Response of Energetic Particles to Magnetospheric Ultra-Low-Frequency Waves

Total Page:16

File Type:pdf, Size:1020Kb

Response of Energetic Particles to Magnetospheric Ultra-Low-Frequency Waves KAZUE TAKAHASHI RESPONSE OF ENERGETIC PARTICLES TO MAGNETOSPHERIC ULTRA-LOW-FREQUENCY WAVES Ultra-low-frequency (ULF) waves in the space physics context are the lowest-frequency plasma waves propagating in the Earth's magnetosphere. Although the propagation of the waves is explained in mag­ netohydrodynamic (MHD) theory, excitation of the waves involves not only MHD but also kinetic pro­ cesses. In this article, we describe how in situ magnetic field and particle measurements can be used to distinguish the basic properties of ULF waves, including the azimuthal wave number of the standing wave structure and the propagation direction. Examples are taken from observations with the AMPTE/CCE spacecraft. INTRODUCTION A long time ago it was realized that the geomagnetic perimentally determined. This provides a quantitative ba­ field as observed on the ground exhibits small-amplitude sis for testing various theories of plasma instabilities. oscillations with a period of a few minutes. 1 Since then, In this article we describe how energetic particle data the phenomenon has attracted many researchers and has combined with magnetic field data can be used to under­ been called by several different names, including geo­ stand the properties of ULF waves. In some cases, the magnetic micropulsations, magnetic pulsations, ultra­ particles can be treated separately from the bulk of the low-frequency (ULF) pulsations (i.e., frequencies lower plasma, and can be used as test particles probing the spa­ than 3 Hz), or ULF waves. In 1954, Dungey2 predicted tial and temporal structure of ULF pulsations. In that that the oscillations originate in the magnetosphere as case, the type of wave-particle interactions critically de­ magnetohydrodynamic (MHD) waves. As soon as satel­ pends on the spatial structure of ULF waves. We show lite measurements of the Earth's magnetic fields became examples of wave-particle interactions from data ac­ available, this theoretical prediction was confirmed. 3 quired by the Active Magnetospheric Particle Tracer Ex­ Nowadays, magnetometers on scientific satellites routine­ plorers/Charge Composition Explorer (AMPTE/ CCE) ly detect ULF pulsations in the magnetosphere. spacecraft and demonstrate that from single spacecraft While the propagation of ULF waves in the magneto­ measurements of particle fluxes we can infer the spatial sphere can be explained in terms of MHO, the mechan­ structure of ULF waves. The organization of this article isms for exciting the waves are not fully understood. is as follows: In the following section, the general theory Thus a great deal of effort is still being expended, both of ULF waves and the behavior of energetic particles are in observation and in theory, to identify the excitation outlined. Then the magnetic field and particle experi­ mechanisms. One class of pulsations can be generated ments on AMPTE/ CCE are described. Finally, examples from external sources such as the Kelvin-Helmholtz in­ of ion flux oscillations are illustrated. stability on the magnetopause,4,5 and other class of pul­ STANDING WAVES AND MOTION sations can be generated by plasma instabilities in the 6 OF ENERGETIC PARTICLES magnetosphere. ,7 However, the basic distinguishing properties of the waves (such as wave number and prop­ Magnetohydrodynamics describes the fluid-like be­ agation direction) are not easily determined from obser­ havior of a plasma at frequencies lower than the ion cy­ vation. One experimental difficulty is that ULF waves are clotron frequency, which is about 1 Hz or higher in the of large scale, often comparable to the dimension of the Earth's magnetosphere. Magnetohydrodynamics allows magnetosphere itself, while spacecraft measurements are propagation of both compressional waves, called fast­ made at one point or perhaps at a half-dozen points in mode waves, and transverse waves, called Alfven waves. the entire magnetosphere. The fast-mode waves propagate across the ambient geo­ One major scientific motivation for studying magneto­ magnetic field and transfer wave energy between differ­ spheric ULF waves is that a detailed comparison is pos­ ent magnetic shells. The Alfven waves, in contrast, prop­ sible between plasma theory and observation in the mag­ agate along geomagnetic field lines. Because the iono­ netospheric environment. Unlike laboratory plasmas, the sphere is a good reflector for Alfven waves that are in­ magnetospheric plasma is free of walls or disturbances cident from the magnetosphere, the energy of plasma from diagnostic tools (spacecraft). In addition, the wave and field perturbations propagating in the Alfven mode frequency can be very low, so that particle distributions is reflected back and forth between the northern and in phase space at different oscillation phases can be