(12) United States Patent (10) Patent No.: US 8.263,610 B2 Ali Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8.263,610 B2 Ali Et Al US008263610B2 (12) United States Patent (10) Patent No.: US 8.263,610 B2 Ali et al. (45) Date of Patent: Sep. 11, 2012 (54) SUBSTITUTED (56) References Cited IMIDAZOLYL-5,6-DIHYDROBENZONISO QUINOLINE COMPOUNDS U.S. PATENT DOCUMENTS 4,522,811 A 6/1985 Eppstein et al. (75) Inventors: Syed M. Ali, North Andoyer, MA (US); 2005/01434424,612,318 AA1 * 9/19866/2005 WintersHudkins et........................ al. 514,293 Mark A. Ashwell, Carlisle, MA (US); 2008.0160028 A1 7/2008 Reicheltet al. Chris Brassard, Somerville, MA (US); Audra Dalton, Revere, MA (US); Anton FOREIGN PATENT DOCUMENTS Filikov, Stoneham, MA (US); Jason EP 104522 A2 4, 1984 Hill, Auburndale, MA (US); Nivedita EP 1238979 A1 9, 2002 Namdev, Westford, MA (US); Rocio E. A. is: Palma, North Andover, MA (US); SU 1626648 A1 9, 1995 Manish Tandon, Framingham, MA WO WO-O 144244 A1 6, 2001 (US); David Vensel, Boston, MA (US); WO WO-2005OO9389 A2 2/2005 JianqiangWang, Acton, MA (US); Neil WO WO-2006010567 A1 2/2006 Westlund, Groton, MA (US) WO WO-2007095628 A1 8, 2007 s s OTHER PUBLICATIONS (73) Assignee: ArCule, Inc., Woburn, MA (US) Diaz-ortizDaz-Ortiz etet al.,al., “Synthesis Tetrahedron, of Pyrazolo56(2000), 3,4-bipyridines pp. 1569-1577. by Cycload (*) b discl h f thi dition Reactions under Microwave Irradiation', Tetrahedron, Notice: Subject to any disclaimer, the term of this 56(11): 1569-1577 (2000). patent is extended or adjusted under 35 International Search Report and Written Opinion for PCT/US2009/ U.S.C. 154(b) by 165 days. 069821, mailed on Apr. 27, 2010. Paronikyan et al. “Synthesis and Anticonvulsant Activity of Pyrazolo 3,4-bipyrano (thiopyrano04,3-dipyridine and (21) Appl. No.: 12/649,762 pyrazolo 3,4-c isoquinoline Derivatives.” Pharm. Chem. J. 35.1(2001):8-10. Paronikyan et al. “Synthesis and Some Conversions of Partially (22) Filed: Dec. 30, 2009 Hydrogenated 1-Aminopyrano(thiopyrano)4,3-dipyrazolo 3,4- bipyridines and pyrazolo 3,4-c isoquinolines.” Chemistry of H ereocycticlic CUompounas. ds. 39.3(2003):374-378: (65) Prior Publication Data Sharlow et al. “Development and Implementation of a Miniaturized US 2010/O239526A1 Sep. 23, 2010 High-Throughput Time-Resolved Fluorescence Energy Transfer Assay to Identify Small Molecule Inhibitors of Polo-Like Kinase 1.” O O ASSAY and Drug Development Technologies. 5.6(2007):723-726. Related U.S. Application Data Winters et al. “Easy Synthesis of New Ring-Fused Pyridones from (60) Provisional application No. 61/141,371, filed on Dec. Heteroaromatic B-vinylamines.” Synthesis. 12(1984): 1052-1054. 30, 2008. * cited by examiner Primary Examiner — Niloofar Rahmani (51) Int. Cl. (74) Attorney, Agent, or Firm — Mintz Levin Cohn Ferris AOIN 43/42 (2006.01) Glovsky and Popeo, P.C.: Ivor R. Elrifi; Matthew Pavao, J.D. A6 IK3I/44 (2006.01) (57) ABSTRACT CO7D 47L/00 (2006.01) The present invention relates to substituted imidazolyl-5,6- CO7D 49/00 (2006.01) dihydrobenzonisoquinoline compounds and methods of CO7D 49.8/00 (2006.01) synthesizing these compounds. The present invention also CO7D 53/00 (2006.01) relates to pharmaceutical compositions containing Substi C07D 515/00 (2006.01) tuted imidazolyl-5,6-dihydrobenzonisoquinoline com (52) U.S. Cl. .......................................... 514/293; 546/82 pounds and methods of treating cell proliferative disorders, (58) Field of Classification Search 546/82 Such as cancer, by administering these compounds and phar - - - - - - - - - - - - - - - - - - - - 5141293 maceutical compositions to Subjects in need thereof. See application file for complete search history. 21 Claims, No Drawings US 8,263,610 B2 1. 