Possible Future Atmospheric Earth Explorer Missions Approved

Total Page:16

File Type:pdf, Size:1020Kb

Possible Future Atmospheric Earth Explorer Missions Approved Approved Possible future atmospheric Earth Explorer missions Jörg Langen, Paul Ingmann, Dulce Lajas, Anne-Grete Straume Mission Science Division, ESA/ESTEC Noordwijk, The Netherlands Atmospheric Science Conference, ESRIN, 8-12 May 2006 European satellites 2004 Envisat Swarm MetOp + MSG EarthCARE ERS Atmospheric Science Conference, ESRIN, 8-12 May 2006 The ESA EO missions: The Living Planet TheThe LivingLiving PlanetPlanet programmeprogramme The ESA Living Planet Programme was created in consultation with the key players: Europe’s scientists, Industry, European Commission, EUMETSAT and many others. The programme has 3 basic elements: EarthEarth ExplorerExplorer To better understand the Earth To initiate long term GMES Earth Watch monitoring systems => and services Sentinels To develop more Technology / exploitation efficient approaches Atmospheric Science Conference, ESRIN, 8-12 May 2006 The Earth Explorers CORECORE MISSIONSMISSIONS Granada ‘01 Frascati ‘04 ACECHEM Nov. ‘04 P GOCEGOCE EarthCARE Granada ‘96/99 Call ‘00 h a Explorer-6Explorer-6 SPECTRA s ADM-AeolusADM-Aeolus EarthCARE EarthCAREEarthCARE e WALES A WATS Frascati ‘04 SPECTRA OPPORTUNITYOPPORTUNITY MISSIONSMISSIONS P Explorer-5 h ACE+ SWARM Call ‘98 a CryoSatCryoSat Call ‘01 s EGPM e EGPM SWARM Earth SMOSSMOS A Watch Atmospheric Science Conference, ESRIN, 8-12 May 2006 Current Launch Schedule ’06 - ’09 GOCE SMOS ADM-Aeolus CRYOSAT-2 Launch 2007 Launch 2007 Launch 2008 Launch 2009 Core-1 Opportunity-2 Core-2 Opportunity-1 http://www.esa.int/livingplanet Atmospheric Science Conference, ESRIN, 8-12 May 2006 ADM-Aeolus Atmospheric Science Conference, ESRIN, 8-12 May 2006 ADM-Aeolus: The Mission What are the scientific objectives? Improve understanding of – Atmospheric dynamics and global atmospheric transport – Global cycles of energy, water, aerosols, chemicals How are they achieved? – Better analysis of the atmospheric state to provide a more complete (three-dimensional) picture of the dynamical variables What are the benefits? – Improved parameterisation of atmospheric processes in models – Advanced modelling of climate and atmospheric flow – Better initial conditions for weather forecasting – Demonstration of ADM-Aeolus’ potential for full operational use Atmospheric Science Conference, ESRIN, 8-12 May 2006 Existing wind field information Wind field information available to date in the Global Observation System (GOS): – Radiosonde and pilot soundings (NH continents dominate) – Aircraft data (NH densely populated areas dominate) – Atmospheric motion vectors (only in the presence of clouds and tracers) – Satellite soundings of temperature and humidity from Polar orbiting satellites (mass information, indirect measure of large-scale phenomenon wind outside the tropics) ÄNo DIRECT, GLOBAL and UNIQUE measurements of atmospheric wind fields yet Atmospheric Science Conference, ESRIN, 8-12 May 2006 ADM-Aeolus: Measurement Concept (Aladin) [H]LOS • Wind measurements are derived from the Doppler shifted signal that is back- scattered by aerosols and molecules along the lidar line-of-sight (LOS) Atmospheric Science Conference, ESRIN, 8-12 May 2006 ADM-Aeolus: The Orbit • Altitude: 400 km • Sun-synchronous • Dawn-dusk Atmospheric Science Conference, ESRIN, 8-12 May 2006 ADM-Aeolus: Performance ADM-Aeolus Performance Simulation - Reference Atmosphere 30 28 26 24 22 20 18 16 specification 14 Altitude (km) Altitude 12 10 8 6 4 2 0 0 0.5 1.0 1.5 2.0 2.5 3.0 Wind noise error (HLOS - m s-1) Atmospheric Science Conference, ESRIN, 8-12 May 2006 Additional Benefits from ADM-Aeolus In addition to the main wind observation product, the following information can be retrieved: • Clouds ¾ Cloud heights ¾ Multi-layer clouds ¾ Optical thickness ¾ Cloud type • Tropospheric aerosol ¾ Optical thickness ¾ Aerosol type (lidar ratio - separating anthropogenic from natural) ¾ Stratification • Wind variability, clear air turbulence • Validation of products from other satellites • Model validation Atmospheric Science Conference, ESRIN, 8-12 May 2006 Science Benefits from ADM-Aeolus • More direct observations of winds in the tropics and over mid-latitude oceans • Use of observations in model verification • Better description of transports (ozone, humidity, aerosols,…) • Dynamics in the lower stratosphere Atmospheric Science Conference, ESRIN, 8-12 May 2006 EarthCARE: Rationale Earth Clouds, Aerosols and Radiation Explorer - a joint ESA/JAXA mission Top Of the Atmosphere (TOA) incoming and outgoing radiances are rather well known from ERB instruments (ERBE,CERES, ScaRaB,…) Why a Mission Like EarthCARE ? Processes within the atmosphere controlling incoming and outgoing TOA radiances, hence the Earth energy budget at TOA are largely unknown. Atmospheric Science Conference, ESRIN, 8-12 May 2006 EarthCARE: Mission Summary Scientific objective : Quantification of aerosol-cloud-radiation interactions so they may be included correctly in climate and NWP models, by providing : ÎVertical profiles of natural and anthropogenic aerosols on a global scale, their radiative properties and interaction with clouds. ÎVertical distribution of atmospheric liquid water and ice on a global scale, their transport by clouds and radiative impact. ÎCloud overlap in the vertical, cloud-precipitation interactions and the characteristics of vertical motion within clouds. ÎThe profiles of atmospheric radiative heating and cooling through a combination of retrieved aerosol and cloud properties. Atmospheric Science Conference, ESRIN, 8-12 May 2006 EarthCARE: Observation Techniques Atmospheric data Techniques EarthCARE instruments VerticalVertical profilesprofiles ofof HighHigh spectralspectral extinction and ATLID extinction and resolution Lidar ATLID characteristicscharacteristics ofof aerosolsaerosols resolution Lidar VerticalVertical profilesprofiles ofof liquid,liquid, supercooledsupercooled and and iceice water,water, RadarRadar cloudcloud overlap,overlap, particleparticle sizesize andand extinctionextinction CPRCPR ConvectiveConvective updraftupdraft andand iceice fallfall speedspeed DopplerDoppler RadarRadar HorizontalHorizontal structurestructure ofof MultispectralMultispectral MSIMSI cloudsclouds andand aerosolsaerosols ImagerImager ShortwaveShortwave andand LongwaveLongwave BroadbandBroadband BBRBBR fluxesfluxes atat TopTop ofof AtmosphereAtmosphere RadiometerRadiometer Temperature and humidity from operational analysis Atmospheric Science Conference, ESRIN, 8-12 May 2006 EarthCARE: Synergy Example Synergy: Lidar and Radar combination (from aircraft) APEX/ECAV 2003, Japan RadarRadar reflectivityreflectivity Radar:Radar: ZZ ~~ DD66 RadarRadar DopplerDoppler Radar:Radar: velocityvelocity LidarLidar backscatterbackscatter Lidar:Lidar: ββ ~~ DD22 EffectiveEffective ParticleParticle sizesize radiusradius fromfrom Z/Z/ββ IceIce waterwater AccurateAccurate DD andand contentcontent ZZ givesgives IWCIWC Reference: Kumagai et al 2004 Atmospheric Science Conference, ESRIN, 8-12 May 2006 EarthCARE: Measurement Synergy Sensors Geophysical Process products studies cloudsclouds andand CPRCPR precipitationprecipitation synergy precipitationprecipitation ice and radiative flux ATLIDATLID iceice andand synergy radiative flux synergy waterwater cloudsclouds profilesprofiles synergysynergy aerosolsaerosols andand MSIMSI aerosolsaerosols cloudsclouds synergy BBRBBR TOATOA fluxflux consistencyconsistency checkcheck Atmospheric Science Conference, ESRIN, 8-12 May 2006 Call for New Earth Explorer Missions Call for Ideas