ex- southern ends of geomagnetic field lines. As a conse- Johns Hopkins APL Technical Digest, Volume 11 , Numbers 3 and 4 (1990) 255 K. Takahashi quence, ULF disturbances tend to establish standing N Alfven waves, as was predicted by Dungey.2 The waves are in a sense analogous to the vibration of a string fixed at both ends. In MHD, the restoring force (tension) is provided by the Maxwell stress of the geomagnetic field. The two lowest-order modes of the standing waves are illustrated in Figure 1. The fundamental mode has an antinode of field line displacement at the equator. Because the transverse magnetic field perturbation, S DB 1. , is proportional to the local tilt angle of the dis­ placed field line, bB 1. has a node at the equator. For Symmetric wave Antisymmetric wave the second harmonic, the field displacement is null at (fundamental) (second harmonic) the equator, while bB 1. has an antinode there. The fre­ N quency of a standing Alfven wave is given approximately I by the fundamental frequency fA = (Jds / VA) - I, or by I its harmonic, where VA is the Alfven velocity and ds I is the line element along a geomagnetic field line, and -+- E the integral is taken over a return path from the southern I end to the northern end of the field line. The Alfven I velocity is given by VA = B/(4'Trp) Yz , where B is the I I field line intensity and p is the plasma mass density. S Therefore, the standing wave frequency, fA, depends Figure 1. Schematic of standing waves on a geomagnetic field on both Band p, as well as on the length of the geo­ line. For simplicity, the curved geomagnetic field line is magnetic field line. It must be mentioned that waves ex­ represented by a straight field string with ends fixed. The fun­ cited in a hot plasma often exhibit a strong compres­ damental mode has maximum displacement at the equator. The sional component. In that case, the waves cannot be a second harmonic has null displacement at the equator. pure Alfven mode. There is strong coupling, however, between compressional waves and Alfven waves, and the wave reflection at the ionosphere leads to standing struc­ where M is the particle mass, v is the particle velocity, tures even for the mixed-mode waves. 8 and q is the electric charge. In the absence of temporal Very clear evidence for the standing waves has been variations in E and B, particle motion in a dipole geo­ obtained from dynamic spectra of magnetic field mea­ magnetic field is composed of gyromotion, bounce mo­ surements from Earth-orbiting satellites. 9 Example tion, and drift motion of the guiding center, as illustrated spectra from four consecutive inbound passes of AMPTEI in Figure 3. The circular motion of particles about the CCE are shown in Figure 2. Power spectral density rela­ magnetic field that arises from the magnetic part of the tive to the background, which is defined by a best-fit Lorenz force qv x B is called the gyromotion. The peri­ second-order polynomial to the original spectrum, is dis­ od of the gyromotion (called the gyroperiod), 27rM/qB, played by color, with blue, green, yellow, and red indi­ does not depend on energy for nonrelativistic particles. cating increasingly high power levels. Each color-coded For a magnetic field of 100 nT, which is typical at geo­ spectrum shows a frequency structure of the azimuthal stationary orbit, the proton gyroperiod is 0.7 s. The guid­ magnetic field oscillation as a function of geocentric dis­ ing center is the instantaneous center of the gyromotion, tance, L, measured in units of Earth radii (R E ). The and its bounce and drift motions arise from the dipole clearly visible red traces correspond to the fundamental configuration of the geomagnetic field. The former arises and the third-harmonic standing Alfven waves on the because the magnetic field lines converging at higher lati­ local geomagnetic field line. The frequency decrease with tudes push particles back to the equator. The latter arises L is caused by a rapid decrease of magnetic field mag­ because the curvature of the field lines gives a centrifugal nitude with distance. force for the guiding center and also because the radial In addition to the magnetic pulsation, an electric field gradient of B leads to displacement of the guiding center oscillation given by E = - V x B accompanies an at consecutive gyrations. The speed of the guiding center Alfven wave, where E is the electric field, V is the plasma motions depends on particle energy. For example, the bulk velocity, and B is the magnetic field. Because mea­ bounce period and the drift period (the time interval that surements of ULF electric fields are more difficult than it takes a guiding center to complete an azimuthal rota­ magnetic field measurements, the presence of a ULF wave tion about the Earth) at geostationary altitude are is usually determined by magnetic field experiments. -120 sand -8 h for 10-keV protons and -40 sand Many magnetic pulsations accompany particle flux os­ - 50 min for l00-keV protons.
