A Case Study of a Small Diameter Gravity Sewerage System in Zolkiewka Commune, Poland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Infiltration/Inflow Task Force Report
INFILTRATION/INFLOW TASK FORCE REPORT A GUIDANCE DOCUMENT FOR MWRA MEMBER SEWER COMMUNITIES AND REGIONAL STAKEHOLDERS MARCH 2001 INFILTRATION/INFLOW TASK FORCE REPORT A GUIDANCE DOCUMENT FOR MWRA MEMBER SEWER COMMUNITIES AND REGIONAL STAKEHOLDERS MARCH 2001 Executive Summary This report is the product of the Infiltration/Inflow (I/I) Task Force. It has been developed through the cooperative efforts of the 43 Massachusetts Water Resources Authority (MWRA) member sewer communities, MWRA Advisory Board, The Wastewater Advisory Committee (WAC) to the MWRA, Charles River Watershed Association (CRWA), Fore River Watershed Association (FRWA), Mystic River Watershed Association (MRWA), Neponset River Watershed Association (NRWA), South Shore Chamber of Commerce (SSCC), Massachusetts Department of Environmental Protection (DEP), United States Environmental Protection Agency (EPA), and MWRA. The I/I Task Force recommends implementation of the regional I/I reduction goals and implementation strategies detailed in this report. The report outlines a regional I/I reduction plan with appropriate burdens and benefits for stakeholders. The report is intended to be a guidance document for use by local sewer communities, as well as other regional stakeholders, who may tailor appropriate aspects of the report recommendations to their unique situations. Severe storms in October 1996 and June 1998 led to the unusual circumstance of numerous sanitary sewer overflows (SSOs) from local and MWRA collection systems. In the aftermath of these events, EPA and DEP began an aggressive effort to make MWRA regulate flows from community sewer systems. MWRA recommended cooperative efforts by local collection system operators, as well as regulators and environmental advocates, would be more effective than a prescriptive, enforcement based approach. -
Onsite Wastewater Treatment System (OWTS) Management in Humboldt County
Table of Contents INTRODUCTION ................................................................................................................................... 1 ELIGIBILITY ................................................................................................................................................... 1 PROHIBITIONS .............................................................................................................................................. 2 VARIANCE PROHIBITION AREAS ....................................................................................................................... 2 PART 1 ‐SITE EVALUATION ................................................................................................................... 4 1.1 SOIL PROFILES ...................................................................................................................................... 4 1.2 SOIL TESTING ....................................................................................................................................... 5 1.3 DEPTH TO GROUNDWATER DETERMINATIONS ........................................................................................... 6 1.4 REPORTING OF DATA............................................................................................................................. 8 1.5 DEH RESPONSIBILITIES FOR MONITORING WELL NOTIFICATIONS .................................................................... 8 PART 2 ‐DESIGN .................................................................................................................................. -
CHAPTER 15 Small Alternative Wastewater Systems
CHAPTER 15 Small Alternative Wastewater Systems 15.1 Preface 15.2 General Considerations 15.2.1 – Ownership 15.2.2 – Planning 15.3 Design Basis 15.3.1 – Hydraulic Loading 15.3.2 – Engineering Report 15.3.3 – Pollutant Loading 15.4 Preliminary Treatment 15.4.1 – Septic Tank Effluent Pumped (STEP) and Septic Tank Effluent Gravity (STEG) 15.4.1.1 –STEP Tanks 15.4.1.2 – STEG Tanks 15.4.2 – Grinder Pumps 15.4.3 – Grease and Oil 15.5 Secondary Treatment Design 15.5.1 Fixed Media Biological Reactors 15.5.1.1 – Granular Media Reactor 15.5.1.2 – Other Fixed Media Reactors 15.5.1.3 – Distribution and Underdrain System 15.5.1.3.1 – Spacing 15.5.1.3.2 – Sizing of Lines 15.5.1.4 – Recirculation Tank and Pump System 15.5.1.5 – Flow Splitter 15.5.1.6 – Dosing Chamber 15.6 Disinfection and Fencing 15.7 Oxidation Ponds and Artificial Wetlands 15.7.1 Oxidation Ponds) 15.7.2 Basis of Wetland Design 15.8 Lagoons 15.9 Package Activated Sludge Plants APPENDIX Appendix 15 Recirculation Tank / Pump System Example Calculation February 2016 15-1 Design Criteria Ch. 15 DECENTRALIZED DOMESTIC WASTEWATER TREATMENT SYSTEMS 15.1 Preface This chapter presents the method to determine the proper design for decentralized wastewater treatment systems (DWWTS). DWWTS are systems that are not the traditional, centralized/regionalized wastewater treatment systems. DWWTS treat domestic, commercial and industrial wastewater using water tight collection, biological treatment, filtration and disinfection. These systems typically will utilize land application with either surface or subsurface effluent dispersal. -
Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants EPA/833B-99/002 August 1999
United States Office of Wastewater EPA/833B-99/002 Environmental Protection Management August 1999 Agency Washington DC 20460 Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants EPA/833B-99/002 August 1999 Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants Office of Wastewater Management U.S. Environmental Protection Agency Washington, D.C. 20460 Notice and Disclaimer The U.S. Environmental Protection Agency, through its Office of Water, has funded, managed, and collaborated in the development of this guidance, which was prepared under order 7W-1235-NASX to Aquatic Sciences Consulting; order 5W-2260-NASA to EA Engineering, Science and Technology, Inc.; and contracts 68-03-3431, 68-C8-002, and 68-C2-0102 to Parsons Engineering Science, Inc. It has been subjected to the Agency's peer and administrative review and has been approved for publication. The statements in this document are intended solely as guidance. This document is not intended, nor can it be relied on, to create any rights enforceable by any party in litigation with the United States. EPA and State officials may decide to follow the guidance provided in this document, or to act at variance with the guidance, based on an analysis of site-specific circumstances. This guidance may be revised without public notice to reflect changes in EPA policy. ii Foreword This document is intended to provide guidance to permittees, permit writers, and consultants on the general approach and procedures for conducting toxicity reduction evaluations (TREs) at municipal wastewater treatment plants. TREs are important tools for Publicly Owned Treatment Works (POTWs) to use to identify and reduce or eliminate toxicity in a wastewater discharge. -
Inflow and Infiltration Reduction in Sanitary Sewers
Appendix E-4 – Inflow and Infiltration Reduction in Sanitary Sewers INFLOW AND INFILTRATION REDUCTION IN SANITARY SEWERS D.1 Introduction to RDII in Sanitary Sewers A properly designed, operated and maintained sanitary sewer system is meant to collect and convey all of the sewage that flows into it to a wastewater treatment plant. Rainfall dependent infiltration and inflow (RDII) into sanitary sewer systems has long been recognized as a major source of operating problems that cause poor performance of many sewer systems including system overflows. The extent of infiltration also correlates with the condition of aging sewers. The three major components of wet-weather wastewater flow into a sanitary system – base wastewater flow (BWWF), groundwater infiltration (GWI), and RDII are illustrated in Figure D-1 and are discussed below. Figure D-1: Three components of wet-weather wastewater flow BWWF, often called base sanitary flow, is the residential, commercial, institutional, and industrial flow discharged to a sanitary sewer system for collection and treatment. BWWF normally varies with water use patterns within a service area throughout a 24-hour period with higher flows during the morning period and lower during the night. In most cases, the average daily BWWF is more or less constant during a given day, but varies monthly and seasonally. BWWF often represents a significant portion of the flows treated at wastewater treatment facilities. GWI represents the infiltration of groundwater that enters the collection system through leaking pipes, pipe joints, and manhole walls. GWI varies throughout the year, often trending higher in late winter and spring as groundwater levels and soil moisture levels rise, and subsiding in late summer or after an extended dry period. -
Section 9 Sewer Collection Systems
SECTION 9 SEWER COLLECTION SYSTEMS TABLE OF CONTENTS 9.1 PURPOSE AND DEFINITIONS .......................................................................................... 1 9.1.1 Purpose ........................................................................................................................ 1 9.1.2 DOU Sewer System ...................................................................................................... 1 9.1.3 Definitions ..................................................................................................................... 2 9.2 GENERAL REQUIREMENTS ........................................................................................... 11 9.2.1 Authority and Responsibility ....................................................................................... 11 9.2.2 Disclaimer ................................................................................................................... 11 9.2.3 Acceptance ................................................................................................................. 12 9.2.4 Variances .................................................................................................................... 12 9.2.5 Gravity vs. Pumped Systems ...................................................................................... 12 9.2.6 New Sewer Systems ................................................................................................... 13 9.2.7 Diversion of Flows ..................................................................................................... -