for Earth Explorer 7 Focus areas of the call: Global water cycle Global carbon cycle Atmospheric chemistry and its interaction with climate The human element ¾ 24 proposals received by deadline mid August 2005 14 proposals address atmosphere, 9 of them composition ¾ Evaluation in 5 scientific and 3 technical panels complete ¾ Earth Science Advisory Committee recommendations April 2006 ¾ Selection of ≤ 6 proposals for pre-phase A by PB-EO: 18/19 May 2006 Atmospheric Science Conference, ESRIN, 8-12 May 2006 Candidate EECM - Atmosphere REF NO MISSION_TITLE TOPIC Geostationary Observatory for Microwave Atmospheric Sounding CCM2-01 Atmos. Dynamics (GOMAS) PRocess Exploration through Measurements of Infrared and CCM2-02 Atmos. Chemistry millimetre-wave Emitted Radiation (PREMIER) CCM2-04 Cloud Ic e Water Submillimeter Imaging Radiometer (CIWSIR) Atmos. Dynamics Measuring Atmosphere Turbulence and Humidity Atmospheric CCM2-05 Atmos. Dynamics Water Content (MATH-AWC) Space-borne Profiling with high Accuracy in clear and Cloudy skies CCM2-06 for the Exploration of WAter Vapour in the Earth System (SPACE Atmos. Dynamics WAVES) Dual-Frequency Doppler Radar for Observing Precipitation Systems CCM2-09 Atmos. Dynamics (Du-DROPS) The Geostationary TROpospheric Pollution Explorer-Regional CCM2-10 Atmos. Chemistry (GeoTROPE-R) Atmospheric Climate and Chemistry in the UTLS Region And c limate Atmos. Dynamics & CCM2-13 Trends Explorer (ACCURATE) Atmos. Chemistry Kyoto protocoL and Informed Management of the Adaptation CCM2-14 Atmos. Chemistry (KLIMA) CCM2-15 Occultation and Limb Viewing of the Atmosphere (OLIVIA) Atmos. Chemistry CCM2-16 Impact of Lightning activity on Atmospheric Chemistry (ILAC) Atmos. Chemistry CCM2-18 Tropospheric Composition and Air Quality (TRAQ) Atmos. Chemistry Measuring Atmosphere Turbulence and Humidity Atmospheric CCM2-22 Atmos. Dynamics Water Content (MATH-AWC) Advanced Space Carbon and Climate Observation of Planet Earth CCM2-23 Atmos. Chemistry (A-SCOPE) ECOsat Three Microsat Constellation for Earth Observation
Recommended publications
  • The Early Explorers by Andrew J
    The Early Explorers by Andrew J. LePage August 8, 1999 Among these programs were the next generation of Introduction Explorer satellites the ABMA was planning. In the chaos that swept the United States after the launching of the first Soviet Sputniks, a variety of The First New Explorers satellite programs was sponsored by the Department The first of the new series of larger Explorer satellites of Defense (DoD) to supplement (and in some cases was the 39.7 kilogram (87.5 pound) satellite NASA supplant) the country's flagging "official" satellite designated as S-1. Built by JPL, the spin stabilized program, Vanguard. One of the stronger programs S-1 consisted of a pair of fiberglass cones joined at was sponsored by the ABMA (Army Ballistic Missile their bases with a diameter and height of 76 Agency) with its engineering team lead by the centimeters each. The scientific payload consisted of German rocket expert, Wernher von Braun. Using instruments to study cosmic rays, solar X-ray and the Juno I launch vehicle, the ABMA team launched ultraviolet emissions, micrometeorites, as well as the America's first satellite, Explorer 1, which was built globe's heat balance. This was all powered by a bank by Caltech's Jet Propulsion Laboratory (JPL) (see of 15 nickel-cadmium batteries recharged by 3,000 Explorer: America's First Satellite in the February solar cells mounted on the satellite's exterior. This 1998 issue of SpaceViews). advanced payload was equipped with a timer to turn itself off after a year in orbit. While these first satellites returned a wealth of new data, they were limited by the tiny 11 kilogram (25 Explorer S-1 was launched from Cape Canaveral on pound) payload capability of the Juno I.