Recommended publications
  • The Early Explorers by Andrew J
    The Early Explorers by Andrew J. LePage August 8, 1999 Among these programs were the next generation of Introduction Explorer satellites the ABMA was planning. In the chaos that swept the United States after the launching of the first Soviet Sputniks, a variety of The First New Explorers satellite programs was sponsored by the Department The first of the new series of larger Explorer satellites of Defense (DoD) to supplement (and in some cases was the 39.7 kilogram (87.5 pound) satellite NASA supplant) the country's flagging "official" satellite designated as S-1. Built by JPL, the spin stabilized program, Vanguard. One of the stronger programs S-1 consisted of a pair of fiberglass cones joined at was sponsored by the ABMA (Army Ballistic Missile their bases with a diameter and height of 76 Agency) with its engineering team lead by the centimeters each. The scientific payload consisted of German rocket expert, Wernher von Braun. Using instruments to study cosmic rays, solar X-ray and the Juno I launch vehicle, the ABMA team launched ultraviolet emissions, micrometeorites, as well as the America's first satellite, Explorer 1, which was built globe's heat balance. This was all powered by a bank by Caltech's Jet Propulsion Laboratory (JPL) (see of 15 nickel-cadmium batteries recharged by 3,000 Explorer: America's First Satellite in the February solar cells mounted on the satellite's exterior. This 1998 issue of SpaceViews). advanced payload was equipped with a timer to turn itself off after a year in orbit. While these first satellites returned a wealth of new data, they were limited by the tiny 11 kilogram (25 Explorer S-1 was launched from Cape Canaveral on pound) payload capability of the Juno I.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • EHC 238 Front Pages Final.Fm
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the International Commission of Non- Ionizing Radiation Protection, the International Labour Organization, or the World Health Organization. Environmental Health Criteria 238 EXTREMELY LOW FREQUENCY FIELDS Published under the joint sponsorship of the International Labour Organization, the International Commission on Non-Ionizing Radiation Protection, and the World Health Organization. WHO Library Cataloguing-in-Publication Data Extremely low frequency fields. (Environmental health criteria ; 238) 1.Electromagnetic fields. 2.Radiation effects. 3.Risk assessment. 4.Envi- ronmental exposure. I.World Health Organization. II.Inter-Organization Programme for the Sound Management of Chemicals. III.Series. ISBN 978 92 4 157238 5 (NLM classification: QT 34) ISSN 0250-863X © World Health Organization 2007 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e- mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Applied Engineering Using Schumann Resonance for Earthquakes Monitoring
    applied sciences Article Applied Engineering Using Schumann Resonance for Earthquakes Monitoring Jose A. Gazquez 1,2, Rosa M. Garcia 1,2, Nuria N. Castellano 1,2 ID , Manuel Fernandez-Ros 1,2 ID , Alberto-Jesus Perea-Moreno 3 ID and Francisco Manzano-Agugliaro 1,* ID 1 Department Engineering, University of Almeria, CEIA3, 04120 Almeria, Spain; [email protected] (J.A.G.); [email protected] (R.M.G.); [email protected] (N.N.C.); [email protected] (M.F.