PART VI - SANITARY SEWER SYSTEM DESIGN CRITERIA (Public & Private)
PART VI - SANITARY SEWER SYSTEM DESIGN CRITERIA (Public & Private) A. Definitions a Main - is that portion of the sewer system between manholes, or between manhole and the end of the main line provided with a lamphole. b Lateral - is that portion of the sewer system which is connected to the main and which serves one parcel or building. B. Size Criteria 1. The gravity sewer main lines shall be a minimum of eight inch (8") in diameter except that dead end lines of less than 300 feet can be 6 inches in diameter. Laterals shall be a minimum of 4" in diameter for single family residences and 6" for commercial, duplex and multi-family lots. 2. Laterals shall be placed at least 3' below top of curb grade elevation with 2% minimum slope and with a cleanout located per City Standard Detail S-1. 3. Minimum slopes for various pipe diameters shall be as shown in the following table. Pipe slopes less than those listed shall not be used without the approval from the City. Pipe Diameter (in) Slope (%) Slope ft/ft 6 0.50 0.0050 8 0.35 0.0035 10 0.25 0.0025 12 0.20 0.0020 15 0.15 0.0015 18 0.12 0.0012 4. The sewer mains shall be designed with the sewer flowing 3/4 full at peak flow condition or d/D = 0.75 where d is the depth of flow and D is the diameter of sewer pipe. 5. For gravity flow, use the Manning formula. The minimum design velocity shall be 2 fps for the design flow, and the design "n" factor shall be 0.013. -
Low Pressure Sewer a Proven Technology
Low Pressure Sewer Solutions to Wet Weather Problems Michigan Water Environment Association WWAdCon 2014 Keith J McHale, P.E. Environment One Corporation Principles of Low Pressure Sewer ◦ What is a Low Pressure Sewer System ◦ Advantages of Low Pressure Sewer LPS Solutions to Wet Weather Problems ◦ Infiltration and Inflow (I&I) ◦ Basement flooding solution Agenda Wastewater collection systems that use individual residential pumps to convey the flow to a central treatment system, lift station, gravity sewer, or force main System consists of: ◦ Grinder pumps ◦ Small diameter pressure pipe Sewer main follows the natural contour of the land What is a LPS System First used in the early 1970’s Provides daily service to millions of users worldwide Demonstrated performance, high reliability, and low operating and maintenance costs Low Pressure Sewer A Proven Technology Gained popularity due to the ability to provide central sewer service to areas with gravity sewer could not be installed or the cost to do so was cost prohibitive ◦ High ground water ◦ Lake communities ◦ Rural areas ◦ Flat terrain ◦ Undulating terrain ◦ Rocky ground conditions Early Development Experience and demonstrated advantages have expanded the use of low pressure sewer Competitive alternative to convention gravity sewer ◦ Flexibility ◦ Lower capital cost ◦ Construction phasing ◦ Increased construction schedule ◦ Lower environment impact and social costs Wider Acceptance The System • Grinder pump unit is located in the yard or basement of each home The System • -
Saskatchewan Onsite Watewater Disposal Guide
Saskatchewan Onsite Wastewater Disposal Guide Third Edition November 2018 saskatchewan.ca TABLE OF CONTENTS Table of Contents ......................................................................................................................................... i Table of Figures ......................................................................................................................................... viii List of Tables ............................................................................................................................................... ix 1 Definitions and Abbreviations ............................................................................................................. x 2 Introduction ........................................................................................................................................ 1 2.1 Disclaimer ................................................................................................................................ 1 2.2 Acknowledgments ................................................................................................................... 1 2.3 Special Acknowledgments ...................................................................................................... 2 3 Goals & Objectives ............................................................................................................................. 3 4 Other Regulations/Bylaws ................................................................................................................. -
Sewer System Management Plan