    [Show full text]
  • The Birth of Nasa - 1958
    THE BIRTH OF NASA - 1958 Jonathan McDowell Harvard-Smithsonian Center for Astrophysics [email protected] http://www.planet4589.org “In this decade...” May 25, 1961: JFK starts the Moon race. But the Space Age was already in full flow NASA was formed in 1958 The US space effort began long before that Cue the space race... October 1942: First into space America in orbit 1957-1961 Early program run by military and CIA: − US Army (ABMA/Huntsville): Explorer, Pioneer (with JPL) − US Navy (NRL/Washington): Vanguard − US Navy (NOTS/China Lake): “NOTSNIK” − US Air Force (WDD/Los Angeles): Able, Samos, Midas − CIA (Langley): CORONA (Discoverer) NASA formed 1958 for civilian space programs NRO formed 1961 for reconnaissance programs THE ROCKET'S RED GLARE ABMA/JPL Explorer Werner von Braun's stretched V-2 with spinning upper stages from JPL and tiny 4 kg payload Redstone reached apogee, spinning stages fired horizontally to get orbital velocity NRL's Vanguard NRL's Vanguard Bad rep - but stage 2 and 3 used for Delta with success Early launches used 2 kg test satellite - success on 3rd try Standard “Vanguard sphere” was 51cm - 2 of 8 made orbit Some of the Vanguard team went to Goddard to do science satellites, but some stayed at NRL Now we know: the Vanguard 51-cm sphere satellite had a later, secret history NOTSnik - Jul/Aug 1958 NOTS project First air-launched satellite attempt, off California coast Six tries, no confirmed successes 2 types of payload: radiation diagnostics for Argus artificial radiation belts, and infrared scanner instrument.
    [Show full text]
  • AAS Explorer Issue #8
    lookingback: Mexico City | 15 AMERICAN ASTRONAUTICAL SOCIETY Newsletter of the AAS History Committee | www.astronautical.org | Editor: Tim Chamberlin ([email protected]) Anxiously awaiting results INSIDE from Augustine Commission he Lovin’ Spoonful probably JULY 2009 | ISSUE 8 had it right in 1966 — “Hot T town, summer in the city!” Many of us who work in the space industry are anxiously awaiting the results of the Augustine Commission (part deux). I can’t help By Michael L. Ciancone, Chair, AAS History Committee but reflect on the various commis- sions of which NASA has been the (program startups) and graduations subject over the past few decades, as (launches!) as signs of a healthy and RELIVE HISTORIC discussed in several articles circulat- vital spaceflight program. APOLLO MISSION ing in cyberspace. Reports of individual HistComm These commissions offered member activities, plans and accom- ® Web sites mark historic lunar landing 40 years ago / 2 recommendations that met with vary- plishments are provided in this ing degrees of acceptance and imple- newsletter. As you can see, we’ve ® NASA seeking ideas from public mentation. In the immortal words of been a busy and productive lot! about Wernher Yogi Berra, “It’s like déjà vu all over Although it seems like a long way von Braun again.” off yet, the AAS Annual Conference collection / 3 I’ve noticed that along with and National Meeting is just around ® On book- announcements for space-related the corner — scheduled for Dec. 2-3 shelves: Is space a ‘wild west’ or global anniversaries are a number of obitu- at the Gilruth Center at Johnson commons? / 4 aries saluting folks who left their Space Center in Houston.