2 SUBSTITUTED is abnormally active (overexpressed) in certain types of stom IMIDAZOLYL-5,6-DIHYDROBENZONISO ach cancers, and this amplification is associated with a poorer QUINOLINE COMPOUNDS prognosis and response to standard clinical methods. Abnor mal expression of FGFR2 is also found in patients with pros CROSS-REFERENCE TO RELATED tate cancer. More than 60 percent of women with breast APPLICATIONS cancer in the United States carry at least a single mutation in this gene as well. The present application claims priority to, and the benefit of, U.S. Provisional Application No. 61/141,371, filed Dec. Accordingly, new compounds and methods for modulating 30, 2008. The contents of this application is herein incorpo 10 FGFR2 and treating proliferation disorders, including cancer, rated by reference in its entirety. are needed. The present invention addresses these needs. BACKGROUND OF THE INVENTION SUMMARY OF THE INVENTION Cancer is the second leading cause of death in the United 15 States, exceeded only by heart disease. (Cancer Facts and The present invention provides, in part, Substituted imida Figures 2004, American Cancer Society, Inc.). Despite recent Zolyl-5,6-dihydrobenzonisoquinoline compounds of For advances in cancer diagnosis and treatment, Surgery and mula I, II, III or IV and methods of preparing the compounds radiotherapy may be curative if a cancer is found early, but of Formula I, II, III or IV: current drug therapies for metastatic disease are mostly pal liative and seldom offer a long-term cure. Even with new chemotherapies entering the market, the need continues for (I) new drugs effective in monotherapy or in combination with Rc2 existing agents as first line therapy, and as second and third N-N^ line therapies in treatment of resistant tumors. 25 W Cancer cells are by definition heterogeneous. For example, Rel a NN within a single tissue or cell type, multiple mutational "mechanisms' may lead to the development of cancer. As Rc4 S Such, heterogeneity frequently exists between cancer cells taken from tumors of the same tissue and same type that have 30 X originated in different individuals. Frequently observed R1 Nx1 mutational "mechanisms' associated with some cancers may (II) differ between one tissue type and another (e.g., frequently observed mutational "mechanisms' leading to colon cancer may differ from frequently observed “mechanisms' leading 35 to leukemias). It is therefore often difficult to predict whether a particular cancer will respond to a particular chemothera peutic agent (Cancer Medicine, 5' edition, Bast et al., B.C. Decker Inc., Hamilton, Ontario). Components of cellular signal transduction pathways that 40 regulate the growth and differentiation of normal cells can, when dysregulated, lead to the development of cellular pro (III) liferative disorders and cancer. Mutations in cellular signal Rc2 ing proteins may cause Such proteins to become expressed or N-N? activated at inappropriate levels or at inappropriate times 45 W during the cell cycle, which in turn may lead to uncontrolled Rel 21 NN cellular growth or changes in cell-cell attachment properties. For example, dysregulation of receptor tyrosine kinases by mutation, gene rearrangement, gene amplification, and over N expression of both receptor and ligand has been implicated in 50 the development and progression of human cancers. Rc6, FGFR2 is a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved Rc5 between members and throughout evolution. FGFR family members differ from one another in their ligandaffinities and 55 tissue distribution. A full-length representative protein con (IV) sists of an extracellular region, composed of three immuno Rc2 globulin-like domains, a single hydrophobic membrane N-N? spanning segment and a cytoplasmic tyrosine kinase domain. W The extracellular portion of the protein interacts with fibro 60 Rel 21 NN blast growth factors, setting downstream signals, ultimately influencing mitogenesis and differentiation. Rc4 N Alterations in the activity (expression) of the FGFR2 gene are associated with certain cancers. The altered gene expres sion may enhance several cancer-related events such as cell 65 R Y Rc6, proliferation, cell movement, and the development of new blood