-R.) 2 Research Group of Electronic Communications and Telemedicine TIC-019, 04120 Almeria, Spain 3 Department of Applied Physics, University of Cordoba, CEIA3, Campus de Rabanales, 14071 Córdoba, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-950-015396; Fax: +34-950-015491 Received: 14 September 2017; Accepted: 25 October 2017; Published: 27 October 2017 Abstract: For populations that may be affected, the risks of earthquakes and tsunamis are a major concern worldwide. Therefore, early detection of an event of this type in good time is of the highest priority. The observatories that are capable of detecting Extremely Low Frequency (ELF) waves (<300 Hz) today represent a breakthrough in the early detection and study of such phenomena. In this work, all earthquakes with tsunami associated in history and all existing ELF wave observatories currently located worldwide are represented. It was also noticed how the southern hemisphere lacks coverage in this matter. In this work, the most suitable locations are proposed to cover these geographical areas. Also, ELF data processed obtained from the observatory of the University of Almeria in Calar Alto, Spain are shown.
    [Show full text]
  • The Birth of Nasa - 1958
    THE BIRTH OF NASA - 1958 Jonathan McDowell Harvard-Smithsonian Center for Astrophysics [email protected] http://www.planet4589.org “In this decade...” May 25, 1961: JFK starts the Moon race. But the Space Age was already in full flow NASA was formed in 1958 The US space effort began long before that Cue the space race... October 1942: First into space America in orbit 1957-1961 Early program run by military and CIA: − US Army (ABMA/Huntsville): Explorer, Pioneer (with JPL) − US Navy (NRL/Washington): Vanguard − US Navy (NOTS/China Lake): “NOTSNIK” − US Air Force (WDD/Los Angeles): Able, Samos, Midas − CIA (Langley): CORONA (Discoverer) NASA formed 1958 for civilian space programs NRO formed 1961 for reconnaissance programs THE ROCKET'S RED GLARE ABMA/JPL Explorer Werner von Braun's stretched V-2 with spinning upper stages from JPL and tiny 4 kg payload Redstone reached apogee, spinning stages fired horizontally to get orbital velocity NRL's Vanguard NRL's Vanguard Bad rep - but stage 2 and 3 used for Delta with success Early launches used 2 kg test satellite - success on 3rd try Standard “Vanguard sphere” was 51cm - 2 of 8 made orbit Some of the Vanguard team went to Goddard to do science satellites, but some stayed at NRL Now we know: the Vanguard 51-cm sphere satellite had a later, secret history NOTSnik - Jul/Aug 1958 NOTS project First air-launched satellite attempt, off California coast Six tries, no confirmed successes 2 types of payload: radiation diagnostics for Argus artificial radiation belts, and infrared scanner instrument.
    [Show full text]
  • Through-The-Earth Electromagnetic Trapped Miner Location Systems. a Review
    Open File Report: 127-85 THROUGH-THE-EARTH ELECTROMAGNETIC TRAPPED MINER LOCATION SYSTEMS. A REVIEW By Walter E. Pittman, Jr., Ronald H. Church, and J. T. McLendon Tuscaloosa Research Center, Tuscaloosa, Ala. UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF MINES Research at the Tuscaloosa Research Center is carried out under a memorandum of agreement between the Bureau of Mines, U. S. Department of the Interior, and the University of Alabama. CONTENTS .Page List of abbreviations ............................................. 3 Abstract .......................................................... 4 Introduction ...................................................... 4 Early efforts at through-the-earth communications ................. 5 Background studies of earth electrical phenomena .................. 8 ~ationalAcademy of Engineering recommendations ................... 10 Theoretical studies of through-the-earth transmissions ............ 11 Electromagnetic noise studies .................................... 13 Westinghouse - Bureau of Mines system ............................ 16 First phase development and testing ............................. 16 Second phase development and testing ............................ 17 Frequency-shift keying (FSK) beacon signaler .................... 19 Anomalous effects ................................................ 20 Field testing and hardware evolution .............................. 22 Research in communication techniques .............................. 24 In-mine communication systems ....................................
