Volume 19, Number 1 2012

Total Page:16

File Type:pdf, Size:1020Kb

Volume 19, Number 1 2012 Volume 19, Number 1 OUEST 2012 THE HISTORY OF SPACEFLIGHT QUARTERLY Congratulations and Earthbound Pioneer Good Luck from the (Explorer 6) Prime Launch Team Rockets and the Bumper 8: Red Scare First Launch on Cape Canaveral How General Dynamics Integrated Gemini Memories the Cape Contents Volume 19 • Number 1 2012 3 Letter from the Editor Book Reviews Features 54 Falling Back to Earth: A First Hand Account of the Great Space Race 4 Congratulations and Good Luck from the and the End of the Cold War Prime Launch Team: Book by Mark Albrecht Review by Howard E. McCurdy Astronauts, Technologies, Bureaucrats, and the Grumman Crew at Kennedy Space Center 55 Soviet Robots in the Solar System: By David Clow Mission Technologies and Discoveries Book by Wesley Huntress Jr. and Mikhail Ya. Marov 30 Rockets and the Red Scare: Review by Roger D. Launius Frank Malina and American Missile Development 1936—1954 56 Apollo 12: On the Oceans of Storms By James L. Johnson Book by David M. Harland Review by David West Reynolds 38 Earthbound Pioneer (Explorer 6) By Gideon Marcus 58 Defence and Discovery: Canada’s Military Space Program 1945—1974 49 How General Dynamics Integrated the Cape Book by Andrew B. Godefroy By Tom Leech Review by David Christopher Arnold 59 Psychology of Space Exploration Oral Histories Edited by Douglas A. Vakoch Review by Hunter Hollins 18 Bumper 8: First Launch on Cape Canaveral 60 The Red Rockets’ Glare: Spaceflight By Roger Launius and Lori Walters and the Soviet Imagination 1857—1967 36 Thoughts on the Space Shuttle’s Final Flight Book by Asif A. Siddiqi Review by Roshanna P. Sylvester Archives & Museums 62 Spacesuit: Fashioning Apollo Book by Nicholas de Monchaux 52 Gemini Memories Review by Doug;as N. Lantry 63 Archives and Museums Sacred Space Cover Photo Credit 64 Left. Apollo 5 on the launch pad—Frame ap5-onpad-noID Book by Douglas E. Cowan Credit: The Project Apollo Image Gallery Review by Roger D. Launius Right. Apollo 5 launch—Frame apmisc-S68-19459HR Credit: The Project Apollo Image Gallery Q U E S T 19:1 2012 1 EARTHBOUND PIONEER (EXPLORER 6) By Gideon Marcus 1958.2 3 was essentially conceived in one STL’s next big project involved an marathon meeting in late 1958. STL On 4 October 1957, the Soviet ambitious program of two flights to engineer John Taber recalled his role in Union made history with the launch of Venus—into orbit as permanent satel- that pivotal moment: Sputnik 1, the first artificial satellite. lites, if possible. One was a 36-kg craft Less than a month later, the Soviets launched by the already-proven Thor- When we were trying to get that trounced their own accomplishment by Able. The second, to be launched by the first Explorer 6 together, they hadn't launching a 500-kg capsule, complete new Atlas Able, combined the Able developed a project management with a canine cosmonaut. The free upper stages and the then-unreliable group. There was a big meeting, and world was already two steps behind in Atlas ICBM. These spacecraft were one of the guys, Bill Russell, a fellow the newly-minted “space race.” completely unprecedented. No one had in high middle management, said, Shortly after the launch of Sputnik ever tried communicating with a space- “John, why don't you get this thing 2, engineers at Ramo-Wooldridge (RW), craft over the 40 million-km trek such a going?” I hadn't realized that I could America’s premier ICBM developer, mission would entail. Only the Soviets do that. I didn't know I was supposed conceived a booster system that could had ever launched as massive a satellite to be in charge! So I said, “Okay— beat the Soviets to the next goalpost in as the one that would fly on the Atlas let’s look at this. What kind of the space competition. By mating the Able, at the time expected to weigh over weight can we get into orbit with the Thor IRBM with the second and third 130 kg. By comparison, Pioneer 0-2’s rocket?” and the orbital people stages of the Navy’s Vanguard rocket weight was less than 40 kg. The devel- replied. I asked, “Power people— (together known as, “Able”), STL engi- opment schedule was aggressive. The how much power can you generate?” neers believed the United States could smaller craft was slated to launch on 3 ‘Depends on the weight,’ was the launch a small probe toward, and even June 1959. Its larger sister would blast reply. The experimenters wanted to into orbit, around the Moon. RW spun off on an Atlas Able just four days later. know what the communications data