vessels that nourish a growing tumor. The FGFR2 gene US 8,263,610 B2 3 4 or a salt, Solvate, hydrate or prodrug thereof, wherein: the atom they attach to, form a 5-, 6- or 7-member ring which comprises 1-4 heteroatoms selected from N, O and S and is optionally substituted; R, is H, unsubstituted or substituted Co-Co aryl, unsub stituted or substituted heteroaryl comprising one or two 5- or O 6-member ring and 1-4 heteroatoms selected from N, O and S. unsubstituted or Substituted C-Cs carbocycle, unsubstituted is a 5- or 6-member ring which optionally comprises 1-4 or Substituted heterocycle comprising one or two 5- or heteroatoms selected from N, O and S, and is optionally 6-member ring and 1-4 heteroatoms selected from N, O and S. substituted; 10 - NRR', NR"C(O)NR'R'', NR"C(O)R - NR"C R is H. halogen, unsubstituted or Substituted C-C alkyl, (O)OR - NR"S(O).R., or—C(O)NR'R'; unsubstituted or substituted phenyl, or unsubstituted or sub Rs and Rs' are each independently H, or-T'-Q,"; stituted heteroaryl comprising one or two 5- or 6-member ring R" is H, or unsubstituted or substituted C-C alkyl; and 1-4 heteroatoms selected from N, O and S; 15 T.T., and Ts are each independently a bond, or unsub R is H, or unsubstituted or substituted C-C alkyl: stituted or substituted C-C alkyl linker; R. and Ra are each independently H, unsubstituted or Q, is H, unsubstituted or substituted Co-Co aryl, unsub Substituted C-C alkyl, or R and Ra, together with the stituted or substituted heteroaryl comprising one or two 5- or atoms they attach to, form a 5-, 6- or 7-member ring which 6-member ring and 1-4 heteroatoms selected from N, O and S. optionally comprises 1-4 heteroatoms selected from N, O and unsubstituted or Substituted C-Cs carbocycle, unsubstituted Sand is optionally substituted; or Substituted heterocycle comprising one or two 5- or Rs and R are each independently H, unsubstituted or 6-member ring and 1-4 heteroatoms selected from N, O and S.
Recommended publications
  • Synaptic GABAA Receptor Clustering Without the 2 Subunit
    The Journal of Neuroscience, July 30, 2014 • 34(31):10219–10233 • 10219 Cellular/Molecular ␥ Synaptic GABAA Receptor Clustering without the 2 Subunit Katalin Kerti-Szigeti, Zoltan Nusser, and X Mark D. Eyre Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1083, Hungary Rapid activation of postsynaptic GABAA receptors (GABAARs) is crucial in many neuronal functions, including the synchronization of neuronal ensembles and controlling the precise timing of action potentials. Although the ␥2 subunit is believed to be essential for the ␥ Ϫ/Ϫ postsynaptic clustering of GABAARs, synaptic currents have been detected in neurons obtained from 2 mice. To determine the role ␥ ␥ of the 2 subunit in synaptic GABAAR enrichment, we performed a spatially and temporally controlled 2 subunit deletion by injecting ␥ 77I Cre-expressing viral vectors into the neocortex of GABAAR 2 lox mice. Whole-cell recordings revealed the presence of miniature IPSCs in Cre ϩ layer 2/3 pyramidal cells (PCs) with unchanged amplitudes and rise times, but significantly prolonged decays. Such slowly decaying currents could be evoked in PCs by action potentials in presynaptic fast-spiking interneurons. Freeze-fracture replica immu- nogold labeling revealed the presence of the ␣1 and ␤3 subunits in perisomatic synapses of cells that lack the ␥2 subunit. Miniature IPSCs in Cre ϩ PCs were insensitive to low concentrations of flurazepam, providing a pharmacological confirmation of the lack of the ␥2 subunit. Receptors assembled from only ␣␤ subunits were unlikely because Zn 2ϩ did not block the synaptic currents. Pharmacological experiments indicated that the ␣␤␥3 receptor, rather than the ␣␤␦, ␣␤␧,or␣␤␥1 receptors, was responsible for the slowly decaying IPSCs.OurdatademonstratethepresenceofIPSCsandthesynapticenrichmentofthe␣1and␤3subunitsandsuggestthatthe␥3subunit ␥ is the most likely candidate for clustering GABAARs at synapses in the absence of the 2 subunit.