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • The Effect of the Ionosphere on Ultra-Low-Frequency Radio-Interferometric Observations? F
    A&A 615, A179 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833012 & © ESO 2018 Astrophysics The effect of the ionosphere on ultra-low-frequency radio-interferometric observations? F. de Gasperin1,2, M. Mevius3, D. A. Rafferty2, H. T. Intema1, and R. A. Fallows3 1 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] 2 Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany 3 ASTRON – the Netherlands Institute for Radio Astronomy, PO Box 2, 7990 AA Dwingeloo, The Netherlands Received 13 March 2018 / Accepted 19 April 2018 ABSTRACT Context. The ionosphere is the main driver of a series of systematic effects that limit our ability to explore the low-frequency (<1 GHz) sky with radio interferometers. Its effects become increasingly important towards lower frequencies and are particularly hard to calibrate in the low signal-to-noise ratio (S/N) regime in which low-frequency telescopes operate. Aims. In this paper we characterise and quantify the effect of ionospheric-induced systematic errors on astronomical interferometric radio observations at ultra-low frequencies (<100 MHz). We also provide guidelines for observations and data reduction at these frequencies with the LOw Frequency ARray (LOFAR) and future instruments such as the Square Kilometre Array (SKA). Methods. We derive the expected systematic error induced by the ionosphere. We compare our predictions with data from the Low Band Antenna (LBA) system of LOFAR. Results. We show that we can isolate the ionospheric effect in LOFAR LBA data and that our results are compatible with satellite measurements, providing an independent way to measure the ionospheric total electron content (TEC).
    [Show full text]
  • ESWW7 Abstract Book.Pdf
    2 Table of Contents Committees ......................................................................................................................................................4 Sponsors ...........................................................................................................................................................5 Programme Monday, 15 November 2010...............................................................................................................6 Tuesday, 16 November 2010...............................................................................................................9 Wednesday, 17 November 2010 .......................................................................................................11 Thursday, 18 November 2010 ...........................................................................................................13 Friday, 19 November 2010 ................................................................................................................15 Poster Sessions ..................................................................................................................................17 Abstracts.........................................................................................................................................................25 3 Committees Programme Committee A. Belehaki (Co‐Chair, NOA & COST ES0803) A. Glover (Co‐Chair, ESA) M. Hapgood (RAL/STFC, SWWT) J.‐P. Luntama (ESA) R. Van der Linden (SIDC‐STCE) P. Vanlommel (STCE) T.
    [Show full text]
  • Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)
    Space Sci Rev DOI 10.1007/s11214-013-9965-x Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) D.G. Mitchell · L.J. Lanzerotti · C.K. Kim · M. Stokes · G. Ho · S. Cooper · A. Ukhorskiy · J.W. Manweiler · S. Jaskulek · D.K. Haggerty · P. Brandt · M. Sitnov · K. Keika · J.R. Hayes · L.E. Brown · R.S. Gurnee · J.C. Hutcheson · K.S. Nelson · N. Paschalidis · E. Rossano · S. Kerem Received: 30 June 2012 / Accepted: 1 February 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com Abstract The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Pro- gram: RBSPICE will determine “how space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations,” and how the ring current is involved in radiation belt losses. RBSPICE is a time-of-flight versus total energy instrument that measures ions over the energy range from ∼20 keV to ∼1 MeV. RBSPICE will also measure electrons over the energy range ∼25 keV to ∼1 MeV in order to provide instrument background information in the radiation belts. A description of the instrument and its data products are provided in this chapter. Keywords Magnetosphere · Ring current · Time-of-flight · Radiation belt · Space weather 1 Introduction The idea, or concept, of a “ring current” around Earth and its association with geomagnetic storms began in the early days of the twentieth century.