off a division for the project and called it The accelerated timeline was designed rate would be. All of this information Space Technology Laboratories (STL). to take advantage of the favorable was traded off, and we developed a Motivated by the desire to beat the Earth/Venus alignments, which only best guess of what the spacecraft Soviets at their own game, and over- occurred every 19 months. Both space- design would look like. This tradeoff flowing with Air Force funds, within 12 craft would arrive at Venus in November all happened at one meeting, a few months STL had launched three mis- 1959. hours long.4 sions on its Thor-Able booster. None of The Venus probes were so ambi- them made it to the Moon, but the sec- tious that STL decided there was a need The design that came out of the ond of them soared to an altitude of to walk before running. An Earth-orbit- meeting was half revolutionary, half 113,800 km on its 11 October 1958 ing test bed probe was conceived, which evolutionary. Able-3 used the same flight, and the third returned some valu- would carry essentially the same experi- booster as its predecessors. Its experi- able scientific data about the newly dis- ment load-out as Pioneers 0-2, but test mental payload was almost identical to covered belts of ionized particles sur- the Venus probe telemetry and power that of Pioneer 2. In fact, Able-3 was rounding the Earth. systems. The Thor-Able Venus probe viewed as an opportunity to properly Even as the three-mission project would be adapted from the test bed satel- showcase all of the technology that had known as Able-2 (Able-1 was a series of lite.3 This bridge design was called Able- not been fully utilized in the Pioneer pro- Thor-Able nosecone tests launched in 3, and the Venus probe project was gram.5 By November 1958, STL had early 1958) came to an end in November called Able-4. There was no time to accumulated an impressive armory of 1958, plans were already underway for waste, however; Able-3 would be devel- experiments, but none had flown for an even more ambitious successor pro- oped concurrently with Able-4. more than a day. With its long-term, gram, one that would keep the Air Force Able-3, conceived as a bridge, highly eccentric orbit, Able-3 offered the in the civilian satellite launching and became a star in its own right. This arti- perfect opportunity to map the still large- development business.1 Without such a cle is about that inadvertent robotic hero ly unmapped Van Allen Belts of trapped program, it was feared that the military of the early space race. high-energy particles, discovered in would be shut out entirely with the for- January 1958 by Explorer 1. mation of the new National Aeronautics Paddlewheel Probe It was there that the similarities and Space Administration in October The fundamental design for Able- between Able-3 and Able-2 ended. Their Q U E S T 19:1 2012 38 shapes were fundamentally different: Pioneer had been a gem-shaped, battery- powered spacecraft. The 26-inch diame- ter, 29-inch deep Able-3 looked like a windmill or desk fan, with power pro- vided by four paddlewheels, which extended in flight to capture the Sun’s rays and convert them into energy. The paddles were covered with silicon solar energy converter cells manufactured by Hoffman Electronics Corporation, simi- lar to those that had been proven the pre- vious year by Vanguard 1, which was still active at the time Able-3 was being developed. There were 210 modules, each with 100 photoelectric cells, con- verting the Sun’s rays with about 10 per- cent efficiency (far lower than what is achievable today). Each module provid- ed 3/4 watt of power.6 Each photocell was fitted with a glass filter to shield it 7 from UV. STL engineers work testing and integrating Explorer 6 components. To convert the power generated by Courtesy of John Taber. the solar cells into something usable by the spacecraft’s systems, Able-3 used tion. between Able-3 and its predecessors was three static converter power supplies Instead, Able-3 employed a new the way it talked to the world. Every manufactured by the Engineered kind of system: it was studded with satellite has a myriad of data to commu- Magnetics Division of Gulton Industries, dozens of little propeller-shaped devices nicate back to Earth. In addition to based in Metuchen, New Jersey. The painted in alternating black-and-white. results from the suite of experiments, first provided a total of 5.2 watts for 10 Their action was strictly mechanical. As they broadcast data on the voltage and outputs delivered on eight channels.
