Guideline: Vacuum Sewer Systems

Total Page:16

File Type:pdf, Size:1020Kb

Guideline: Vacuum Sewer Systems FRAUNHOFER-INSTITUT FÜR GRENZFLÄCHEN- UND BIOVERFAHRENSTECHNIK IGB Guideline: Vacuum sewer systems Guideline: Vacuum sewer systems December 2016 Dr.-Ing. Marius Mohr, Jan Iden, Marc Beckett Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB Nobelstraße 12 70569 Stuttgart Content 1 Introduction ........................................................................................................... 1 2 Technology of vacuum sewer systems ................................................................ 4 2.1 Concept ................................................................................................................... 4 2.2 Components and their tasks..................................................................................... 5 2.3. Manufacturers / System providers .......................................................................... 21 3. Investment costs ................................................................................................. 25 4. Operation and Maintenance costs ..................................................................... 29 4.1. Electricity costs ....................................................................................................... 30 4.2. Personnel cost ........................................................................................................ 31 4.3. Material cost .......................................................................................................... 33 4.4. Other costs ............................................................................................................ 34 5. Durability (life span/life cycle) ........................................................................... 35 6. Operational and maintenance skills required .................................................. 38 6.1. Normal and preventive maintenance ...................................................................... 38 6.2. Emergency maintenance ........................................................................................ 41 6.3. Record keeping ...................................................................................................... 42 6.4. O&M manual ......................................................................................................... 44 6.5. Spare parts ............................................................................................................. 45 6.6. Summary................................................................................................................ 45 7. User friendliness .................................................................................................. 46 8. Cases for application ........................................................................................... 49 9. Reference projects ............................................................................................... 50 10 Vacuum sewers as part of an integrated water management concept ......... 54 11. Critical issues for building and operating a vacuum sewer system ............... 61 11.1. Pros and Cons ........................................................................................................ 61 11.2. Critical features ...................................................................................................... 62 11.2.1. General .................................................................................................................. 62 11.2.2. Collection pits ........................................................................................................ 63 11.2.3. Interface valve ........................................................................................................ 64 11.2.4. Vacuum lines / network .......................................................................................... 64 11.2.5. Vacuum station ...................................................................................................... 65 12. Summary & conclusion ....................................................................................... 67 References ........................................................................................................................... 