    [Show full text]
  • Texas Controlled Substances Act
    HEALTH AND SAFETY CODE TITLE 6. FOOD, DRUGS, ALCOHOL, AND HAZARDOUS SUBSTANCES SUBTITLE C. SUBSTANCE ABUSE REGULATION AND CRIMES CHAPTER 481. TEXAS CONTROLLED SUBSTANCES ACT SUBCHAPTER A. GENERAL PROVISIONS Sec.A481.001.AASHORT TITLE. This chapter may be cited as the Texas Controlled Substances Act. Acts 1989, 71st Leg., ch. 678, Sec. 1, eff. Sept. 1, 1989. Sec.A481.002.AADEFINITIONS. In this chapter: (1)AA"Administer" means to directly apply a controlled substance by injection, inhalation, ingestion, or other means to the body of a patient or research subject by: (A)AAa practitioner or an agent of the practitioner in the presence of the practitioner; or (B)AAthe patient or research subject at the direction and in the presence of a practitioner. (2)AA"Agent" means an authorized person who acts on behalf of or at the direction of a manufacturer, distributor, or dispenser. The term does not include a common or contract carrier, public warehouseman, or employee of a carrier or warehouseman acting in the usual and lawful course of employment. (3)AA"Commissioner" means the commissioner of state health services or the commissioner 's designee. (4)AA"Controlled premises" means: (A)AAa place where original or other records or documents required under this chapter are kept or are required to be kept; or (B)AAa place, including a factory, warehouse, other establishment, or conveyance, where a person registered under this chapter may lawfully hold, manufacture, distribute, dispense, administer, possess, or otherwise dispose of a controlled substance or other item governed by the federal Controlled Substances Act (21 U.S.C.
    [Show full text]
  • WO 2008/044045 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 17 April 2008 (17.04.2008) WO 2008/044045 Al (51) International Patent Classification: MURRAY, Christopher William [GB/GB]; 436 Cam A61K 31/438 (2006.01) C07D 491/10 (2006.01) bridge Science Park, Milton Road, Cambridge CB4 OQA A61K 31/439 (2006.01) C07D 471/04 (2006.01) (GB). A61K 31/403 (2006.01) C07D 471/10 (2006.01) A61K 31/00 (2006.01) C07D 491/08 (2006.01) (74) Agent: HUTCHINS, Michael, Richard; M. R. Hutchins C07D 209/44 (2006.01) C07D 401/04 (2006.01) & Co., 23 Mount Sion, Tunbridge Wells, Kent TN 1 ITZ C07D 209/08 (2006.01) C07D 401/12 (2006.01) (GB). C07D 215/08 (2006.01) C07D 419/10 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/GB2007/003891 AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, (22) International Filing Date: 12 October 2007 (12.10.2007) ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (25) Filing Language: English LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, (26) Publication Language: English PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (30) Priority Data: ZM, ZW 60/829.221 12 October 2006 (12.10.2006) US (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except US): ASTEX kind of regional protection available): ARIPO (BW, GH, THERAPEUTICS LIMITED [GB/GB]; 436 Cambridge GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Science Park, Milton Road, Cambridge CB4 OQA (GB).