SEWER SYSTEM MANAGEMENT PLAN Marshall Community Wastewater System March 2016 Updated March 2018 Updated August 2018 Prepared by Environmental Health Services Staff and Questa Engineering Corporation Marin County Environmental Health Services 3501 Civic Center Drive, Suite 236 San Rafael, CA 94913 1 TABLE OF CONTENTS INTRODUCTION 1 I. GOALS 1 II. ORGANIZATION 1 III. LEGAL AUTHORITY 2 IV. OPERATION AND MAINTENANCE PROGRAM 3 V. DESIGN AND PERFORMANCE PROVISIONS 3 VI. OVERFLOW EMERGENCY RESPONSE PLAN 3 VII. FATS, OILS, AND GREASE CONTROL PROGRAM 4 VIII. SYSTEM EVALUATION AND CAPACITY ASSURANCE PLAN 4 IX. MONITORING, MEASUREMENT AND PROGRAM MODIFICATIONS 5 X. SSMP PROGRAM AUDITS 5 XI. COMMUNICATION PROGRAM 5 Attachment A: Spill Prevention and Emergency Response Plan Attachment B: Summary of Monitoring and Reporting Program Requirements 2 Marshall Community Wastewater System SEWER SYSTEM MANAGEMENT PLAN INTRODUCTION This document constitutes the Sewer System Management Plan (SSMP) for the Marshall Community Wastewater Treatment System (Facility.) It has been prepared pursuant to State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ, Statewide General Waste Discharge Requirements for Sanitary Sewer Systems, and Order No. WQ-2013-0058- EXEC, Amending Monitoring and Reporting Program for Statewide General Waste Discharge Requirements for Sanitary Sewer Systems. The Facility serves approximately 50 homes and a few commercial properties in the community of Marshall, an unincorporated area of Marin County located along the eastern shore of Tomales Bay. The Facility includes wastewater collection, treatment, and subsurface disposal of effluent. Wastewater is collected from septic tanks serving and located at individual residential and commercial properties, conveyed by approximately two miles of 2 to 3-inch pressurized pipelines to a community treatment system, and then discharged to a community leachfield. -
Sanitary Sewer Overflow Report Side a Category 1: Discharge of Untreated Or Partially Treated Wastewater of Any Volume Resulting
Sanitary Sewer Overflow Report Side A Category 1: Discharge of untreated or partially treated wastewater of any volume resulting from a sanitary sewer system failure of flow condition that either (1) reaches surface water and/or drainage channel tributary to a surface water; OR (2) Reached a Municipal Separate Storm Sewer System (MS$) and was not fully captured and returned to the sanitary sewer system or otherwise captured and disposed of properly. Category 2: Discharge of untreated or partially treated wastewater greater than or equal to 1,000 gallons resulting from a sanitary sewer system failure or flow condition that either (1) Does not reach surface water, a drainage channel, or an MS4, OR (2) The entire SSO discharged to the storm drain system was fully recovered and disposed of properly. Category 3: All other discharges of untreated or partially treated wastewater resulting from a sanitary sewer system failure or flow condition. Spill from Private Lateral Describe in detail the basis for choosing the spill category: IMMEDIATE NOTIFICATION: If this is a Category 1 spill greater than or equal to 1,000 gallons, contact CalEMA within 2 hours at (800) 852-7550. A. SPILL LOCATION Spill Location Name: Latitude Coordinates*: Longitude Coordinates: Street Name and Number: Nearest Cross Street: City: Rancho Palos Verdes Zip: 90275 County: Los Angeles Spill Location Description: B. SPILL DESCRIPTION Spill Appearance Point (check one or more): Building/Structure Force Main Gravity Sewer Pump Station Other Structure (i.e. cleanout) Manhole-Structure ID# Other (specify): Did the spill reach a drainage channel and/or surface water: Yes (Category 1) No If the spill reached a storm sewer, was it fully captured and returned to the Sanitary Sewer? Yes No (Cat. -
Why Do Onsite Wastewater Septic Systems Fail
Why Do Onsite Wastewater (Septic) Systems Fail? Ask yourself: Under normal water use (wastewater be achieved without maintenance, including removal of flow) conditions … accumulated solids. • Are sewage drains sluggish? The breakdown of wastes, especially solids, begins in • Does sewage back up into the facility? the septic tank. However, wastewater treatment requires a • Have you had a wet, smelly spot in your yard? properly functioning absorption field. The field typically • Does your septic system discharge at the surface is either rock-filled trenches with perforated pipe or such as road ditch, draw, storm sewer, or stream? gravelless trenches, usually with chambers. • Is the system connected to a drain tile? The correct system size is determined by the amount of wastewater flow and the soil properties in the dispersal If you answered yes to any of these questions, your field. If the wastewater flow is greater than the soil can onsite wastewater system is failing. It is not treating accept, it often surfaces in the field or backs up into the and dispersing sewage in a safe, sanitary manner. Other house. A properly designed, constructed, maintained, evidences of onsite systems not working effectively and protected onsite system should treat wastewater include persistent bacteria or excess nitrate in nearby effectively for 20 to 40 years or more. However, wells and excessive aquatic plant growth in surface water. premature failure sometimes occurs. In Kansas, wastewater can legally be discharged only to a permitted community sewer and treatment facility or to a Causes of Septic System Failure permitted onsite wastewater system. Onsite systems must Common causes of system failure are inappropriate be located, designed, and operated in compliance with system selection, improper design, construction mistakes, the local sanitary code or the minimum state standards in physical damage, inadequate maintenance, and hydraulic Kansas Department of Health and Environment (KDHE), or organic overload.