a method in- esis. In some embodiments, a chemical entity used as cluding identification of a subject as in need of an in- an agent is a therapeutically or pharmaceutically accept- crease in neurogenesis, and administering to the subject able reversible PDE inhibitor. Alternatively, an accepta- a PDE agent, optionally in combination with one or more ble irreversible PDE inhibitor may also be used in some other neurogenic agents is disclosed herein. In other em- embodiments of the disclosure. Additional embodiments 15 bodiments, the subject is a patient, such as a human comprise an inhibitor that is a tertiary amine which cross- patient es the blood brain barrier. [0015] Another aspect of the disclosure describes a [0010] While a PDE agent may be considered a "direct" method including administering a PDE agent, optionally agent in that it has direct activity against a PDE by inter- incombination with one or more other neurogenicagents, actions therewith, the disclosure includes a PDE agent 20 to a subject exhibiting the effects of insufficient amounts that may be considered an "indirect" agent in that it does of, or inadequate levels of, neurogenesis. In some em- not directly interact with a PDE.
Recommended publications
  • Synaptic GABAA Receptor Clustering Without the 2 Subunit
    The Journal of Neuroscience, July 30, 2014 • 34(31):10219–10233 • 10219 Cellular/Molecular ␥ Synaptic GABAA Receptor Clustering without the 2 Subunit Katalin Kerti-Szigeti, Zoltan Nusser, and X Mark D. Eyre Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1083, Hungary Rapid activation of postsynaptic GABAA receptors (GABAARs) is crucial in many neuronal functions, including the synchronization of neuronal ensembles and controlling the precise timing of action potentials. Although the ␥2 subunit is believed to be essential for the ␥ Ϫ/Ϫ postsynaptic clustering of GABAARs, synaptic currents have been detected in neurons obtained from 2 mice. To determine the role ␥ ␥ of the 2 subunit in synaptic GABAAR enrichment, we performed a spatially and temporally controlled 2 subunit deletion by injecting ␥ 77I Cre-expressing viral vectors into the neocortex of GABAAR 2 lox mice. Whole-cell recordings revealed the presence of miniature IPSCs in Cre ϩ layer 2/3 pyramidal cells (PCs) with unchanged amplitudes and rise times, but significantly prolonged decays. Such slowly decaying currents could be evoked in PCs by action potentials in presynaptic fast-spiking interneurons. Freeze-fracture replica immu- nogold labeling revealed the presence of the ␣1 and ␤3 subunits in perisomatic synapses of cells that lack the ␥2 subunit. Miniature IPSCs in Cre ϩ PCs were insensitive to low concentrations of flurazepam, providing a pharmacological confirmation of the lack of the ␥2 subunit. Receptors assembled from only ␣␤ subunits were unlikely because Zn 2ϩ did not block the synaptic currents. Pharmacological experiments indicated that the ␣␤␥3 receptor, rather than the ␣␤␦, ␣␤␧,or␣␤␥1 receptors, was responsible for the slowly decaying IPSCs.OurdatademonstratethepresenceofIPSCsandthesynapticenrichmentofthe␣1and␤3subunitsandsuggestthatthe␥3subunit ␥ is the most likely candidate for clustering GABAARs at synapses in the absence of the 2 subunit.
