Through-The-Earth Electromagnetic Trapped Miner Location Systems. a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Auroral Hiss Emissions During Cassini's Grand Finale
Geophysical Research Letters RESEARCH LETTER Auroral Hiss Emissions During Cassini’s Grand 10.1029/2018GL077875 Finale: Diverse Electrodynamic Interactions Special Section: Between Saturn and Its Rings Cassini's Final Year: Science Highlights and Discoveries A. H. Sulaiman1 , W. S. Kurth1 , G. B. Hospodarsky1 , T. F. Averkamp1 , A. M. Persoon1 , J. D. Menietti1 , S.-Y. Ye1 , D. A. Gurnett1 ,D.Píša2 , W. M. Farrell3 , and M. K. Dougherty4 Key Points: 1Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA, 2Institute of Atmospheric Physics CAS, • Striking auroral hiss emissions are 3 4 observed in Saturn’s southern Prague, Czech Republic, NASA/Goddard Space Flight Center, Greenbelt, Maryland, USA, Blackett Laboratory, Imperial hemisphere College London, London, UK • Ray tracing analysis confirms that auroral hiss emissions originate from the rings Abstract The Cassini Grand Finale orbits offered a new view of Saturn and its environment owing to • We report the first observations of VLF saucers directly associated with multiple highly inclined orbits with unprecedented proximity to the planet during closest approach. The Saturn’s ionosphere Radio and Plasma Wave Science instrument detected striking signatures of plasma waves in the southern hemisphere. These all propagate in the whistler mode and are classified as (1) a filled funnel-shaped emission, commonly known as auroral hiss. Here however, our analysis indicates that they are likely associated with Correspondence to: currents connected to the rings. (2) First observations of very low frequency saucers directly linked to the A. H. Sulaiman, planet on field lines also connected to the rings. The latter observations are unique to low altitude orbits, and [email protected] their presence at the Earth and Saturn alike shows that they are fundamental plasma waves in planetary ionospheres. -
Wheeler River Project Provincial Technical Proposal and Federal Project Description
Wheeler River Project Provincial Technical Proposal and Federal Project Description Denison Mines Corp. May 2019 WHEELER RIVER PROJECT TECHNICAL PROPOSAL & PROJECT DESCRIPTION Wheeler River Project Provincial Technical Proposal and Federal Project Description Project Summary English – Page ii French – Page x Dene – Page xx Cree – Page xxviii PAGE i WHEELER RIVER PROJECT TECHNICAL PROPOSAL & PROJECT DESCRIPTION Summary Wheeler River Project The Wheeler River Project (Wheeler or the Project) is a proposed uranium mine and processing plant in northern Saskatchewan, Canada. It is located in a relatively undisturbed area of the boreal forest about 4 km off of Highway 914 and approximately 35 km north-northeast of the Key Lake uranium operation. Wheeler is a joint venture project owned by Denison Mines Corp. (Denison) and JCU (Canada) Exploration Company Ltd. (JCU). Denison owns 90% of Wheeler and is the operator, while JCU owns 10%. Denison is a uranium exploration and development company with interests focused in the Athabasca Basin region of northern Saskatchewan, Canada with a head office in Toronto, Ontario and technical office in Saskatoon, Saskatchewan. Historically Denison has had over 50 years of uranium mining experience in Saskatchewan, Elliot Lake, Ontario, and in the United States. Today, the company is part owner (22.5%) of the McClean Lake Joint Venture which includes the operating McClean Lake uranium mill in northern Saskatchewan. To advance the Project, Denison is applying an innovative approach to uranium mining in Canada called in situ recovery (ISR). The use of ISR mining at Wheeler means that there will be no need for a large open pit mining operation or multiple shafts to access underground mine workings; no workers will be underground as the ISR process is conducted from surface facilities. -
EHC 238 Front Pages Final.Fm
This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the International Commission of Non- Ionizing Radiation Protection, the International Labour Organization, or the World Health Organization. Environmental Health Criteria 238 EXTREMELY LOW FREQUENCY FIELDS Published under the joint sponsorship of the International Labour Organization, the International Commission on Non-Ionizing Radiation Protection, and the World Health Organization. WHO Library Cataloguing-in-Publication Data Extremely low frequency fields. (Environmental health criteria ; 238) 1.Electromagnetic fields. 2.Radiation effects. 3.Risk assessment. 4.Envi- ronmental exposure. I.World Health Organization. II.Inter-Organization Programme for the Sound Management of Chemicals. III.Series. ISBN 978 92 4 157238 5 (NLM classification: QT 34) ISSN 0250-863X © World Health Organization 2007 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e- mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Applied Engineering Using Schumann Resonance for Earthquakes Monitoring
applied sciences Article Applied Engineering Using Schumann Resonance for Earthquakes Monitoring Jose A. Gazquez 1,2, Rosa M. Garcia 1,2, Nuria N. Castellano 1,2 ID , Manuel Fernandez-Ros 1,2 ID , Alberto-Jesus Perea-Moreno 3 ID and Francisco Manzano-Agugliaro 1,* ID 1 Department Engineering, University of Almeria, CEIA3, 04120 Almeria, Spain; [email protected] (J.A.G.); [email protected] (R.M.G.); [email protected] (N.N.C.); [email protected] (M.F.-R.) 2 Research Group of Electronic Communications and Telemedicine TIC-019, 04120 Almeria, Spain 3 Department of Applied Physics, University of Cordoba, CEIA3, Campus de Rabanales, 14071 Córdoba, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-950-015396; Fax: +34-950-015491 Received: 14 September 2017; Accepted: 25 October 2017; Published: 27 October 2017 Abstract: For populations that may be affected, the risks of earthquakes and tsunamis are a major concern worldwide. Therefore, early detection of an event of this type in good time is of the highest priority. The observatories that are capable of detecting Extremely Low Frequency (ELF) waves (<300 Hz) today represent a breakthrough in the early detection and study of such phenomena. In this work, all earthquakes with tsunami associated in history and all existing ELF wave observatories currently located worldwide are represented. It was also noticed how the southern hemisphere lacks coverage in this matter. In this work, the most suitable locations are proposed to cover these geographical areas. Also, ELF data processed obtained from the observatory of the University of Almeria in Calar Alto, Spain are shown. -
TITLE PAGE.Wpd
Proceedings of BAT GATE DESIGN: A TECHNICAL INTERACTIVE FORUM Held at Red Lion Hotel Austin, Texas March 4-6, 2002 BAT CONSERVATION INTERNATIONAL Edited by: Kimery C. Vories Dianne Throgmorton Proceedings of Bat Gate Design: A Technical Interactive Forum Proceedings of Bat Gate Design: A Technical Interactive Forum held March 4 -6, 2002 at the Red Lion Hotel, Austin, Texas Edited by: Kimery C. Vories Dianne Throgmorton Published by U.S. Department of Interior, Office of Surface Mining, Alton, Illinois and Coal Research Center, Southern Illinois University, Carbondale, Illinois U.S. Department of Interior, Office of Surface Mining, Alton, Illinois Coal Research Center, Southern Illinois University, Carbondale, Illinois Copyright 2002 by the Office of Surface Mining. All rights reserved. Printed in the United States of America 8 7 6 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data Bat Gate Design: A Technical Interactive Forum (2002: Austin, Texas) Proceedings of Bat Gate Design: Red Lion Hotel, Austin, