NYS Design Standards for Wastewater Treatment Systems

Total Page:16

File Type:pdf, Size:1020Kb

NYS Design Standards for Wastewater Treatment Systems NEW YORK STATE DESIGN STANDARDS FOR INTERMEDIATE SIZED WASTEWATER TREATMENT SYSTEMS MARCH 5, 2014 New York State Department of Environmental Conservation Division of Water 625 Broadway Albany, New York 12233-3505 Andrew M. Cuomo, Governor Joe Martens, Commissioner Photos on cover courtesy of: Lenning, D., T. Banathy, D. Gustafson, B.J. Lesikar, S. Wecker, D. Wright. 2005. Technology Overview Module. in (D.L. Lindbo and N.E. Deal eds.) Model Decentralized Wastewater Practitioner Curriculum. National Decentralized Water Resources Capacity Development Project. North Carolina State University, Raleigh, NC. The technologies shown on the cover are from other States and may not conform to these Design Standards. In the case of any conflict between the apparent installation of a technology from any of the cover photos and the specifications in the figures, tables or text of these Design Standards, the Design Standards shall be used. Foreword The Clean Water Act (CWA) was enacted to restore and maintain the chemical, physical, and biological integrity of the nation’s surface waters. This was to be done by reducing direct pollutant discharges into waterways, financing municipal wastewater treatment facilities, developing technology necessary to eliminate the discharge of pollutants, and by managing polluted runoff. In New York State, Article 17 of the Environmental Conservation Law (ECL), “Water Pollution Control,” was enacted to protect and maintain both surface and groundwater resources. It authorized the creation of the State Pollutant Discharge Elimination System (SPDES) Program to protect New York's water resources. On-site Wastewater Treatment Systems (OWTS) may discharge to either surface water or groundwater. Pursuant to Article 17 Title 7 of the ECL all OWTSs, without the admixture of industrial or other waste, and with a groundwater discharge of 1,000 gallons per day or greater or a surface water discharge of any size, must be covered by a SPDES permit issued by the New York State Department of Environmental Conservation (NYSDEC). Design standards for large Publicly Owned Treatment Works (POTWs) have been updated independently by the Great Lakes-Upper Mississippi River Board of State and Provincial Public Health and Environmental Managers (GLUMRB) and the New England Interstate Water Pollution Control Commission (NEIWPCC). Design standards for small individual residential systems are updated by the New York State Department of Health (NYSDOH), local county health departments, or watershed organizations. These Design Standards for Intermediate Sized Wastewater Treatment Systems (Design Standards) are being updated by NYSDEC to meet the needs not addressed by the large and small systems design standards (refer to Appendix A for the applicable technical standard). Over the last 20 years OWTS technologies have increased in the level of treatment provided and in complexity of design and operation. It is appropriate that the Design Standards are updated now to remain current with the needs of the wastewater treatment system design professionals. Numerous references to the GLUMRB’s Recommended Standards for Wastewater Facilities, (Ten States Standards), 2004 and NEIWPCC’s Guides for the Design of Wastewater Treatment Works -Technical Report-16, 2011 (TR-16), appear in this manual. Ten States Standards has been adopted by NYSDEC as New York State’s official standards for municipal wastewater treatment and collection facilities according to 6 NYCRR Part 750-2.10.g.1. Ten States Standards may be viewed at: http://10statesstandards.com, and i is available in print from Health Education Service, Inc., P.O. Box 7126, Albany, New York 12224, 518- 439-7286. Health Education Services (HES) may be accessed online at http://www.healthresearch.org. TR- 16 is also an acceptable design standard for municipal systems of any size, or any nonmunicipal, intermediate sized systems that treat only sanitary wastewater. TR-16 addresses standards for alternative collection systems such as vacuum sewers, low pressure/grinder pump sewers, septic tank effluent (pump) and septic tank effluent (gravity) sewers (STEP/STEG). NYSDOH regulations for residential wastewater treatment systems discharging less than 1,000 gpd are entitled “Appendix 75-A, Wastewater Treatment Standards – Residential Onsite Systems.” Design guidance for residential onsite systems are published under the title Residential Onsite Wastewater Treatment Systems Design Handbook. The NYSDOH Design Handbook is available from HES, Inc. (http://www.healthresearch.org). Both documents are on the NYSDOH website. ii Table of Contents Foreword ........................................................................................................................................................ i List of Acronyms ....................................................................................................................................... viii List of Tables ............................................................................................................................................. xiii List of Figures ............................................................................................................................................ xiv Disclaimer ............................................................................................................................................... xv Introduction ........................................................................................................................................ Intro - 1 Purposes of These Design Standards: ............................................................................................ Intro - 1 How to Use These Design Standards: ............................................................................................ Intro - 2 A. Facility Planning and Permitting..................................................................................................... A - 1 A.1 Introduction ............................................................................................................................. A - 1 A.2 Planning and Permit Application Process ............................................................................... A - 1 A.3 Obtaining a SPDES Permit for a Wastewater Discharge ........................................................ A - 3 A.4 State Environmental Quality Review (SEQR) ........................................................................ A - 5 A.5 Asset Management .................................................................................................................. A - 5 B. Project Evaluation ........................................................................................................................... B - 1 B.1 Introduction ............................................................................................................................. B - 1 B.2 Site Evaluation ........................................................................................................................ B - 1 B.3 Separation Distances ............................................................................................................... B - 1 B.4 Soil Evaluation for Subsurface Discharge .............................................................................. B - 5 B.4.a Deep Soil ............................................................................................................................. B - 7 B.4.b Percolation Testing ............................................................................................................. B - 8 B.5 Locating Facility Relative to Flood Plains ............................................................................ B - 10 B.6 Design Criteria ...................................................................................................................... B - 12 B.6.a Wastewater Characterization ............................................................................................ B - 12 B.6.b Design Flow ...................................................................................................................... B - 15 B.6.c Infiltration, Inflow, Non-Sanitary and Prohibited Flows .................................................. B - 20 iii B.6.d Treatment Considerations and Effluent Limits ............................................................... B - 211 B.7 Groundwater Monitoring and Monitoring Well Requirements for Systems Greater than 30,000 gpd .............................................................................................................................................. B - 24 C. Sewers and Sewage Pumping Stations ............................................................................................ C - 1 C.1 Introduction ............................................................................................................................. C - 1 C.2 Building Sewers ...................................................................................................................... C - 1 C.3 Conventional (solids handling) Gravity Sewers, Manholes and Pump Stations ..................... C - 2 C.3.a Conventional Gravity Sewers ............................................................................................. C - 2 C.3.b Conventional Sewer Manholes ........................................................................................... C - 4 C.3.c Sewage Pumping Stations ..................................................................................................
Recommended publications
  • Map Plan and Report for Proposed Sewer District
    MAP, PLAN AND REPORT SEWER DISTRICT FORMATION SCHOHARIE BUSINESS PARK TOWN OF SCHOHARIE, NEW YORK MARCH 11, 2020 197 ELM STREET PO BOX 610 COBLESKILL, NEW YORK 12043 TABLE OF CONTENTS 1 Introduction 1 2 Wastewater System History 1 3 Existing Conditions 1 4 Evaluation of Facilities 5 5 Proposed Sewer District Options 7 6 Conclusion and Recommendations 8 APPENDICES A Schoharie Business Park Mapping B NYSDEC Correspondence C Existing Sewer System Schematic D Water Production Data E Existing SPDES Permit F Mapping of Sewer District Options G Proposed Improvements H User Cost Calculations I Proposed Sewer District Map and Description Page 1 1 INTRODUCTION The Schoharie Business Park (SBP) consists of 13 tax parcels as indicated on the mapping in Appendix A. The Business Park is currently served by private water and sewer systems and a private road network. Recently, NYSDEC has urged the Town to consider forming a Sewer District so that certain administrative and ownership issues related to the sewer system can be addressed. While the water system and the road network also have some technical issues that need attention, the scope of this Map, Plan and Report (MPR) only includes the Sewer System. 2 WASTEWATER SYSTEM HISTORY The wastewater system for the Schoharie Business Park was issued a discharge permit from NYSDEC in March of 2001. In 2002, Schoharie Park Sewage Works, Inc. was formed to operate the wastewater system under the NYS Transportation Corporation Law. In 2017, when many properties within the Schoharie Business Park were sold, Schoharie Park Sewage Works, Inc. was dissolved. This has left two options for the proper administration of the sewer system: 1) the current owner of the Schoharie Business Park (7 Summits, LLC) can form a new Transportation Corporation or 2) the Town of Schoharie can form a Sewer District.
    [Show full text]
  • ROEVAC® Vacuum Sewer Systems
    16 May 2007 ROEVAC® Vacuum Sewer Systems PP_Sewer_2007_e_International Division_Ver_2.1 16 May 2007 ROEVAC ® Vacuum Sewer Systems Location ISO 9001 Production Facility in Tostedt, near Hamburg Main Office in Hanau, near Frankfurt/Main Regional Offices 16 May 2007 ROEVAC ® Vacuum Sewer Systems Bilfinger Berger Umwelttechnik GmbH, Aarbergen (D) Water and Wastewater Technology Remediation of Contaminated Sites and Vacuum Technology Landfill Engineering Engineering & Construction Products & Services Passavant-Roediger Anlagenbau Passavant-Geiger Bilfinger Berger Umweltsanierung Vacuum Sewerage Solutions GmbH, Hanau (D) GmbH, Aarbergen (D) GmbH, Essen (D) GmbH, Hanau (D) Passavant-Roediger Free Zone Umat Deponietechnik Bilfinger Berger Entsorgung Roediger Vakuum- und Establishment, Fujairah (VAE) GmbH, Hanau (D) 2) GmbH, Mannheim (D) Haustechnik GmbH, Hanau (D) Passavant-Roediger Enviro-tech Passavant-Intech Bilfinger Berger Entsorgung Ost Airvac Inc, Co., Ltd., Hangzhou (CN) GmbH, Rimpar (D) GmbH, Deutzen (D) Rochester (USA) Roediger (Thailand) Noggerath France Bilfinger Berger Entsorgung Nord Co., Ltd., Bangkok (THA) Eurl, Saint Jean le Blanc (F) GmbH, Hamburg (D) Passavant-Roediger Bulgaria Passavant-Geiger Hong Kong Bilfinger Berger Entsorgung Süd PLC, Sofia (BG) Co. Ltd., North Point (HK) GmbH, Dornach (D) Passavant-Roediger Romania Roediger AG, Bilfinger Berger Environmental S.R.L., Bukarest (RO) Münchenstein (CH) Ltd., Surrey (GB) Passavant-Roediger Hungaria Passavant-Roediger Aquatreat Bilfinger Berger Ambiente Kft., Budapest (H) LLC,
    [Show full text]
  • Onsite Wastewater Treatment System (OWTS) Management in Humboldt County
    Table of Contents INTRODUCTION ................................................................................................................................... 1 ELIGIBILITY ................................................................................................................................................... 1 PROHIBITIONS .............................................................................................................................................. 2 VARIANCE PROHIBITION AREAS ....................................................................................................................... 2 PART 1 ‐SITE EVALUATION ................................................................................................................... 4 1.1 SOIL PROFILES ...................................................................................................................................... 4 1.2 SOIL TESTING ....................................................................................................................................... 5 1.3 DEPTH TO GROUNDWATER DETERMINATIONS ........................................................................................... 6 1.4 REPORTING OF DATA............................................................................................................................. 8 1.5 DEH RESPONSIBILITIES FOR MONITORING WELL NOTIFICATIONS .................................................................... 8 PART 2 ‐DESIGN ..................................................................................................................................
    [Show full text]
  • CHAPTER 15 Small Alternative Wastewater Systems
    CHAPTER 15 Small Alternative Wastewater Systems 15.1 Preface 15.2 General Considerations 15.2.1 – Ownership 15.2.2 – Planning 15.3 Design Basis 15.3.1 – Hydraulic Loading 15.3.2 – Engineering Report 15.3.3 – Pollutant Loading 15.4 Preliminary Treatment 15.4.1 – Septic Tank Effluent Pumped (STEP) and Septic Tank Effluent Gravity (STEG) 15.4.1.1 –STEP Tanks 15.4.1.2 – STEG Tanks 15.4.2 – Grinder Pumps 15.4.3 – Grease and Oil 15.5 Secondary Treatment Design 15.5.1 Fixed Media Biological Reactors 15.5.1.1 – Granular Media Reactor 15.5.1.2 – Other Fixed Media Reactors 15.5.1.3 – Distribution and Underdrain System 15.5.1.3.1 – Spacing 15.5.1.3.2 – Sizing of Lines 15.5.1.4 – Recirculation Tank and Pump System 15.5.1.5 – Flow Splitter 15.5.1.6 – Dosing Chamber 15.6 Disinfection and Fencing 15.7 Oxidation Ponds and Artificial Wetlands 15.7.1 Oxidation Ponds) 15.7.2 Basis of Wetland Design 15.8 Lagoons 15.9 Package Activated Sludge Plants APPENDIX Appendix 15 Recirculation Tank / Pump System Example Calculation February 2016 15-1 Design Criteria Ch. 15 DECENTRALIZED DOMESTIC WASTEWATER TREATMENT SYSTEMS 15.1 Preface This chapter presents the method to determine the proper design for decentralized wastewater treatment systems (DWWTS). DWWTS are systems that are not the traditional, centralized/regionalized wastewater treatment systems. DWWTS treat domestic, commercial and industrial wastewater using water tight collection, biological treatment, filtration and disinfection. These systems typically will utilize land application with either surface or subsurface effluent dispersal.
    [Show full text]
  • Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants EPA/833B-99/002 August 1999
    United States Office of Wastewater EPA/833B-99/002 Environmental Protection Management August 1999 Agency Washington DC 20460 Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants EPA/833B-99/002 August 1999 Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants Office of Wastewater Management U.S. Environmental Protection Agency Washington, D.C. 20460 Notice and Disclaimer The U.S. Environmental Protection Agency, through its Office of Water, has funded, managed, and collaborated in the development of this guidance, which was prepared under order 7W-1235-NASX to Aquatic Sciences Consulting; order 5W-2260-NASA to EA Engineering, Science and Technology, Inc.; and contracts 68-03-3431, 68-C8-002, and 68-C2-0102 to Parsons Engineering Science, Inc. It has been subjected to the Agency's peer and administrative review and has been approved for publication. The statements in this document are intended solely as guidance. This document is not intended, nor can it be relied on, to create any rights enforceable by any party in litigation with the United States. EPA and State officials may decide to follow the guidance provided in this document, or to act at variance with the guidance, based on an analysis of site-specific circumstances. This guidance may be revised without public notice to reflect changes in EPA policy. ii Foreword This document is intended to provide guidance to permittees, permit writers, and consultants on the general approach and procedures for conducting toxicity reduction evaluations (TREs) at municipal wastewater treatment plants. TREs are important tools for Publicly Owned Treatment Works (POTWs) to use to identify and reduce or eliminate toxicity in a wastewater discharge.
    [Show full text]
  • Vacuum Sewer Systems
    Innovative Vacuum Technology for the Collection and Conveyance of Wastewater Vacuum Sewer Systems 1 Save yourself Ø 800 mm! 2 Roediger® Vacuum Sewer Systems – simply more efficient Sewerage has always played a significant role in municipal and local council meetings, due to the high level of investment involved. Aqseptence Group provides sustainable, cost-effective and technically mature vacuum sewer system solutions with a wide range of advan- tages over conventional gravity sewer systems. Significant advantages of Roediger® vacuum sewer systems: Short construction phase Save yourself Small pipe diameters Shallow installation depths Minimal ground excavation and less excavation waste Flexible pipe laying Ø 800 mm! Completely closed, odour-free system Simple operation and maintenance Aqseptence Group is the world Conventional methods for convey- market leader with its Roediger® ing wastewater can be traced Vacuum Sewer Systems. Our back to ancient Babylon and are systems represent modern solutions essentially based on utilizing which have proven to be both, gravity force and a gradient in the economic and efficient in pipes. In addition to the effort and challenging sewerage projects expense involved in construction throughout the world. works, the dimensions of such in- stallations present vast problems Ideal application fields are today, as a result of the demo- projects with a low population graphic changes which are occur- density, areas with unfavourable ring in many parts of the world. soil conditions and high ground- water levels or regions with a flat Modern vacuum sewer systems terrain – i.e. prevailing site condi- have proven to be very attractive tions which make conventional for decision-makers due to numer- gravity sewer systems difficult ous advantages when compared from a technical and, increasingly, with conventional gravity sewer from an economic point of view.
    [Show full text]
  • MIAMI VALLEY REGIONAL PLANNING COMMISSION SANITARY SEWER FEASIBILITY STUDY FINAL REPORT 2015 the Village of Ludlow Falls
    MIAMI VALLEY REGIONAL PLANNING COMMISSION SANITARY SEWER FEASIBILITY STUDY FINAL REPORT 2015 Prepared for: The Village of Ludlow Falls 99 Walnut Street Ludlow Falls, OH 45339 Prepared By: IBI Group, Inc. 635 Brooksedge Blvd. Westerville, Ohio 43081 614-818-4900 Fax 614-818-4901 TABLE OF CONTENTS Page Chapter 1 Executive Summary 7 Purpose of Study 7 Alternatives Considered 7 Conclusion 7 Recommendation 8 Chapter 2 Introduction 11 Background 11 Objective 11 Planning Area 11 Scope of Study 11 Methodology 12 Chapter 3 Existing Conditions 14 Existing Water Systems 14 Existing Wastewater Systems 15 Environmental Conditions 15 Soils 15 Topography 16 Surface Water 16 Wetlands 16 Flood Hazard Area 16 Land Use 16 Chapter 4 Future Conditions 26 Development 26 Population Trends 26 Chapter 5 Wastewater system alternatives 28 Collection System Alternatives 28 Gravity Sewer 28 STEP Sewer System 30 Grinder Pump Sewer System 32 Vacuum Sewer System 34 Treatment System Alternatives 35 New Mechanical Treatment Plant Extended Aeration 36 Facultative Lagoon System 38 Packed Bed Media 40 Regionalize with Adjacent Community Transport Wastewater to West Milton 42 Village of Ludlow Falls Sewer Feasibility Study IBI Group Page 1 TABLE OF CONTENTS CONTINUED Chapter 6 Other Cost 54 Contingency 54 Non-construction Costs 54 Operation, Maintenance, and Repair 55 Chapter 7 Selected Plan 58 Summary 58 Conclusion 60 Recommendation 60 Chapter 8 Funding 61 Federal Funding 61 State Funding 61 Chapter 9 Arrangement for Implementation 65 Institutional Responsibilities 65 Implementation
    [Show full text]
  • A Case Study of a Small Diameter Gravity Sewerage System in Zolkiewka Commune, Poland
    water Article A Case Study of a Small Diameter Gravity Sewerage System in Zolkiewka Commune, Poland Tadeusz Nawrot *, Radosław Matz, Ryszard Błazejewski˙ and Marcin Spychała Department of Hydraulic and Sanitary Engineering, Poznan University of Life Sciences, Pi ˛atkowskaSt. 94A, 60-649 Pozna´n,Poland; [email protected] (R.M.); [email protected] (R.B.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +48-61-848-77-29 Received: 31 July 2018; Accepted: 27 September 2018; Published: 29 September 2018 Abstract: This article presents a small diameter gravity sewerage system in a rural area. In this system, domestic wastewater was preliminarily treated in septic tanks equipped with outlet filters, so the effluent features were similar to those of clear water. Additionally, some outlets were equipped with floating-ball check valves to avoid backflow. One of the pressure mains was used as a gravity collector conveying septic tank effluent in the direction of the pumping station during pump idle time. The operation of the system was simulated using SWMM computer code. The simulation results were validated for data obtained from part of a sewerage system in Kolonia Zolkiew and Rozki village consisting of two pumping stations and 86 serviced households using polyethylene pipes of outer diameter 50–63 mm. The results of the measurement of the outflows from one pumping station are presented. The simulation results showed good agreement with the empirical data, especially after several simulation days. The greatest discrepancy during the start-up period was the consequence of the initial conditions describing the empty pipework.
    [Show full text]
  • Saskatchewan Onsite Watewater Disposal Guide
    Saskatchewan Onsite Wastewater Disposal Guide Third Edition November 2018 saskatchewan.ca TABLE OF CONTENTS Table of Contents ......................................................................................................................................... i Table of Figures ......................................................................................................................................... viii List of Tables ............................................................................................................................................... ix 1 Definitions and Abbreviations ............................................................................................................. x 2 Introduction ........................................................................................................................................ 1 2.1 Disclaimer ................................................................................................................................ 1 2.2 Acknowledgments ................................................................................................................... 1 2.3 Special Acknowledgments ...................................................................................................... 2 3 Goals & Objectives ............................................................................................................................. 3 4 Other Regulations/Bylaws .................................................................................................................
    [Show full text]
  • Sewer System Management Plan
    SEWER SYSTEM MANAGEMENT PLAN Marshall Community Wastewater System March 2016 Updated March 2018 Updated August 2018 Prepared by Environmental Health Services Staff and Questa Engineering Corporation Marin County Environmental Health Services 3501 Civic Center Drive, Suite 236 San Rafael, CA 94913 1 TABLE OF CONTENTS INTRODUCTION 1 I. GOALS 1 II. ORGANIZATION 1 III. LEGAL AUTHORITY 2 IV. OPERATION AND MAINTENANCE PROGRAM 3 V. DESIGN AND PERFORMANCE PROVISIONS 3 VI. OVERFLOW EMERGENCY RESPONSE PLAN 3 VII. FATS, OILS, AND GREASE CONTROL PROGRAM 4 VIII. SYSTEM EVALUATION AND CAPACITY ASSURANCE PLAN 4 IX. MONITORING, MEASUREMENT AND PROGRAM MODIFICATIONS 5 X. SSMP PROGRAM AUDITS 5 XI. COMMUNICATION PROGRAM 5 Attachment A: Spill Prevention and Emergency Response Plan Attachment B: Summary of Monitoring and Reporting Program Requirements 2 Marshall Community Wastewater System SEWER SYSTEM MANAGEMENT PLAN INTRODUCTION This document constitutes the Sewer System Management Plan (SSMP) for the Marshall Community Wastewater Treatment System (Facility.) It has been prepared pursuant to State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ, Statewide General Waste Discharge Requirements for Sanitary Sewer Systems, and Order No. WQ-2013-0058- EXEC, Amending Monitoring and Reporting Program for Statewide General Waste Discharge Requirements for Sanitary Sewer Systems. The Facility serves approximately 50 homes and a few commercial properties in the community of Marshall, an unincorporated area of Marin County located along the eastern shore of Tomales Bay. The Facility includes wastewater collection, treatment, and subsurface disposal of effluent. Wastewater is collected from septic tanks serving and located at individual residential and commercial properties, conveyed by approximately two miles of 2 to 3-inch pressurized pipelines to a community treatment system, and then discharged to a community leachfield.
    [Show full text]
  • Why Do Onsite Wastewater Septic Systems Fail
    Why Do Onsite Wastewater (Septic) Systems Fail? Ask yourself: Under normal water use (wastewater be achieved without maintenance, including removal of flow) conditions … accumulated solids. • Are sewage drains sluggish? The breakdown of wastes, especially solids, begins in • Does sewage back up into the facility? the septic tank. However, wastewater treatment requires a • Have you had a wet, smelly spot in your yard? properly functioning absorption field. The field typically • Does your septic system discharge at the surface is either rock-filled trenches with perforated pipe or such as road ditch, draw, storm sewer, or stream? gravelless trenches, usually with chambers. • Is the system connected to a drain tile? The correct system size is determined by the amount of wastewater flow and the soil properties in the dispersal If you answered yes to any of these questions, your field. If the wastewater flow is greater than the soil can onsite wastewater system is failing. It is not treating accept, it often surfaces in the field or backs up into the and dispersing sewage in a safe, sanitary manner. Other house. A properly designed, constructed, maintained, evidences of onsite systems not working effectively and protected onsite system should treat wastewater include persistent bacteria or excess nitrate in nearby effectively for 20 to 40 years or more. However, wells and excessive aquatic plant growth in surface water. premature failure sometimes occurs. In Kansas, wastewater can legally be discharged only to a permitted community sewer and treatment facility or to a Causes of Septic System Failure permitted onsite wastewater system. Onsite systems must Common causes of system failure are inappropriate be located, designed, and operated in compliance with system selection, improper design, construction mistakes, the local sanitary code or the minimum state standards in physical damage, inadequate maintenance, and hydraulic Kansas Department of Health and Environment (KDHE), or organic overload.
    [Show full text]
  • 10 States Standards
    RECOMMENDED STANDARDS for WASTEWATER FACILITIES POLICIES FOR THE DESIGN, REVIEW, AND APPROVAL OF PLANS AND SPECIFICATIONS FOR WASTEWATER COLLECTION AND TREATMENT FACILITIES 2014 EDITION A REPORT OF THE WASTEWATER COMMITTEE OF THE GREAT LAKES - UPPER MISSISSIPPI RIVER BOARD OF STATE AND PROVINCIAL PUBLIC HEALTH AND ENVIRONMENTAL MANAGERS MEMBER STATES AND PROVINCE ILLINOIS NEW YORK INDIANA OHIO IOWA ONTARIO MICHIGAN PENNSYLVANIA MINNESOTA WISCONSIN MISSOURI PUBLISHED BY: Health Research, Inc., Health Education Services Division P.O. Box 7126 Albany, N.Y. 12224 Phone: (518) 439-7286 Visit Our Web Site http://www.healthresearch.org/store/ten-state-standards Copyright © 2014 by the Great Lakes - Upper Mississippi River Board of State and Provincial Public Health and Environmental Managers This document, or portions thereof, may be reproduced without permission if credit is given to the Board and to this publication as a source. ii TABLE OF CONTENTS CHAPTER PAGE FOREWORD ..................................................................................................................................... v 10 ENGINEERING REPORTS AND FACILITY PLANS 10. General ............................................................................................................................. 10-1 11. Engineering Report Or Facility Plan ................................................................................ 10-1 12. Pre-Design Meeting ....................................................................................................... 10-12
    [Show full text]