    [Show full text]
  • TSPO in Steroid Neuroendocrinology
    231 1 V SELVARAJ and L N TU TSPO in neuroendocrinology 231:1 R1–R30 Review Current status and future perspectives: TSPO in steroid neuroendocrinology Correspondence should be addressed Vimal Selvaraj and Lan N Tu to V Selvaraj Email Department of Animal Science, Cornell University, Ithaca, New York, USA [email protected] Abstract The mitochondrial translocator protein (TSPO), previously known as the peripheral Key Words benzodiazepine receptor (PBR), has received significant attention both as a diagnostic f neurosteroid biomarker and as a therapeutic target for different neuronal disease pathologies. f steroid Recently, its functional basis believed to be mediating mitochondrial cholesterol import f brain for steroid hormone production has been refuted by studies examining both in vivo f spinal cord and in vitro genetic Tspo-deficient models. As a result, there now exists a fundamental f nervous system gap in the understanding of TSPO function in the nervous system, and its putative f mitochondria pharmacology in neurosteroid production. In this review, we discuss several recent f cholesterol Endocrinology findings in steroidogenic cells that are in direct contradiction to previous studies, and f hormone of necessitate a re-examination of the purported role for TSPO in de novo neurosteroid f inflammation biosynthesis. We critically examine the pharmacological effects of different TSPO- Journal binding drugs with particular focus on studies that measure neurosteroid levels. We highlight the basis of key misconceptions regarding TSPO that continue to pervade the literature, and the need for interpretation with caution to avoid negative impacts. We also summarize the emerging perspectives that point to new directions that need to be investigated for understanding the molecular function of TSPO, only after which the Journal of Endocrinology true potential of this therapeutic target in medicine may be realized.
    [Show full text]
  • WO 2013/092791 Al 27 June 2013 (27.06.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/092791 Al 27 June 2013 (27.06.2013) P O P C T (51) International Patent Classification: field Heath, Bishops Stortford, Hertfordshire CM22 7EG C07D 471/04 (2006.01) A61P 9/10 (2006.01) (GB). A61K 31/529 (2006.01) (74) Agent: NICHOL, Maria; Galapagos NV, Chesterford Re (21) International Application Number: search Park, Saffron Walden, Essex CB10 1XL (GB). PCT/EP2012/076275 (81) Designated States (unless otherwise indicated, for every (22) International Filing Date: kind of national protection available): AE, AG, AL, AM, 20 December 2012 (20. 12.2012) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (26) Publication Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 61/578,979 22 December 201 1 (22. 12.201 1) US NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (71) Applicant: GALAPAGOS NV [BE/BE]; Industriepark RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, Mechelen Noord, Generaal De Wittelaan L 11/A3, B-2800 TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, Mechelen (BE).
    [Show full text]
  • Modulation of Neurogenesis by PDE Inhibition
    (19) & (11) EP 2 377 530 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 19.10.2011 Bulletin 2011/42 A61K 31/40 (2006.01) A61K 45/06 (2006.01) A61K 31/4015 (2006.01) A61K 31/403 (2006.01) (2006.01) (2006.01) (21) Application number: 10013573.0 A61K 31/416 A61K 31/4166 A61K 31/4184 (2006.01) A61K 31/505 (2006.01) (2006.01) (2006.01) (22) Date of filing: 20.10.2006 A61P 25/00 A61K 31/401 (84) Designated Contracting States: • Lorrain, Kym, I. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR San Diego HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI California 92124 (US) SK TR • Pires, Jammieson, C. Chula Vista (30) Priority: 21.10.2005 US 729366 P CA 91911 (US) 21.03.2006 US 784605 P • Treuner, Kai 17.07.2006 US 807594 P San Diego California 92122 (US) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: (74) Representative: Roques, Sarah Elizabeth 06826395.3 / 1 940 389 J.A. Kemp & Co. 14 South Square (71) Applicant: Braincells, Inc. Gray’s Inn San Diego, CA 92121 (US) London WC1R 5JJ (GB) (72) Inventors: Remarks: • Barlow, Carrolee This application was filed on 12-10-2010 as a Del Mar divisional application to the application mentioned California 92014 (US) under INID code 62. • Carter, Todd, A. San Diego California 92129 (US) (54) Modulation of neurogenesis by PDE inhibition (57) The instant disclosure describes methods for methods based on use of a PDE agent, optionally in com- treating diseases and conditions of the central and pe- bination with one or more other neurogenic agents, to ripheral nervous system by stimulating or increasing neu- stimulate or activate the formation of new nerve cells.