    [Show full text]
  • Astronomy 2009 Index
    Astronomy Magazine 2009 Index Subject Index 1RXS J160929.1-210524 (star), 1:24 4C 60.07 (galaxy pair), 2:24 6dFGS (Six Degree Field Galaxy Survey), 8:18 21-centimeter (neutral hydrogen) tomography, 12:10 93 Minerva (asteroid), 12:18 2008 TC3 (asteroid), 1:24 2009 FH (asteroid), 7:19 A Abell 21 (Medusa Nebula), 3:70 Abell 1656 (Coma galaxy cluster), 3:8–9, 6:16 Allen Telescope Array (ATA) radio telescope, 12:10 ALMA (Atacama Large Millimeter/sub-millimeter Array), 4:21, 9:19 Alpha (α) Canis Majoris (Sirius) (star), 2:68, 10:77 Alpha (α) Orionis (star). See Betelgeuse (Alpha [α] Orionis) (star) Alpha Centauri (star), 2:78 amateur astronomy, 10:18, 11:48–53, 12:19, 56 Andromeda Galaxy (M31) merging with Milky Way, 3:51 midpoint between Milky Way Galaxy and, 1:62–63 ultraviolet images of, 12:22 Antarctic Neumayer Station III, 6:19 Anthe (moon of Saturn), 1:21 Aperture Spherical Telescope (FAST), 4:24 APEX (Atacama Pathfinder Experiment) radio telescope, 3:19 Apollo missions, 8:19 AR11005 (sunspot group), 11:79 Arches Cluster, 10:22 Ares launch system, 1:37, 3:19, 9:19 Ariane 5 rocket, 4:21 Arianespace SA, 4:21 Armstrong, Neil A., 2:20 Arp 147 (galaxy pair), 2:20 Arp 194 (galaxy group), 8:21 art, cosmology-inspired, 5:10 ASPERA (Astroparticle European Research Area), 1:26 asteroids. See also names of specific asteroids binary, 1:32–33 close approach to Earth, 6:22, 7:19 collision with Jupiter, 11:20 collisions with Earth, 1:24 composition of, 10:55 discovery of, 5:21 effect of environment on surface of, 8:22 measuring distant, 6:23 moons orbiting,
    [Show full text]
  • Trimble Business Center User Guide
    User Guide Trimble® Business Center Version 2.00 Corporate Office Trimble Navigation Limited Engineering and Construction Division 5475 Kellenburger Road Dayton, Ohio 45424-1099 U.S.A. Phone: +1-937-233-8921 Toll free (in USA): +1-800-538-7800 Fax: +1-937-233-9441 www.trimble.com Copyright and Trademarks © 2005-2008, Trimble Navigation Limited. All rights reserved. The Globe & Triangle logo and Trimble are trademarks of Trimble Navigation Limited. All other trademarks are the property of their respective owners. Release Notice This is the help for version 2.00 of Trimble Business Center software. Trimble® Business Center User Guide ii Contents Contents Welcome To Trimble Business Center 1 Get Started 2 Register This Software ......................................................................................................................................2 Retaining User Settings When Upgrading.......................................................................................................4 Get Familiar with the Interface........................................................................................................................5 Project Explorer.................................................................................................................................................6 Selection Explorer .............................................................................................................................................7 View Filter Manager .........................................................................................................................................8
    [Show full text]
  • Index of Astronomia Nova
    Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K.
    [Show full text]
  • Construction of an Adaptive E-Learning Environment To
    !PREFACE Construction of an Adaptive E-learning Environment to Address Learning Styles and an Investigation of the Effect of Media Choice Christian Wolf Diplom-Informatiker (FH) Digitale Medien (equivalent to BCompSc(Hons) Digital Media) This exegesis is submitted with the durable record of the project materials on DVD in fulfilment of the requirements for the degree Doctor of Philosophy. School of Education Design and Social Context Portfolio RMIT University January 2007 Certification i Certification I hereby state that a. except where due acknowledgement has been made, the work has been carried out by myself alone; b. the work has not been submitted previously, in whole or in part, to qualify for any other academic award; c. the content of the exegesis is the result of work which has been carried out since the official commencement date of the approved research program; and d. any editorial work, paid or unpaid, carried out by a third party is acknowledged. e. ethics procedures and guidelines have been followed. Christian Wolf Melbourne, January 2007 Acknowledgements ii Acknowledgements This PhD by project was partially funded by a scholarship from the German Academic Exchange Service and a grant from the Telematics Course Development Fund Trust. Thanks to my supervisors Tony Owens, Andrew Seaton, Nicola Yelland, and Robyn Blake for their comments on my work and on earlier versions of this exegesis. Additional thanks for helpful comments on the statistics sections go to John Izard, Cliff DaCosta and Boyka Bratanova. I would also like to express my gratitude to the 63 multimedia students from RMIT University (TAFE division), who participated in the evaluation of iWeaver, as well as to all the ADoM staff members for their support and cooperation.
    [Show full text]
  • Our First Quarter Century of Achievement ... Just the Beginning I
    NASA Press Kit National Aeronautics and 251hAnniversary October 1983 Space Administration 1958-1983 >\ Our First Quarter Century of Achievement ... Just the Beginning i RELEASE ND: 83-132 September 1983 NOTE TO EDITORS : NASA is observing its 25th anniversary. The space agency opened for business on Oct. 1, 1958. The information attached sumnarizes what has been achieved in these 25 years. It was prepared as an aid to broadcasters, writers and editors who need historical, statistical and chronological material. Those needing further information may call or write: NASA Headquarters, Code LFD-10, News and Information Branch, Washington, D. C. 20546; 202/755-8370. Photographs to illustrate any of this material may be obtained by calling or writing: NASA Headquarters, Code LFD-10, Photo and Motion Pictures, Washington, D. C. 20546; 202/755-8366. bQy#qt&*&Mary G. itzpatrick Acting Chief, News and Information Branch Public Affairs Division Cover Art Top row, left to right: ffComnandDestruct Center," 1967, Artist Paul Calle, left; ?'View from Mimas," 1981, features on a Saturnian satellite, by Artist Ron Miller, center; ftP1umes,*tSTS- 4 launch, Artist Chet Jezierski,right; aeronautical research mural, Artist Bob McCall, 1977, on display at the Visitors Center at Dryden Flight Research Facility, Edwards, Calif. iii OUR FIRST QUARTER CENTER OF ACHIEVEMENT A-1 -3 SPACE FLIGHT B-1 - 19 SPACE SCIENCE c-1 - 20 SPACE APPLICATIQNS D-1 - 12 AERONAUTICS E-1 - 10 TRACKING AND DATA ACQUISITION F-1 - 5 INTERNATIONAL PROGRAMS G-1 - 5 TECHNOLOGY UTILIZATION H-1 - 5 NASA INSTALLATIONS 1-1 - 9 NASA LAUNCH RECORD J-1 - 49 ASTRONAUTS K-1 - 13 FINE ARTS PRQGRAM L-1 - 7 S IGN I F ICANT QUOTAT IONS frl-1 - 4 NASA ADvIINISTRATORS N-1 - 7 SELECTED NASA PHOTOGRAPHS 0-1 - 12 National Aeronautics and Space Administration Washington, D.C.
    [Show full text]
  • NASA Is Not Archiving All Potentially Valuable Data
    ‘“L, United States General Acchunting Office \ Report to the Chairman, Committee on Science, Space and Technology, House of Representatives November 1990 SPACE OPERATIONS NASA Is Not Archiving All Potentially Valuable Data GAO/IMTEC-91-3 Information Management and Technology Division B-240427 November 2,199O The Honorable Robert A. Roe Chairman, Committee on Science, Space, and Technology House of Representatives Dear Mr. Chairman: On March 2, 1990, we reported on how well the National Aeronautics and Space Administration (NASA) managed, stored, and archived space science data from past missions. This present report, as agreed with your office, discusses other data management issues, including (1) whether NASA is archiving its most valuable data, and (2) the extent to which a mechanism exists for obtaining input from the scientific community on what types of space science data should be archived. As arranged with your office, unless you publicly announce the contents of this report earlier, we plan no further distribution until 30 days from the date of this letter. We will then give copies to appropriate congressional committees, the Administrator of NASA, and other interested parties upon request. This work was performed under the direction of Samuel W. Howlin, Director for Defense and Security Information Systems, who can be reached at (202) 275-4649. Other major contributors are listed in appendix IX. Sincerely yours, Ralph V. Carlone Assistant Comptroller General Executive Summary The National Aeronautics and Space Administration (NASA) is respon- Purpose sible for space exploration and for managing, archiving, and dissemi- nating space science data. Since 1958, NASA has spent billions on its space science programs and successfully launched over 260 scientific missions.