    [Show full text]
  • The National Drugs List
    ^ ^ ^ ^ ^[ ^ The National Drugs List Of Syrian Arab Republic Sexth Edition 2006 ! " # "$ % &'() " # * +$, -. / & 0 /+12 3 4" 5 "$ . "$ 67"5,) 0 " /! !2 4? @ % 88 9 3: " # "$ ;+<=2 – G# H H2 I) – 6( – 65 : A B C "5 : , D )* . J!* HK"3 H"$ T ) 4 B K<) +$ LMA N O 3 4P<B &Q / RS ) H< C4VH /430 / 1988 V W* < C A GQ ") 4V / 1000 / C4VH /820 / 2001 V XX K<# C ,V /500 / 1992 V "!X V /946 / 2004 V Z < C V /914 / 2003 V ) < ] +$, [2 / ,) @# @ S%Q2 J"= [ &<\ @ +$ LMA 1 O \ . S X '( ^ & M_ `AB @ &' 3 4" + @ V= 4 )\ " : N " # "$ 6 ) G" 3Q + a C G /<"B d3: C K7 e , fM 4 Q b"$ " < $\ c"7: 5) G . HHH3Q J # Hg ' V"h 6< G* H5 !" # $%" & $' ,* ( )* + 2 ا اوا ادو +% 5 j 2 i1 6 B J' 6<X " 6"[ i2 "$ "< * i3 10 6 i4 11 6! ^ i5 13 6<X "!# * i6 15 7 G!, 6 - k 24"$d dl ?K V *4V h 63[46 ' i8 19 Adl 20 "( 2 i9 20 G Q) 6 i10 20 a 6 m[, 6 i11 21 ?K V $n i12 21 "% * i13 23 b+ 6 i14 23 oe C * i15 24 !, 2 6\ i16 25 C V pq * i17 26 ( S 6) 1, ++ &"r i19 3 +% 27 G 6 ""% i19 28 ^ Ks 2 i20 31 % Ks 2 i21 32 s * i22 35 " " * i23 37 "$ * i24 38 6" i25 39 V t h Gu* v!* 2 i26 39 ( 2 i27 40 B w< Ks 2 i28 40 d C &"r i29 42 "' 6 i30 42 " * i31 42 ":< * i32 5 ./ 0" -33 4 : ANAESTHETICS $ 1 2 -1 :GENERAL ANAESTHETICS AND OXYGEN 4 $1 2 2- ATRACURIUM BESYLATE DROPERIDOL ETHER FENTANYL HALOTHANE ISOFLURANE KETAMINE HCL NITROUS OXIDE OXYGEN PROPOFOL REMIFENTANIL SEVOFLURANE SUFENTANIL THIOPENTAL :LOCAL ANAESTHETICS !67$1 2 -5 AMYLEINE HCL=AMYLOCAINE ARTICAINE BENZOCAINE BUPIVACAINE CINCHOCAINE LIDOCAINE MEPIVACAINE OXETHAZAINE PRAMOXINE PRILOCAINE PREOPERATIVE MEDICATION & SEDATION FOR 9*: ;< " 2 -8 : : SHORT -TERM PROCEDURES ATROPINE DIAZEPAM INJ.
    [Show full text]
  • Stems for Nonproprietary Drug Names
    USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol
    [Show full text]
  • Texas Controlled Substances Act
    HEALTH AND SAFETY CODE TITLE 6. FOOD, DRUGS, ALCOHOL, AND HAZARDOUS SUBSTANCES SUBTITLE C. SUBSTANCE ABUSE REGULATION AND CRIMES CHAPTER 481. TEXAS CONTROLLED SUBSTANCES ACT SUBCHAPTER A. GENERAL PROVISIONS Sec.A481.001.AASHORT TITLE. This chapter may be cited as the Texas Controlled Substances Act. Acts 1989, 71st Leg., ch. 678, Sec. 1, eff. Sept. 1, 1989. Sec.A481.002.AADEFINITIONS. In this chapter: (1)AA"Administer" means to directly apply a controlled substance by injection, inhalation, ingestion, or other means to the body of a patient or research subject by: (A)AAa practitioner or an agent of the practitioner in the presence of the practitioner; or (B)AAthe patient or research subject at the direction and in the presence of a practitioner. (2)AA"Agent" means an authorized person who acts on behalf of or at the direction of a manufacturer, distributor, or dispenser. The term does not include a common or contract carrier, public warehouseman, or employee of a carrier or warehouseman acting in the usual and lawful course of employment. (3)AA"Commissioner" means the commissioner of state health services or the commissioner 's designee. (4)AA"Controlled premises" means: (A)AAa place where original or other records or documents required under this chapter are kept or are required to be kept; or (B)AAa place, including a factory, warehouse, other establishment, or conveyance, where a person registered under this chapter may lawfully hold, manufacture, distribute, dispense, administer, possess, or otherwise dispose of a controlled substance or other item governed by the federal Controlled Substances Act (21 U.S.C.
    [Show full text]
  • TR-473: Theophylline (CASRN 58-55-9) in F344/N Rats And
    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF THEOPHYLLINE (CAS NO. 58-55-9) IN F344/N RATS AND B6C3F1 MICE (FEED AND GAVAGE STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 August 1998 NTP TR 473 NIH Publication No. 98-3963 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals.