Recommended publications
  • The Early Explorers by Andrew J
    The Early Explorers by Andrew J. LePage August 8, 1999 Among these programs were the next generation of Introduction Explorer satellites the ABMA was planning. In the chaos that swept the United States after the launching of the first Soviet Sputniks, a variety of The First New Explorers satellite programs was sponsored by the Department The first of the new series of larger Explorer satellites of Defense (DoD) to supplement (and in some cases was the 39.7 kilogram (87.5 pound) satellite NASA supplant) the country's flagging "official" satellite designated as S-1. Built by JPL, the spin stabilized program, Vanguard. One of the stronger programs S-1 consisted of a pair of fiberglass cones joined at was sponsored by the ABMA (Army Ballistic Missile their bases with a diameter and height of 76 Agency) with its engineering team lead by the centimeters each. The scientific payload consisted of German rocket expert, Wernher von Braun. Using instruments to study cosmic rays, solar X-ray and the Juno I launch vehicle, the ABMA team launched ultraviolet emissions, micrometeorites, as well as the America's first satellite, Explorer 1, which was built globe's heat balance. This was all powered by a bank by Caltech's Jet Propulsion Laboratory (JPL) (see of 15 nickel-cadmium batteries recharged by 3,000 Explorer: America's First Satellite in the February solar cells mounted on the satellite's exterior. This 1998 issue of SpaceViews). advanced payload was equipped with a timer to turn itself off after a year in orbit. While these first satellites returned a wealth of new data, they were limited by the tiny 11 kilogram (25 Explorer S-1 was launched from Cape Canaveral on pound) payload capability of the Juno I.
    [Show full text]
  • Mission to Jupiter
    This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines.
    [Show full text]
  • University of Iowa Instruments in Space
    University of Iowa Instruments in Space A-D13-089-5 Wind Van Allen Probes Cluster Mercury Earth Venus Mars Express HaloSat MMS Geotail Mars Voyager 2 Neptune Uranus Juno Pluto Jupiter Saturn Voyager 1 Spaceflight instruments designed and built at the University of Iowa in the Department of Physics & Astronomy (1958-2019) Explorer 1 1958 Feb. 1 OGO 4 1967 July 28 Juno * 2011 Aug. 5 Launch Date Launch Date Launch Date Spacecraft Spacecraft Spacecraft Explorer 3 (U1T9)58 Mar. 26 Injun 5 1(U9T68) Aug. 8 (UT) ExpEloxrpelro r1e r 4 1915985 8F eJbu.l y1 26 OEGxOpl o4rer 41 (IMP-5) 19697 Juunlye 2 281 Juno * 2011 Aug. 5 Explorer 2 (launch failure) 1958 Mar. 5 OGO 5 1968 Mar. 4 Van Allen Probe A * 2012 Aug. 30 ExpPloiorenre 3er 1 1915985 8M Oarc. t2. 611 InEjuxnp lo5rer 45 (SSS) 197618 NAouvg.. 186 Van Allen Probe B * 2012 Aug. 30 ExpPloiorenre 4er 2 1915985 8Ju Nlyo 2v.6 8 EUxpKlo 4r e(rA 4ri1el -(4IM) P-5) 197619 DJuenc.e 1 211 Magnetospheric Multiscale Mission / 1 * 2015 Mar. 12 ExpPloiorenre 5e r 3 (launch failure) 1915985 8A uDge.c 2. 46 EPxpiolonreeerr 4130 (IMP- 6) 19721 Maarr.. 313 HMEaRgCnIe CtousbpeShaetr i(cF oMxu-1ltDis scaatelell itMe)i ssion / 2 * 2021081 J5a nM. a1r2. 12 PionPeioenr e1er 4 1915985 9O cMt.a 1r.1 3 EExpxlpolorerer r4 457 ( S(IMSSP)-7) 19721 SNeopvt.. 1263 HMaalogSnaett oCsupbhee Sriact eMlluitlet i*scale Mission / 3 * 2021081 M5a My a2r1. 12 Pioneer 2 1958 Nov. 8 UK 4 (Ariel-4) 1971 Dec. 11 Magnetospheric Multiscale Mission / 4 * 2015 Mar.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Space Weather Impacts on Satellites at Different Orbits
    Space Weather impacts on satellites at different orbits ! Outline! Prelude" ! Orbits" ! Different types of SWx effects on satellites" ! Satellite anomalies from the recent March 2012 SWx events! Yihua Zheng" June 10, 2013" SW REDI" Internal Use Only" Please do not distribute" 1 1st satellite launched into space" The world's first artificial satellite, the Sputnik 1, was launched by the Soviet Union in 1957. " marking the start of the Space Age" 4 October, 1957! International Geophysical Year: 1957" 2" Space dog - Laika" the occupant of the Soviet spacecraft Sputnik 2 that was launched into outer space on November 3, 1957" Paving the way for human missions" 3" Explorer I – 1st U.S. Satellite" •! Explorer 1, was launched into Earth's orbit on a Jupiter C missile from Cape Canaveral, Florida, on January 31, 1958 - Inner belt" 4" Discovery of the outer Van Allen RB! Pioneer 3 (launched 6 December 1958) and Explorer IV (launched July 26, 1958) both carried instruments designed and built by Dr. Van Allen. These spacecraft provided Van Allen additional data that led to discovery of a second radiation belt" 5 Van Allen Probes – more than half- century later" 6 Orbits" 7" orbits" GEO" Yellow: MEO" Green-dash-dotted line: GPS" Cyan: LEO" Red dotted line: ISS" 8" orbits" 9" Orbits" •! A low Earth orbit (LEO) is generally defined as an orbit below an altitude of 2,000 km. Given the rapid orbital decay of objects below approximately 200 km, the commonly accepted definition for LEO is between 160– 2,000 km (100–1,240 miles) above the Earth's surface." •! Medium Earth orbit (MEO), sometimes called intermediate circular orbit (ICO), is the region of space around the Earth above low Earth orbit (altitude of 2,000 kilometres (1,243 mi)) and below geostationary orbit (altitude of 35,786 km (22,236 mi)).
    [Show full text]
  • Design Principles for Robust Grasping in Unstructured Environments
    Design Principles for Robust Grasping in Unstructured Environments A thesis presented by Aaron Michael Dollar to The Division of Engineering and Applied Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Engineering Sciences Harvard University Cambridge, Massachusetts October 25, 2006 © 2006 Aaron Michael Dollar All rights reserved. Robert D. Howe Aaron Michael Dollar Thesis Advisor Author Design Principles for Robust Grasping in Unstructured Environments Abstract Grasping in unstructured environments is one of the most challenging issues currently facing robotics. The inherent uncertainty about the properties of the target object and its surroundings makes the use of traditional robot hands, which typically involve complex mechanisms, sensing suites, and control, difficult and impractical. In this dissertation I investigate how the challenges associated with grasping under uncertainty can be addressed by careful mechanical design of robot hands. In particular, I examine the role of three characteristics of hand design as they affect performance: passive mechanical compliance, adaptability (or underactuation), and durability. I present design optimization studies in which the kinematic structure, compliance configuration, and joint coupling are varied in order to determine the effect on the allowable error in positioning that results in a successful grasp, while keeping contact forces low. I then describe the manufacture of a prototype hand created using a particularly durable process called polymer-based Shape Deposition Manufacturing (SDM). This process allows fragile sensing and actuation components to be embedded in tough polymers, as well as the creation of heterogeneous parts, eliminating the need for fasteners and seams that are iii often the cause of failure.
    [Show full text]
  • The Birth of Nasa - 1958
    THE BIRTH OF NASA - 1958 Jonathan McDowell Harvard-Smithsonian Center for Astrophysics [email protected] http://www.planet4589.org “In this decade...” May 25, 1961: JFK starts the Moon race. But the Space Age was already in full flow NASA was formed in 1958 The US space effort began long before that Cue the space race... October 1942: First into space America in orbit 1957-1961 Early program run by military and CIA: − US Army (ABMA/Huntsville): Explorer, Pioneer (with JPL) − US Navy (NRL/Washington): Vanguard − US Navy (NOTS/China Lake): “NOTSNIK” − US Air Force (WDD/Los Angeles): Able, Samos, Midas − CIA (Langley): CORONA (Discoverer) NASA formed 1958 for civilian space programs NRO formed 1961 for reconnaissance programs THE ROCKET'S RED GLARE ABMA/JPL Explorer Werner von Braun's stretched V-2 with spinning upper stages from JPL and tiny 4 kg payload Redstone reached apogee, spinning stages fired horizontally to get orbital velocity NRL's Vanguard NRL's Vanguard Bad rep - but stage 2 and 3 used for Delta with success Early launches used 2 kg test satellite - success on 3rd try Standard “Vanguard sphere” was 51cm - 2 of 8 made orbit Some of the Vanguard team went to Goddard to do science satellites, but some stayed at NRL Now we know: the Vanguard 51-cm sphere satellite had a later, secret history NOTSnik - Jul/Aug 1958 NOTS project First air-launched satellite attempt, off California coast Six tries, no confirmed successes 2 types of payload: radiation diagnostics for Argus artificial radiation belts, and infrared scanner instrument.
    [Show full text]
  • An Evaluation of a Passively Cooled Cylindrical Spectrometer Array in Lunar Orbit
    AN EVALUATION OF A PASSIVELY COOLED CYLINDRICAL SPECTROMETER ARRAY IN LUNAR ORBIT by JASON WAGGONER A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering in The Department of Mechanical and Aerospace Engineering to The School of Graduate Studies of The University of Alabama in Huntsville HUNTSVILLE, ALABAMA 2014 ACKNOWLEDGMENTS It cannot be understated how much I have benefitted from the assistance, attention and insight provided by a great deal of people. I always begin by thanking my God who gives me strength and wisdom only to be followed by my patient wife and children. Second, my thesis committee (in particular the chair and advisor) has been unbelievably patient and instructive. As this thesis pushed me in areas in which I have very little experience, my colleagues at work have demonstrated time and again why I am proud to be associated with such wonderful people and competent members of the scientific community. In no particular order of preference I list below the names of those individuals. Brain O’Connor Greg Schunk Deborah Hernandez Shawn Breeding John Sharp Jim Duffy Ron Hunt Patrick Hull Ken Kittredge Jeff Farmer I would also like to mention my immediate supervisors at NASA who allowed me great lee way and were understanding as I completed this thesis. Cynthia Ferguson Chris Coppens Tony Lavoie v TABLE OF CONTENTS Page TABLE OF CONTENTS ............................................................................................... VI LIST OF FIGURES ....................................................................................................
    [Show full text]
  • Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
    dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966­ Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D.
    [Show full text]
  • NASA and Planetary Exploration
    **EU5 Chap 2(263-300) 2/20/03 1:16 PM Page 263 Chapter Two NASA and Planetary Exploration by Amy Paige Snyder Prelude to NASA’s Planetary Exploration Program Four and a half billion years ago, a rotating cloud of gaseous and dusty material on the fringes of the Milky Way galaxy flattened into a disk, forming a star from the inner- most matter. Collisions among dust particles orbiting the newly-formed star, which humans call the Sun, formed kilometer-sized bodies called planetesimals which in turn aggregated to form the present-day planets.1 On the third planet from the Sun, several billions of years of evolution gave rise to a species of living beings equipped with the intel- lectual capacity to speculate about the nature of the heavens above them. Long before the era of interplanetary travel using robotic spacecraft, Greeks observing the night skies with their eyes alone noticed that five objects above failed to move with the other pinpoints of light, and thus named them planets, for “wan- derers.”2 For the next six thousand years, humans living in regions of the Mediterranean and Europe strove to make sense of the physical characteristics of the enigmatic planets.3 Building on the work of the Babylonians, Chaldeans, and Hellenistic Greeks who had developed mathematical methods to predict planetary motion, Claudius Ptolemy of Alexandria put forth a theory in the second century A.D. that the planets moved in small circles, or epicycles, around a larger circle centered on Earth.4 Only partially explaining the planets’ motions, this theory dominated until Nicolaus Copernicus of present-day Poland became dissatisfied with the inadequacies of epicycle theory in the mid-sixteenth century; a more logical explanation of the observed motions, he found, was to consider the Sun the pivot of planetary orbits.5 1.