69 Annex 1: ............................................................................................................................ 73 Annex 2: ............................................................................................................................ 76 Annex 3: ............................................................................................................................ 78 Annex 4: ............................................................................................................................ 79 Fraunhofer IGB Vacuum sewer system GIZ GmbH I | IV List of Figures Figure 1: Overview of a vacuum sewer system involving the vacuum valve unit at the valve pits, vacuum mains and the central vacuum station [8] 5 Figure 2: Left: Schematic layout of a collection pit with vacuum valve ; Right: prefabricated collection pit . 6 Figure 3: Vacuum valve [12] 8 Figure 4: Valve pit with two interface valves to accommodate higher discharges [5]. 9 Figure 5:Hierachy of pipes within a vacuum sewer system and the corresponding pipe diameters [5]. 10 Figure 6: Saw-tooth profile of a vacuum sewer line [5] 11 Figure 7: Filling material of excavation for a vacuum line. Trenching material in the top layer, followed by a layer of gravel and a liner which separates the gravel from the sand [7] 13 Figure 8: Division valve with gauge tap at a vacuum main [5] 13 Figure 9: Service lateral connection [1]. Note that the diameter of der service lateral is equal to the diameter of the interface valve (= 3 inch = 7.6 cm). Pipes should be joined at the upper part of the receiving pipe at an angle of 60° 15 Figure 10: The vacuum station can be designed with high flexibility. Anything from prefabricated houses to underground stations which are integrated into the environment exists [12]. 16 Figure 11: All vacuum pumps are connected to the same pipe. The pumps are setup in parallel. 17 Figure 12: Layout of a vacuum station with the collection tank in the ground and the sewage pumps outside of the tank. The vacuum reservoir tank is integrated into the collection tank in most layouts[5, 14] 18 Figure 13: Biofilter used for odour control from a vacuum tank. Right: woodchips are a common filling material [1] 19 Figure 14:Vacuum station with external power connection for power supply in case of blackouts [12] 20 Figure 15: Comparison of elements most susceptible to failure in different sewer systems; diagram based on [26] 47 Figure 16: Reconditioning time for different sewer systems [26] 48 Figure 17: Number of vacuum sewer projects implemented by ROEDIGER and AIRVAC (now Aqseptence Group) between 1973 and 2008 [28] 51 Figure 18: Vacuum pipe installed in existing channels; the PE pipe is attached to the wall of the channel [46]. 54 Fraunhofer IGB Vacuum sewer system GIZ GmbH II | IV Figure 19: Layout of the sanitation and reuse concept in Outapi, Namibia [39]. 56 Figure 20: Schematic overview on how water management was designed in DEUS 21 with vacuum sewers being the selected technology for wastewater conveyance [40] 57 Figure 21: Left: Garbage disposal unit in kitchen sink; Right: Vacuum toilet [1] 58 Figure 22: Black water and grey water are separately collected in separate collection sumps within the same collection pit of the vacuum system [43] 59 Figure 23: Vacuum station in Böblingen-Dagersheim 79 Figure 24: Collection pit in Waldsee. Access is restricted due to construction of wooden terrace. Access to the collection pit should be kept clear. 79 Figure 25: Vacuum tank placed in hedge in Waldsee. The components of the vacuum station have been integrated in the hedge instead of a building. 80 Figure 26: Collection pit with vacuum valve in Walldorf. The collection pit is located on a drivable road made of concrete. Respective measures were implemented. 80 Figure 27: Vacuum tank constructed underground at the vacuum station in Walldorf. The relevant pipe connections and sensor provisions are located at the top of the tank. 81 Figure 28: Biofilter with additional aeration pipe at the vacuum station in Walldorf. Plants grow on the filter material. 81 Figure 29: Vacuum tank at the vacuum station in Knittlingen. The wastewater pumps are placed outside the tank. 82 Fraunhofer IGB Vacuum sewer system GIZ GmbH III | IV List of Tables Table 1: Pipe diameters and the relation to maximum flow per minute and maximum number of served households (data from [3]) 11 Table 2: Approximate investment costs for selected components of vacuum sewers under conditions in Germany 26 Table 3: Cost of PE and PVC-U pipes per meter for different diameters under German market conditions; note that material for PE is more expensive but the prices for PVC pipes include solvent welding (not included for PE) and are thus higher [18] 27 Table 4: Costs which can vary significantly by region and affect the investment costs 28 Table 5: Selected tasks and their approximate duration (values based on experiences in Germany and the USA) 32 Table 6: Approximate material costs for selected components of vacuum sewers 34 Table 7: Potential other costs related to O&M of vacuum sewers 35 Table 8: Durability of major components of a vacuum sewer network [2, 10, 12, 12, 18, 23, 24] 36 Table 9: Overview of normal and preventive maintenance tasks and their frequencies
Recommended publications
  • ROEVAC® Vacuum Sewer Systems
    16 May 2007 ROEVAC® Vacuum Sewer Systems PP_Sewer_2007_e_International Division_Ver_2.1 16 May 2007 ROEVAC ® Vacuum Sewer Systems Location ISO 9001 Production Facility in Tostedt, near Hamburg Main Office in Hanau, near Frankfurt/Main Regional Offices 16 May 2007 ROEVAC ® Vacuum Sewer Systems Bilfinger Berger Umwelttechnik GmbH, Aarbergen (D) Water and Wastewater Technology Remediation of Contaminated Sites and Vacuum Technology Landfill Engineering Engineering & Construction Products & Services Passavant-Roediger Anlagenbau Passavant-Geiger Bilfinger Berger Umweltsanierung Vacuum Sewerage Solutions GmbH, Hanau (D) GmbH, Aarbergen (D) GmbH, Essen (D) GmbH, Hanau (D) Passavant-Roediger Free Zone Umat Deponietechnik Bilfinger Berger Entsorgung Roediger Vakuum- und Establishment, Fujairah (VAE) GmbH, Hanau (D) 2) GmbH, Mannheim (D) Haustechnik GmbH, Hanau (D) Passavant-Roediger Enviro-tech Passavant-Intech Bilfinger Berger Entsorgung Ost Airvac Inc, Co., Ltd., Hangzhou (CN) GmbH, Rimpar (D) GmbH, Deutzen (D) Rochester (USA) Roediger (Thailand) Noggerath France Bilfinger Berger Entsorgung Nord Co., Ltd., Bangkok (THA) Eurl, Saint Jean le Blanc (F) GmbH, Hamburg (D) Passavant-Roediger Bulgaria Passavant-Geiger Hong Kong Bilfinger Berger Entsorgung Süd PLC, Sofia (BG) Co. Ltd., North Point (HK) GmbH, Dornach (D) Passavant-Roediger Romania Roediger AG, Bilfinger Berger Environmental S.R.L., Bukarest (RO) Münchenstein (CH) Ltd., Surrey (GB) Passavant-Roediger Hungaria Passavant-Roediger Aquatreat Bilfinger Berger Ambiente Kft., Budapest (H) LLC,
    [Show full text]
  • Vacuum Sewer Systems
    Innovative Vacuum Technology for the Collection and Conveyance of Wastewater Vacuum Sewer Systems 1 Save yourself Ø 800 mm! 2 Roediger® Vacuum Sewer Systems – simply more efficient Sewerage has always played a significant role in municipal and local council meetings, due to the high level of investment involved. Aqseptence Group provides sustainable, cost-effective and technically mature vacuum sewer system solutions with a wide range of advan- tages over conventional gravity sewer systems. Significant advantages of Roediger® vacuum sewer systems: Short construction phase Save yourself Small pipe diameters Shallow installation depths Minimal ground excavation and less excavation waste Flexible pipe laying Ø 800 mm! Completely closed, odour-free system Simple operation and maintenance Aqseptence Group is the world Conventional methods for convey- market leader with its Roediger® ing wastewater can be traced Vacuum Sewer Systems. Our back to ancient Babylon and are systems represent modern solutions essentially based on utilizing which have proven to be both, gravity force and a gradient in the economic and efficient in pipes. In addition to the effort and challenging sewerage projects expense involved in construction throughout the world. works, the dimensions of such in- stallations present vast problems Ideal application fields are today, as a result of the demo- projects with a low population graphic changes which are occur- density, areas with unfavourable ring in many parts of the world. soil conditions and high ground- water levels or regions with a flat Modern vacuum sewer systems terrain – i.e. prevailing site condi- have proven to be very attractive tions which make conventional for decision-makers due to numer- gravity sewer systems difficult ous advantages when compared from a technical and, increasingly, with conventional gravity sewer from an economic point of view.
    [Show full text]
  • MIAMI VALLEY REGIONAL PLANNING COMMISSION SANITARY SEWER FEASIBILITY STUDY FINAL REPORT 2015 the Village of Ludlow Falls
    MIAMI VALLEY REGIONAL PLANNING COMMISSION SANITARY SEWER FEASIBILITY STUDY FINAL REPORT 2015 Prepared for: The Village of Ludlow Falls 99 Walnut Street Ludlow Falls, OH 45339 Prepared By: IBI Group, Inc. 635 Brooksedge Blvd. Westerville, Ohio 43081 614-818-4900 Fax 614-818-4901 TABLE OF CONTENTS Page Chapter 1 Executive Summary 7 Purpose of Study 7 Alternatives Considered 7 Conclusion 7 Recommendation 8 Chapter 2 Introduction 11 Background 11 Objective 11 Planning Area 11 Scope of Study 11 Methodology 12 Chapter 3 Existing Conditions 14 Existing Water Systems 14 Existing Wastewater Systems 15 Environmental Conditions 15 Soils 15 Topography 16 Surface Water 16 Wetlands 16 Flood Hazard Area 16 Land Use 16 Chapter 4 Future Conditions 26 Development 26 Population Trends 26 Chapter 5 Wastewater system alternatives 28 Collection System Alternatives 28 Gravity Sewer 28 STEP Sewer System 30 Grinder Pump Sewer System 32 Vacuum Sewer System 34 Treatment System Alternatives 35 New Mechanical Treatment Plant Extended Aeration 36 Facultative Lagoon System 38 Packed Bed Media 40 Regionalize with Adjacent Community Transport Wastewater to West Milton 42 Village of Ludlow Falls Sewer Feasibility Study IBI Group Page 1 TABLE OF CONTENTS CONTINUED Chapter 6 Other Cost 54 Contingency 54 Non-construction Costs 54 Operation, Maintenance, and Repair 55 Chapter 7 Selected Plan 58 Summary 58 Conclusion 60 Recommendation 60 Chapter 8 Funding 61 Federal Funding 61 State Funding 61 Chapter 9 Arrangement for Implementation 65 Institutional Responsibilities 65 Implementation
    [Show full text]
  • Bestand Des Mittelspechtes Dendrocopos Medius Im Feilenforst
    H a n sba u er & L a n g e r : Bestand© Ornithologische des GesellschaftMittelspechtes Bayern, downloadim Feilenforst unter www.biologiezentrum.at 31 Orn. Anz. 41: 31-40 Bestand des MittelspechtesDendrocopos medius im Feilenforst, nördlicher Landkreis Pfaffenhofen an der Ilm Miriam Hansbauer und Wilfried Langer Summary During spring 2001 a research was conducted about the occurrence of the Middle Spotted Woodpecker (Dendrocopos medius) in the northern part of the Feilenforst, district of Pfaffenhofen. 21 territories of the woodpecker could be investigated in the 588 ha study area. The study area consists mainly of deciduous wood. In many parts a special form of forestry is used there to keep the original type of woods. An obvious correlation was found between these special areas and the occurrence of the Middle Spotted Woodpecker. He occurs mainly in areas where oaks have an age of 100-150 years. He rather avoids coniferous forests. 1. Einleitung 1984 in Flade & Miech 1986). In der aktu­ ellen Roten Liste von 1996 (Jed ick e 1997) “Zu den merkwürdigsten Ordnungen der fällt der Mittelspecht deutschlandweit in Vögel, von denen wir auch in unserem die Kategorie V (zurückgehend, Art der Vaterlande mehrere Vertreter haben, ge­ Vorwarnliste), was unter anderem damit hören unbedingt die Spechte. [... ] Sie ha­ Zusammenhängenmag, dass die Neuen ben sich wunderbar an den Aufenthalt auf Bundesländer mit dazu gekommen sind. oder an und den Nahrungserwerb aus In Bayern ist der Mittelspecht immer noch Bäumen angepasst und sind Klettervögel in die Kategorie 2 (stark gefährdet) einge­ ersten Ranges geworden (M a r sh a l l teilt.
    [Show full text]
  • Amtsblatt 05
    AMTSBLATT Landratsamt Pfaffenhofen – Hauptplatz 22 – 85276 Pfaffenhofen a.d.Ilm Verantwortlich: Astrid Appel – Tel. 08441/27-394 – Fax: 08441/27-13394 [email protected] - www.landkreis-pfaffenhofen.de Nr. 05/2020 INHALT: Bekanntmachung der zugelassenen Wahlvorschläge für die Datum: 12.02.2020 Wahl des Landrats am 15. März 2020; Bekanntmachung der zugelas- senen Wahlvorschläge für die Wahl des Kreistags am 15. März 2020; Heinz Taglieber, Anlage zur Bekanntmachung der zugelassenen Wahlvorschläge für Leiter der Landkreiswahlen die Wahl des Kreistags am 15. März 2020; _______________________________________________________ ______________________________________________________ Der Wahlleiter des Anlage 14 Teil 1 (zu § 51 GLKrWO) Landkreises Pfaffenhofen a.d.Ilm Landratsamt Bekanntmachung der zugelassenen Wahlvorschläge Der Wahlleiter des Anlage 15 (zu § 51 GLKrWO) für die Wahl des Kreistags Landkreises Pfaffenhofen a.d.Ilm am 15. März 2020 Der Wahlausschuss hat für die Wahl des Kreistags die folgenden Wahl- Bekanntmachung der zugelassenen Wahlvorschläge vorschläge zugelassen: für die Wahl des Landrats am 15. März 2020 Ordnungszahl Name des Wahlvorschlagsträgers (Kennwort) Der Wahlausschuss hat für die Wahl des Landrats die folgenden 01 Christlich-Soziale Union in Bayern e.V. (CSU) Wahlvorschläge zugelassen: 02 BÜNDNIS 90/DIE GRÜNEN (GRÜNE) Ord- Name des Bewerberin oder Bewerber Jahr 03 FREIE WÄHLER Bayern/Freie Wähler Kreisverband nungs Wahlvorschlag- (Familienname, Vorname, der Pfaffenhofen a.d.Ilm e.V. (FREIE WÄHLER/FW) zahl trägers Beruf oder Stand, evtl.: Geburt (Kennwort) akademische Grade, kom- 04 Alternative für Deutschland (AfD) munale Ehrenämter, sons- tige Ämter, Gemeinde) 05 Sozialdemokratische Partei Deutschlands (SPD) 01 Christlich-Soziale Rohrmann Martin, 1972 06 Freie Demokratische Partei (FDP) Union Rechtsanwalt, Stadtratsmit- 07 Ökologisch-Demokratische Partei (ÖDP) in Bayern e.V.
    [Show full text]
  • Key Largo Wastewater Treatment District Biosolids Digester Project Description
    Key Largo Wastewater Treatment District Biosolids Digester Project Description The project consists of the work as depicted in the Contract Documents, including the plans and specifications. This narrative description of the work is intended only to assist in the general understanding of the scope of work and is not intended to modify the scope of work as defined in the plans and specifications. Overview The work generally consists of demolition of several existing concrete structures, followed by construction of a pre-stressed concrete digester tank and associated equipment, piping and electrical elements. Following completion of construction and testing of the digester system, the WWTP staff will transfer biosolids from the existing tank currently being used as a digester, and the new digester will be placed into service. The work also includes cleaning of the existing digester tank and installation of equipment to convert the tank into its original intended use as Sequencing Batch Reactor #3. After the tank is cleaned, the Engineer will inspect the tank and determine if any repairs are needed. The Contractor will then install the SBR equipment provided by the District and install the influent piping as shown on the plans. The nutrient analyzers will also be installed. Following conversion of the tank to an SBR, the District staff will place the SBR into service and divert the flow from SBR #2 into SBR #3 for treatment. The Contractor will then clean SBR #2 for inspection by the Engineer and then proceed with the influent piping modifications and installation of the nutrient analyzers. When SBR #2 is completed, the District staff will transfer the flow from SBR #1 to SBR #2, allowing the Contractor to commence with the same scope of work on SBR #1.
    [Show full text]
  • Analysis of Greenhouse Gas Emissions in Centralized And
    water Article Analysis of Greenhouse Gas Emissions in Centralized and Decentralized Water Reclamation with Resource Recovery Strategies in Leh Town, Ladakh, India, and Potential for Their Reduction in Context of the Water–Energy–Food Nexus Mounia Lahmouri, Jörg E. Drewes and Daphne Gondhalekar * Chair of Urban Water Systems Engineering, Department of Civil, Geo and Environmental Engineering, Technical University of Munich, 80333 München, Germany; [email protected] (M.L.); [email protected] (J.E.D.) * Correspondence: [email protected] Received: 2 February 2019; Accepted: 10 April 2019; Published: 29 April 2019 Abstract: With the constant increase of population and urbanization worldwide, stress on water, energy, and food resources is growing. Climate change constitutes a source of vulnerability, raising the importance of implementing actions to mitigate it. Within this, the water and wastewater sector represents an important source of greenhouse gas (GHG) emissions, during both the construction and operation phase. The scope of this study is to analyze the GHG emissions from the current and future water supply scheme, as well as to draw a comparison between possible water reclamation with resource recovery scenarios in the town Leh in India: a centralized scheme, a partly centralized combined with a decentralized scheme, and a household level approach. Precise values of emission factors, based on the IPCC Guidelines for National Greenhouse Gas Inventories, previous studies, and Ecoinvent database, have been adopted to quantify the different emissions. Potential sources of reduction of GHG emissions through sludge and biogas utilization have been identified and quantified to seize their ability to mitigate the carbon footprint of the water and wastewater sector.
    [Show full text]
  • Ecological Sanitation- an Overview
    Ecological sanitation- an overview Professor Dr. Petter D. Jenssen The Norwegian University of Life Sciences Course: ”Appropriate sanitation for the developing world”, August 15. 2005 Ecosan toilet center Bangalore India Faeces Urine Wash water Ecosan toilet center Bangalore India • Serves 800 people • Produces 50 tonn bananas/year • Produces compost for sale • Employs 10 people • Annual cost 10 US$/user Experience from Bangalore • Application of compost increases the plants tolerance to water stress • Application of compost is essential for nutrient utilization in weathered (red) tropical soil 1st. generation 2nd. generation Bangalore - India design: Lin Jiang, China 20 - 40% water consumption in sewered cities is due to the water toilet (Gardner 1997) Ecological engineering The development of human society with nature for the benefit of both. (W.J. Mitsch and S.E. Jørgensen in Ecological engineering, 1989) Design of ecological sanitation systems • System approach (Urban Water 2001) Resources in wastewater Annual discharge from one person • Nitrogen (N) 4.5 kg • Phosphorus (P) 0.6 kg • Potassium (K) 1.0 kg • Organic matter (BOD) 35 kg Loss of Soil Fertility (slow but dramatic, global scale) Can be counteracted by returning treated biowaste (Map from WWW.FAO.ORG) The wastewater resource The fertilizer value of the nutrients dicharged to the sewer systems in Norway 30 million USD per year The wastewater resource The fertilizer value of the blackwater from 900 Mio people in rural China 2.5 billion USD per year (UNESCO 2001) Phosphorus is a limited resource. Present mineral P-sources Recycle? will last 100 - 200 years. (Bøckman et al. 1991) Production of 1kg mineral nitrogen fertilizer requires 38 MJ = 10.5kWh of energy.
    [Show full text]
  • 1632 Series Event Timeline Contents
    1632 Series Event Timeline Contents Part 1: Overall Timeline 1631 and after Part 2: Before the ROF (to 1630) Part 3: Misc Notes Part 6: Source List Part 4: Version History Part 5: Help Page: Guide to terms and navigation Quick Jumps: 1631 1632 1633 1634 1635 1636 Spring Spring Spring Spring Spring Spring Summer Summer Summer Summer Summer Summer Autumn Autumn Autumn Autumn Autumn Autumn Spring links go to March, summer to June, autumn to September. For winter, use year links and scroll back for December. Compiled by John Bogan 1632 Series Event Timeline Major eventDate Month/season Location Seq Event Citation Notes 1631 (ROF 0) 11-year-old Count Amadeus von Eisenberg puts a garden snake in Year uncertain. Placing in 1631 assumes Amadeus is about the uncertain Vienna? the bed of his older sister, Countess Polyxena. WALTZ-C27 same age as Haley Fortney in 1635 (~15). Sometime in 1631 Denmark? The 200-ton, 8-gun ship Köbenhavn launched. SCHEME-C5 Within 2 years it will be acquired by Luke Foxe. The Jesuits are running 17 missions out of Amberg, making it a By early 1631 Amberg center of reconversion to Catholicism. BAVAR-C21, historical Johann Ludwig, count of Gleichen-Tonna dies without heirs and RAM-Huff-02, Including village of Sundremda, not far from where the ROF will January leaves ownership of his lands in question. historical fall. Urban VIII issues bull “definitively” abolishing the English Ladies. Mary Ward imprisoned by the Inquisition (house arrest at the BAVAR-C5,C37, In some places patrons of the Institute continue support as though January Rome Poor Clare convent in Munich).
    [Show full text]
  • Composting Toilets 2.2 Dehydration Toilets 2.3 Urine Diversion 2.4 Vacuum Sewerage 2.5 Vaccum Installations
    Ecosan Training Course Summer 2007 Capacity Building for Ecological Sanitation in India Overview of Ecosan Technology Components Dipl. Ing. Martin Wafler, seecon international, Switzerland Contents 1. Overview of Ecosan Technology Components 2. Source Separated Collection/Treatment Systems 2.1 (Vermi)composting Toilets 2.2 Dehydration Toilets 2.3 Urine Diversion 2.4 Vacuum Sewerage 2.5 Vaccum Installations 3. Treatment of Blackwater Fraction 3.1 Anaerobic Treatment 3.2 Sludge Treatment 3.3 Vermi-Filter 3.4 Other High-Tech Treatment Methods 4. Treatment of Greywater 3.1 Anaerobic Treatment (Biogas Production) 3.2 Treatment: Drying and Humification 3.3 Other High-Tech Treatment Methods 5. Rainwater Harvesting 6. Vermicomposting of Organic Waste J. Heeb 1. Overview of Ecosan Technology Components solid biowaste faeces urine greywater rainwater Vacuum Sewerage Gravity Sewerage (centr. or decentr.) Rainwater Solid-Liquid Separation Separate Harvesting greywater collection collection Urine diversion collection Dehydration Toilets Composting Toilets (Prolonged) storage Constructed wetlands, Rainwater Composting, vermi-composting Urine ponds, etc. Treatment Anaerobic treatment Sludge processing dehydration, treatment soilification Wastewater treatment (centralised or decentr.) Greywater Soil conditionning with treated Fertilizing gardens, Excreta and Solid Biowaste with Urine mulch trench systems Biogas use (Re)-Use as Reuse of (treated) wastewater for lightning, service water or in utilisation in agriculture, aquaculture, cooking, etc. agriculture, aquaculture, etc. ground water recharge etc. 2.1 (Vermi)composting Toilets solid biowaste faeces urine greywater rainwater Vacuum Sewerage Gravity Sewerage (centr. or decentr.) Rainwater Solid-Liquid Separation Separate Harvesting greywater collection collection Urine diversion collection Dehydration Toilets Composting Toilets (Prolonged) storage Constructed wetlands, Rainwater Composting, vermi-composting Urine ponds, etc.