    [Show full text]
  • New Galenic Formulations with Programmed Release
    Europaisches Patentamt J European Patent Office 00 Publication number: 0 324 981 Office europeen des brevets A1 EUROPEAN PATENT APPLICATION © Application number: 88121777.2 © mt.ci.4:A61K 9/22 , A61K 9/54 , A61K 31/19 , A61K 31/195 © Date of filing: 28.12.88 A61K 31/52 Claims for the following Contracting States: ES ' © Applicant: ALFA WASSERMANN S.p.A. GR. Contrada Sant'Emidio s.n.c. I-65020 Alanno Scalo (Pescara)(IT) © Priority: 18.01.88 IT 1910088 © Inventor: Rotini, Leone Gabriele 7 Piazza Bonazzi @ Date of publication of application: 1-40133 Bologna(IT) 26.07.89 Bulletin 89/30 Inventor: Marchi, Egidio 3 Via Don Ercolani © Designated Contracting States: I-40033 Casaiecchio Di Reno(IT) AT BE CH DE ES FR GB GR IT LI LU NL SE Representative: Kraus, Walter, Dr. et al Patentanwalte Kraus, Weisert & Partner Thomas- Wimmer-Ring 15 D-8000 Munchen 22(DE) New galenic formulations with programmed release. © New galenic formulations with programmed release, to be administered by oral route, containing as the active ingredient a drug selected from the non steroidal antiinflammatory, bronchodilator, vasodilator, cardiovas- cular and muscle relaxant drugs. In these new formulations, a portion of the active ingredient is released in a short time, so that the drug can quickly develop its therapeutic action reaching the necessary hematic levels, while the remaining portion of the active constituent is released in a longer interval of time so as to allow the therapeutic coverage till the subsequent administration. Said therapeutic coverage can even last 24 hours; thus the new galenic formulations object of the present invention are suitable for a once a day administration.
    [Show full text]
  • SA1 Oxygen Binding Heme Proteins
    8P Research Symposium transcriptional and post-translational responses to hypoxia are SA1 not fully understood. Our model proposes that mitochondria function as cellular oxygen sensors through a process that Oxygen binding heme proteins involves interaction of molecular oxygen with Complex III of M.T. Wilson the electron transport chain. Hypoxia results in a paradoxical increase in the release of reactive oxygen species from the outer Biological Sciences, University of Essex, Colchester, UK surface of the inner mitochondrial membrane. These signaling Myoglobin (Mb) and Hemoglobin (Hb), the respiratory pig- levels of oxidant stress lead to the activation of transcription fac- ments of mammals and some molluscs, annelids and arthro- tors including Hypoxia-Inducible Factor (HIF-1 and HIF-2) and pods, belong to an ancient super-family of heme associated glo- NF-kB, and they trigger cell-specific post-translational responses bin proteins. Members of this family share common structural to hypoxia. Stabilization of HIF-α protein in hypoxia is abro- and spectral features. They also share some general functional gated when genetic modifications to the electron transport chain characteristics such as the ability to bind ligands, e.g. O2, CO and lead to loss-of-function in terms of the ability to generate ROS NO, at the iron atom and to undergo redox changes. These prop- signals during hypoxia. Conversely, genetic modifications to erties are used in vivo to perform a wide range of biochemical Complex II that induce a chronic increase in mitochondrial ROS and physiological roles. production lead to the stabilization of HIF-α under normoxic While it is acknowledged that the major role of Hb is to bind conditions.
    [Show full text]
  • WO 2008/044045 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 17 April 2008 (17.04.2008) WO 2008/044045 Al (51) International Patent Classification: MURRAY, Christopher William [GB/GB]; 436 Cam A61K 31/438 (2006.01) C07D 491/10 (2006.01) bridge Science Park, Milton Road, Cambridge CB4 OQA A61K 31/439 (2006.01) C07D 471/04 (2006.01) (GB). A61K 31/403 (2006.01) C07D 471/10 (2006.01) A61K 31/00 (2006.01) C07D 491/08 (2006.01) (74) Agent: HUTCHINS, Michael, Richard; M. R. Hutchins C07D 209/44 (2006.01) C07D 401/04 (2006.01) & Co., 23 Mount Sion, Tunbridge Wells, Kent TN 1 ITZ C07D 209/08 (2006.01) C07D 401/12 (2006.01) (GB). C07D 215/08 (2006.01) C07D 419/10 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/GB2007/003891 AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, (22) International Filing Date: 12 October 2007 (12.10.2007) ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (25) Filing Language: English LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, (26) Publication Language: English PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (30) Priority Data: ZM, ZW 60/829.221 12 October 2006 (12.10.2006) US (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except US): ASTEX kind of regional protection available): ARIPO (BW, GH, THERAPEUTICS LIMITED [GB/GB]; 436 Cambridge GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Science Park, Milton Road, Cambridge CB4 OQA (GB).