    [Show full text]
  • ESRO SP-72 European Space Research Organisation
    ESRO SP-72 I. Proc. ESRO-GRI ESRO SP-72 I. Proc ESRO-GRI European Space Research Organisation Colloquium March 1971 European Space Research Organisation Colloquium March 1971 COLLOQUIUM ON WAVE-PARTICLE INTER­ II. ESRO SP-72 COLLOQUIUM ON WAVE-PARTICLE INTER­ II. ESRO SP-72 ACTIONS IN THE MAGNETOSPHERE HI. Texts in English ACTIONS IN THE MAGNETOSPHERE III. Texts in English September 1971 September 1971 iv + 284 pages iv + 284 pages The Colloquium on wave-particle interactions in the magnetosphere held in The Colloquium on wave-particle interactions in the magnetosphere held in Orleans (March 17-19,1971) intended to review the outstanding problems still unsolved Orleans (March 17-19, 1971) intended to review the outstanding problems still unsolved in this field : in this field : — large-scale dynamics of the magnetosphere; — large-scale dynamics of the magnetosphere; — distribution of 'Oasma parameters; — distribution of plasma parameters; — decoupling of n..gnetospheric from ionospheric plasma; — decoupling of magnetospheric from ionospheric plasma; — acceleration and convection mechanisms; — acceleration and convection mechanisms; — substorms; — substorms; — polar wind..., — polar wind..., as well as the theoretical and experimental work needed to solve these problems in the as well as the theoretical and experimental work needed to solve these problems in the light of previous experiments (rocket launchings in auroral zone, Ariel 3 satellite...) light of previous experiments (rocket launchings in auroral zone, Ariel 3 satellite...) and of technical achievements (onboard computers, new sensors...). and of technical achievements (onboard computers, new sensors...). Ensuing discussions attempted to define types of missions which could be carried Ensuing discussions attempted to define types of missions which could be carried out in the future by the Small Scientific Satellites now being considered by ESRO.
    [Show full text]
  • <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA
    1 SATELITES ARTIFICIALES. Capítulo 5º Subcap. 10 <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA TIERRA. Esta es una relación cronológica de todos los lanzamientos de satélites artificiales de nuestro planeta, con independencia de su éxito o fracaso, tanto en el disparo como en órbita. Significa pues que muchos de ellos no han alcanzado el espacio y fueron destruidos. Se señala en primer lugar (a la izquierda) su nombre, seguido de la fecha del lanzamiento, el país al que pertenece el satélite (que puede ser otro distinto al que lo lanza) y el tipo de satélite; este último aspecto podría no corresponderse en exactitud dado que algunos son de finalidad múltiple. En los lanzamientos múltiples, cada satélite figura separado (salvo en los casos de fracaso, en que no llegan a separarse) pero naturalmente en la misma fecha y juntos. NO ESTÁN incluidos los llevados en vuelos tripulados, si bien se citan en el programa de satélites correspondiente y en el capítulo de “Cronología general de lanzamientos”. .SATÉLITE Fecha País Tipo SPUTNIK F1 15.05.1957 URSS Experimental o tecnológico SPUTNIK F2 21.08.1957 URSS Experimental o tecnológico SPUTNIK 01 04.10.1957 URSS Experimental o tecnológico SPUTNIK 02 03.11.1957 URSS Científico VANGUARD-1A 06.12.1957 USA Experimental o tecnológico EXPLORER 01 31.01.1958 USA Científico VANGUARD-1B 05.02.1958 USA Experimental o tecnológico EXPLORER 02 05.03.1958 USA Científico VANGUARD-1 17.03.1958 USA Experimental o tecnológico EXPLORER 03 26.03.1958 USA Científico SPUTNIK D1 27.04.1958 URSS Geodésico VANGUARD-2A
    [Show full text]