    [Show full text]
  • Synthesis and Pharmacological Activities of Pyrazole Derivatives: a Review
    Review Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review Khalid Karrouchi 1,2,3, Smaail Radi 2,*, Youssef Ramli 1, Jamal Taoufik 1, Yahia N. Mabkhot 4,*, Faiz A. Al-aizari 4 and M’hammed Ansar 1 1 Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco; [email protected] (K.K.); [email protected] (Y.R.); [email protected] (J.T.); [email protected] (M.A.) 2 LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco 3 Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco 4 Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; [email protected] * Correspondence: [email protected] or [email protected] (S.R.); [email protected] (Y.N.M.); Tel.: +212-536-500-601 (S.R.) Received: 22 November 2017; Accepted: 5 January 2018; Published: 12 January 2018 Abstract: Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives.
    [Show full text]
  • September 5-6, 2019 | Athens, Greece Book of Abstracts
    6th EFMC Young Medicinal Chemist Symposium September 5-6, 2019 | Athens, Greece Book of Abstracts YMCS19-BoA-Cover.indd 1 30/07/19 09:13 Organising Committees Chairman Dr Emmanouil FOUSTERIS (University of Patras, Patras, Greece) Members Dr David ALKER (David Alker Associates, Birchington, United Kingdom) Prof. Dennis GILLINGHAM (University of Basel, Basel, Switzerland) Dr Kristina GONCHARENKO (SpiroChem AG, Basel, Switzerland) Dr Cassandra LEE FLEMING (University of Gothenburg, Gothenburg, Sweden) Mr Brieuc MATAGNE (LD Organisation, Louvain-la-Neuve, Belgium) Dr Eleni PONTIKI (Aristotele University of Thessaloniki, Thessaloniki, Greece) Dr Matthew TOZER (Consultant, Cambridge, United Kingdom) Prof. Grigorios ZOIDIS (University of Athens, Athens, Greece) Content Welcome 2 Sponsors 3 Programme 5 Keynote Lectures 13 Oral Communications 19 Flash Poster Presentations 39 Posters Presentations 41 List of abstracts 153 List of participants 161 1 Welcome Dear participant, On behalf of the European Federation for Medicinal Chemistry (EFMC) and the Organising Committee, we warmly welcome you to Athens for the 6th edition of the EFMC Young Medicinal Chemist Symposium (EFMC-YMCS). Since the first edition of the EFMC-YMCS in 2014, the symposium has gone from strength to strength with increased participation from EFMC-National Adhering Organisations, and it is now firmly established as the premier forum in Europe for young Medicinal Chemistry and Chemical Biology researchers to promote their science. Our principal aims are: • Creating a network of young European investigators in Medicinal Chemistry and Chemical Biology • Stimulating young European investigators to share their scientific work with peers, and inspiring them to become leaders in their field • Creating competition, excellence and European Champions in Medicinal Chemistry and Chemical Biology This year, more than 170 scientists from 30 nations will gather in Athens for the latest edition.