    [Show full text]
  • Mission Overview the Pioneer Mission Set the Stage for U.S. Space
    Mission Overview The Pioneer mission set the stage for U.S. space exploration. Pioneer 1 was the first manmade object to escape the Earth's gravitational field. Later Pioneer 4 was the first spacecraft to fly to the moon, Pioneer 10 was the first to Jupiter, Pioneer 11 was the first to Saturn and Pioneer 12 was the first U.S. spacecraft to orbit another planet, Venus. The following table summarizes the Pioneer spacecraft and scientific objectives of the Pioneer mission. Name Launch Mission Status (as of 1998) ----------------------------------------------------------------- Pioneer 1 1958-10-11 Moon Reached altitude of 72765 miles Pioneer 2 1958-11-08 Moon Reached altitude of 963 miles Pioneer 3 1958-12-02 Moon Reached altitude of 63580 miles Pioneer 4 1959-03-03 Moon Passed by moon into solar orbit Pioneer 5 1960-03-11 Solar Orbit Entered solar orbit Pioneer 6 1965-12-16 Solar Orbit Still operating Pioneer 7 1966-08-17 Solar Orbit Still operating Pioneer 8 1967-12-13 Solar Orbit Still operating Pioneer 9 1967-11-08 Solar Orbit Signal lost in 1983 Pioneer E 1969-08-07 Solar Orbit Launch failure Pioneer10 1972-03-02 Jupiter Communication terminated 1998 Pioneer11 1972-03-02 Jupiter/Saturn Communication terminated 1997 Pioneer12 1978-05-20 Venus Entered Venus atmos. 1992-10-08 The focus of this document is on Pioneer Venus (12), the last spacecraft in a mission of firsts in space exploration. Probe Separation: Pioneer Venus separated into two spacecraft on Aug 8, 1978: an Orbiter (PVO) and a Multiprobe. The latter was separated into five separate vehicles near Venus.
    [Show full text]
  • UCLA UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title The Effectiveness of EMIC Wave-Driven Relativistic Electron Pitch Angle Scattering in Outer Radiation Belt Depletion Permalink https://escholarship.org/uc/item/6sg911bj Author Adair, Lydia Publication Date 2021 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles The Effectiveness of EMIC Wave-Driven Relativistic Electron Pitch Angle Scattering in Outer Radiation Belt Depletion A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Geophysics and Space Physics by Lydia Alexandra Adair 2021 c Copyright by Lydia Alexandra Adair 2021 ABSTRACT OF THE DISSERTATION The Effectiveness of EMIC Wave-Driven Relativistic Electron Pitch Angle Scattering in Outer Radiation Belt Depletion by Lydia Alexandra Adair Doctor of Philosophy in Geophysics and Space Physics University of California, Los Angeles, 2021 Professor Vassilis Angelopoulos, Chair The dynamic variability of Earth's outer radiation belt is due to the competition among various particle transport, acceleration, and loss processes. The following dissertation inves- tigates electron resonance with Electromagnetic Ion Cyclotron (EMIC) waves as a potentially dominant mechanism driving relativistic electron loss from the radiation belts. EMIC waves have been previously studied as contributors to relativistic electron flux depletion. However, assumed limitations on the pitch angle and energy ranges within which scattering takes place leave uncertainties regarding the capability of the mechanism to explain sudden loss of core electron populations of the outer radiation belt. By introducing new methods to analyze EMIC wave-driven scattering signatures and relativistic electron precipitation events through a multi-point observation approach, this dissertation reveals the effectiveness of EMIC waves to drive losses of outer radiation belt electrons with a new resolution.
    [Show full text]