    [Show full text]
  • Pharmaceutical Appendix to the Harmonized Tariff Schedule
    Harmonized Tariff Schedule of the United States Basic Revision 2 (2021) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States Basic Revision 2 (2021) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • (19) 11 Patent Number: 6165500
    USOO6165500A United States Patent (19) 11 Patent Number: 6,165,500 Cevc (45) Date of Patent: *Dec. 26, 2000 54 PREPARATION FOR THE APPLICATION OF WO 88/07362 10/1988 WIPO. AGENTS IN MINI-DROPLETS OTHER PUBLICATIONS 75 Inventor: Gregor Cevc, Heimstetten, Germany V.M. Knepp et al., “Controlled Drug Release from a Novel Liposomal Delivery System. II. Transdermal Delivery Char 73 Assignee: Idea AG, Munich, Germany acteristics” on Journal of Controlled Release 12(1990) Mar., No. 1, Amsterdam, NL, pp. 25–30. (Exhibit A). * Notice: This patent issued on a continued pros- C.E. Price, “A Review of the Factors Influencing the Pen ecution application filed under 37 CFR etration of Pesticides Through Plant Leaves” on I.C.I. Ltd., 1.53(d), and is subject to the twenty year Plant Protection Division, Jealott's Hill Research Station, patent term provisions of 35 U.S.C. Bracknell, Berkshire RG12 6EY, U.K., pp. 237-252. 154(a)(2). (Exhibit B). K. Karzel and R.K. Liedtke, “Mechanismen Transkutaner This patent is Subject to a terminal dis- Resorption” on Grandlagen/Basics, pp. 1487–1491. (Exhibit claimer. C). Michael Mezei, “Liposomes as a Skin Drug Delivery Sys 21 Appl. No.: 07/844,664 tem” 1985 Elsevier Science Publishers B.V. (Biomedical Division), pp 345-358. (Exhibit E). 22 Filed: Apr. 8, 1992 Adrienn Gesztes and Michael Mazei, “Topical Anesthesia of 30 Foreign Application Priority Data the Skin by Liposome-Encapsulated Tetracaine” on Anesth Analg 1988; 67: pp 1079–81. (Exhibit F). Aug. 24, 1990 DE) Germany ............................... 40 26834 Harish M. Patel, "Liposomes as a Controlled-Release Sys Aug.
    [Show full text]
  • L:\0901 with Peru\0901PHARMAPPX.Wpd
    Harmonized Tariff Schedule of the United States (2009) (Rev. 1) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2009) (Rev. 1) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACEXAMIC ACID 57-08-9 ABAFUNGIN 129639-79-8 ACICLOVIR 59277-89-3 ABAMECTIN 65195-55-3 ACIFRAN 72420-38-3 ABANOQUIL 90402-40-7 ACIPIMOX 51037-30-0 ABAPERIDONE 183849-43-6 ACITAZANOLAST 114607-46-4 ABARELIX 183552-38-7 ACITEMATE 101197-99-3 ABATACEPT 332348-12-6 ACITRETIN 55079-83-9 ABCIXIMAB 143653-53-6 ACIVICIN 42228-92-2 ABECARNIL 111841-85-1 ACLANTATE 39633-62-0 ABETIMUS 167362-48-3 ACLARUBICIN 57576-44-0 ABIRATERONE 154229-19-3 ACLATONIUM NAPADISILATE 55077-30-0 ABITESARTAN 137882-98-5 ACODAZOLE 79152-85-5 ABLUKAST 96566-25-5 ACOLBIFENE 182167-02-8 ABRINEURIN 178535-93-8 ACONIAZIDE 13410-86-1 ABUNIDAZOLE 91017-58-2 ACOTIAMIDE 185106-16-5 ACADESINE 2627-69-2 ACOXATRINE 748-44-7 ACAMPROSATE 77337-76-9 ACREOZAST 123548-56-1 ACAPRAZINE 55485-20-6
    [Show full text]