    [Show full text]
  • Response of Energetic Particles to Magnetospheric Ultra-Low-Frequency Waves
    KAZUE TAKAHASHI RESPONSE OF ENERGETIC PARTICLES TO MAGNETOSPHERIC ULTRA-LOW-FREQUENCY WAVES Ultra-low-frequency (ULF) waves in the space physics context are the lowest-frequency plasma waves propagating in the Earth's magnetosphere. Although the propagation of the waves is explained in mag­ netohydrodynamic (MHD) theory, excitation of the waves involves not only MHD but also kinetic pro­ cesses. In this article, we describe how in situ magnetic field and particle measurements can be used to distinguish the basic properties of ULF waves, including the azimuthal wave number of the standing wave structure and the propagation direction. Examples are taken from observations with the AMPTE/CCE spacecraft. INTRODUCTION A long time ago it was realized that the geomagnetic perimentally determined. This provides a quantitative ba­ field as observed on the ground exhibits small-amplitude sis for testing various theories of plasma instabilities. oscillations with a period of a few minutes. 1 Since then, In this article we describe how energetic particle data the phenomenon has attracted many researchers and has combined with magnetic field data can be used to under­ been called by several different names, including geo­ stand the properties of ULF waves. In some cases, the magnetic micropulsations, magnetic pulsations, ultra­ particles can be treated separately from the bulk of the low-frequency (ULF) pulsations (i.e., frequencies lower plasma, and can be used as test particles probing the spa­ than 3 Hz), or ULF waves. In 1954, Dungey2 predicted tial and temporal structure of ULF pulsations. In that that the oscillations originate in the magnetosphere as case, the type of wave-particle interactions critically de­ magnetohydrodynamic (MHD) waves.
    [Show full text]
  • NASA Major Launch Record
    NASA Major Launch Record 1958 MISSION/ LAUNCH LAUNCH PERIOD CURRENT ORBITAL PARAMETERS WEIGHT REMARKS Intl Design VEHICLE DATE (Mins.) Apogee (km) Perigee (km) Incl (deg) (kg) (All Launches from ESMC, unless otherwise noted) 1958 1958 Pioneer I (U) Thor-Able I Oct 11 DOWN OCT 12, 1958 34.2 Measure magnetic fields around Earth or Moon. Error in burnout Eta I 130 (U) velocity and angle; did not reach Moon. Returned 43 hours of data on extent of radiation band, hydromagnetic oscillations of magnetic field, density of micrometeors in interplanetary space, and interplanetary magnetic field. Beacon I (U) Jupiter C Oct 23 DID NOT ACHIEVE ORBIT 4.2 Thin plastic sphere (12-feet in diameter after inflation) to study (U) atmosphere density at various levels. Upper stages and payload separated prior to first-stage burnout. Pioneer II (U) Thor-Able I Nov 8 DID NOT ACHIEVE ORBIT 39.1 Measurement of magnetic fields around Earth or Moon. Third stage 129 (U) failed to ignite. Its brief data provided evidence that equatorial region about Earth has higher flux and higher energy radiation than previously considered. Pioneer III (U) Juno II (U) Dec 6 DOWN DEC 7, 1958 5.9 Measurement of radiation in space. Error in burnout velocity and angle; did not reach Moon. During its flight, discovered second radiation belt around Earth. 1959 1959 Vanguard II (U) Vanguard Feb 17 122.8 3054 557 32.9 9.4 Sphere (20 inches in diameter) to measure cloud cover. First Earth Alpha 1 (SLV-4) (U) photo from satellite. Interpretation of data difficult because satellite developed precessing motion.
    [Show full text]
  • 60 Years of Earth Imaging from Satellites
    50 May-June 2018 60 Years of Earth Imaging from Satellites By Don Hillger and Garry Toth Satellite imagery is a common and integral part of modern life, from the frequent cloud photos used for weather analysis, forecasting and television illustrations to Earth-observing imagery for environmental monitoring. Th is fl ood of imagery is a modern phenomenon. Starting with the fi rst artifi cial satellites in the late 1950s, the ability to view Earth from space has progressed steadily to the point that many terabytes of imagery are now obtained daily from satellites, which have become the main sources of the remote-sensing data that swell the archives of the scientifi c community. Th e topic of satellite imagery and its history could fi ll a large number of volumes. Th e goal of this article is to outline certain aspects of satellite remote- sensing history (hitting the highlights, as it were) and, in particular, to focus on some of the innovative satellite imagery that has recently become available. Th e First Earth Imagery Th e fi rst photo of Earth from space was not taken by a satellite, but rather from a German V-2 missile launched from White Sands Missile Range (WSMR) in New Mexico on Oct. 24, 1946. Th e story of that photo is documented in the Smithsonian Air and Space Magazine (www.airspacemag.com/space/the-fi rst-photo- from-space-13721411/). Th e only postal item known to show this rocket-view image is a 65th anniversary cover for the launch of that V2 rocket.
    [Show full text]