    [Show full text]
  • Kreistagsflyer Zum Dowload Vorderseite
    Wahlvorschlag Nr. 8 BÜRGERLISTE BÜRGER hier die Liste ankreuzen BÜRGERLISTE landkreis pfaffenhofen e.V. (BL) Unsere Ziele 801 Karl Huber, (62), Dipl. Verwaltungswirt (FH), 1. Bürgermeister, Ernsgaden BÜRGER LISTE 802 Andreas Meyer, (60), Verwaltungsfachangestellter, 1. Bürgermeister, Münchsmünster 803 Xaver Dietz, (65), Elektroingenieur, Kreisrat, Stadtrat, Vohburg landkreis 804 Michael Franken, (44), Betriebswirt (VWA), 1. Bürgermeister, Kreisrat, Reichertshofen 805 Erwin Renauer, (59), Dipl. Finanzwirt (FH), Gemeinderat, 2. Bürgermeister, Reichertshausen pfaffenhofen Das ist uns wichtig: 806 Gabi Kaindl, (61), Erzieherin, Gemeinderätin, 2. Bürgermeisterin, Schweitenkirchen LISTE 807 Klaus Schuster, (54), Handelsvertreter, 1. Vorsitzender Gewerbeverband Wolnzach, Wolnzach 808 Paul Weber, (54), Leiter Rettungswache Geisenfeld, Kreisrat, Stadtrat, Geisenfeld 809 Katharina Missbrandt, (53), Dipl. Wirtschaftsinformatikerin, Baar-Ebenhausen landkreis 810 Markus Kohl, (39), Malermeister, 1. Vors. Sportfischer, Manching Wohnen und Bauen / Mobilität / Wirtschaft-Energie-Digitalisierung / 811 Bernd Huber, (75), Unternehmensberater, Ehrenvorsitzender Wirtschaftsbeirat, Ilmmünster pfaffenhofen 812 Wolfgang Inderwies, (49), Dipl. Kaufmann Univ., 2. Master of Science (FM), Schiedsrichterobmann, Scheyern Umwelt-Gesundheit-Soziales / Sicherheit / Bürgerbeteiligung 813 Dr. Andreas Schweiger, (43), Entwicklungsingenieur, 1. Vorsitzender SC Reichertshofen, Pfaffenhofen 814 Annette Schütz-Finkenzeller, (53), Dipl. Verwaltungswirtin (FH), Gemeinderätin,
    [Show full text]
  • The Non-Operator's Guide to Wastewater Systems
    COMPANION TO A Drop of Knowledge: A Drop of Knowledge The Non-operator’s Guide to Drinking Water Systems The Non-operator’s Guide to Wastewater Systems RURAL COMMUNITY ASSISTANCE PARTNERSHIP RCAP an equal opportunity provider and employer This guide was written by the National Environmental Services Center (www.nesc.wvu.edu) at West Virginia University on behalf of Rural Community Assistance Partnership, Inc. Copyright © 2011 The entire contents of this guide are available on the RCAP website at www.rcap.org This material is based upon work supported under a grant by the Utilities Programs, United States Department of Agriculture. Any opinions, findings, and conclusions or recommendations expressed in this material are solely the responsibility of the authors and do not necessarily represent the official views of the Utilities Programs. A Drop of Knowledge The Non-operator’s Guide to Wastewater Systems RCAP Rural Community Assistance Partnership, Inc. 1701 K St. NW, Suite 700 Washington, DC 20006 202/408-1273 800/321-7227 (toll-free) [email protected] www.rcap.org Table of Contents ABOUT THIS GUIDE 1 INTRODUCTION 4 WHERE DOES HOUSEHOLD WASTEWATER GO? What happens when water leaves the building 10 HOW IS WASTEWATER TREATED? The steps wastewater goes through at a treatment plant 15 LAGOONS AND DECENTRALIZED TREATMENT OPTIONS 36 OTHER IMPORTANT THINGS (including additional information on alternative collection systems) 43 ADDITIONAL RESOURCES 48 GLOSSARY 50 i ABOUT THIS GUIDE About this guide Having clean, safe water to drink and use Drinking water that has been is essential to our everyday lives. We often contaminated by feces is one of the view our intake as the most important part most common ways of contracting of our dependence on water.
    [Show full text]