    [Show full text]
  • Pharmscience Research & Development
    Scientific UNITED Group International Conference on PharmScience Research & Development March 04-06, 2019 Venue Paris Marriott Charles de Gaulle Airport Hotel 5 Allee du Verger, Zone Hoteliere Roissy en France, 95700 France Gold Sponsor Publication Partner We are excited to use Whova as our event platform. Attendees please download Whova event app. The event invitation code is: phaqv Floor Plan PARIS CHARLES DE GAULLE Gallery 1 Main Meeting Room WiFi Details Network : Marriott_conf Lunch Password : marriottroissy Gallery 2 Loft 3 Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Loft 2 Studio Studio Studio Studio Studio Studio Loft 1 1 2 3 Foyer 4 5 6 The Hellenic Society of Medicinal Chemistry (HSMC) supports the publication of the scientific journal ‘Pharmakeftiki’. The publication of the scientific journal ‘Pharmakeftiki’ started in 1987, within the Hellenic Society of Medicinal Chemistry. Later however, it followed an independent pathway as a quarterly edition on pharmaceutical sciences’ topics, always supported by HSMC and recently also by the Hellenic Pharmaceutical Society (HPS). Since 2012 ‘Pharmakeftiki’ is published both as hard copy and on line as an open access journal . The journal ‘Pharmakeftiki’ hosts review and research articles addressing all pharmaceutical topics and relevant scientific areas and promotes information on technological achievements and scientific events. Articles are published after peer-review in both English and Greek language –in the latter case an extended English abstract is required. Articles published in ‘Pharmakeftiki’ are indexed in CHEMICAL ABSTRACTS, EMBASE”, SCOPUS and EBSCO. The electronic version of ‘Pharmakeftiki’ is accessible in the website of HSMC (www.hsmc.gr/en/pharmakeftiki-journal/) and of HPS www.efe.org.gr ***All registered speakers of the Pharma R&D-2019 will be given an opportunity to publish their full-length manuscript as Conference Proceedings in Pharmakeftiki Journal (Scopus Indexed).
    [Show full text]
  • WO 2015/068856 Al 14 May 2015 (14.05.2015) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/068856 Al 14 May 2015 (14.05.2015) W P O P C T (51) International Patent Classification: Yusuke; c/o TAKEDA PHARMACEUTICAL COM C07D 401/14 (2006.01) C07D 409/14 (2006.01) PANY LIMITED, 26-1, Muraoka-Higashi 2-chome, C07D 413/14 (2006.01) C07D 417/14 (2006.01) Fujisawa-shi, Kanagawa, 25 10012 (JP). SHIOKAWA, A61K 31/4155 (2006.01) C07D 487/04 (2006.01) Zenyu; c/o TAKEDA PHARMACEUTICAL COMPANY C07D 401/04 (2006.01) C07D 487/10 (2006.01) LIMITED, 26-1, Muraoka-Higashi 2-chome, Fujisawa-shi, C07D 403/14 (2006.01) A61P 37/00 (2006.01) Kanagawa, 2510012 (JP). SHIBUYA, Akito; c/o TAKE DA PHARMACEUTICAL COMPANY LIMITED, 26-1, (21) International Application Number: Muraoka-Higashi 2-chome, Fujisawa-shi, Kanagawa, PCT/JP20 14/080005 25 10012 (JP). SASAKI, Yusuke; c/o TAKEDA PHAR (22) International Filing Date: MACEUTICAL COMPANY LIMITED, 26-1, Muraoka- 5 November 20 14 (05 .11.20 14) Higashi 2-chome, Fujisawa-shi, Kanagawa, 2510012 (JP). GIBSON, Tony; c/o TAKEDA CALIFORNIA, INC., (25) Filing Language: English 10410 Science Center Drive, San Diego, California, 92121 (26) Publication Language: English (US). TAKAGI, Terufumi; c/o TAKEDA PHARMA CEUTICAL COMPANY LIMITED, 26-1, Muraoka-Hi (30) Priority Data: gashi 2-chome, Fujisawa-shi, Kanagawa, 25 10012 (JP). 2013-232571 8 November 2013 (08. 11.2013) JP 2014- 128562 23 June 2014 (23.06.2014) JP (74) Agent: TAKASHIMA, Hajime; Meiji Yasuda Seimei Osaka Midosuji Bldg., 1-1, Fushimimachi 4-chome, Chuo- (71) Applicant: TAKEDA PHARMACEUTICAL COM¬ ku, Osaka-shi, Osaka, 5410044 (JP).
    [Show full text]
  • US 2016/0326102 A1 Kobayashi Et Al
    US 2016.03261 O2A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0326102 A1 Kobayashi et al. (43) Pub. Date: Nov. 10, 2016 (54) CYCLIC COMPOUNDS (52) U.S. Cl. CPC ........... C07C317/12 (2013.01); C07D 317/72 (71) Applicant: Takeda Pharmaceutical Company (2013.01); C07D 309/28 (2013.01); C07C Limited, Osaka (JP) 2102/08 (2013.01); C07C 2101/16 (2013.01) (72) Inventors: Toshitake Kobayashi, Kanagawa (JP); (57) ABSTRACT Morihisa SAITOH, Kanagawa (JP); Yasufumi WADA, Kanagawa (JP); The present invention provides compounds having a Toll Hiroshi NARA, Kanagawa (JP); like receptor 4 (TLR4) signaling inhibitory action useful as Nobuyuki NEGORO, Kanagawa (JP); preventive and therapeutic drugs of inflammatory disease and/or central nervous system disease or diseases such as Taisuke KATOH, Kanagawa (JP); chemotherapy-induced peripheral neuropathy (CIPN), che Masashi YAMASAKI, Kanagawa (JP): motherapy-induced neuropathic pain (CINP), liver injury, Takahiro TANAKA, Kanagawa (JP); ischemia-reperfusion injury (IRI) and the like. Naomi KITAMOTO, Kanagawa (JP) The present invention relates to a compound represented by (73) Assignee: Takeda Pharmaceutical Company formula (I) and a salt thereof: Limited, Osaka (JP) (21) Appl. No.: 15/148,210 (I) (22) Filed: May 6, 2016 (30) Foreign Application Priority Data May 8, 2015 (JP) ................................. 2015-095817 Publication Classification (51) Int. Cl. C07C 317/12 (2006.01) C07D 309/28 (2006.01) (wherein, each symbol is explained in greater detail in the C07D 31 7/72 (2006.01) specification). US 2016/0326102 A1 Nov. 10, 2016 CYCLIC COMPOUNDS 0007. In Patent Document 2 the following compound TECHNICAL FIELD (I) 0001.
    [Show full text]
  • Barbiturate Receptor Sites Are Coupled to Benzodiazepine Receptors
    Proc. Natl. Acad. Sci. USA Vol. 77, No. 12, pp. 7468-7472, December 1980 Neurobiology Barbiturate receptor sites are coupled to benzodiazepine receptors (anesthetic/anticonvulsant/'y-aminobutyric acid receptor/Cl channel) FREDRIK LEEB-LUNDBERG, ADELE SNOWMAN, AND RICHARD W. OLSEN Division of Biomedical Sciences and Department of Biochemistry, University of California, Riverside, California 92521 Communicated by George A. Zentmyer, August 11, 1980 ABSTRACT Barbiturates enhance the binding of [3HJdi- radioactive picrotoxinin (a-[3H]dihydropicrotoxinin, [3H]DHP) azepam to benzodiazepine receptor sites in rat brain. This effect occurs at pharmacologically relevant concentrations of barbi- (9, 10). [3H]DHP binding is inhibited by micromolar concen- turates, and the relative activity of a series of compounds cor- trations of depressant barbiturates (9, 10), submicromolar relates highly with anesthetic activity of the barbiturates and concentrations of excitatory barbiturates (9, 10), and other with their ability to enhance postsynaptic inhibitory responses convulsant drugs that can block GABA synapses (10, 11). to the neurotransmitter 'y-aminobutyric acid. Barbiturate en- Another class of central nervous system-depressant drugs that hancement of benzodiazepine binding is stereospecific, with may act at least in part by enhancement of GABAergic inhib- the more active anesthetic isomers of Nl-methylbarbiturates being also more active than their stereoisomers in enhancing itory synaptic transmission (5) are the benzodiazepines (BZ), benzodiazepine binding. The active barbiturates produce a such as diazepam. These compounds bind to high-affinity re- reversible enhancement in the affinity of specific benzodiaze- ceptor sites in the central nervous system with a chemical pine binding with no effect on the number of binding sites.
    [Show full text]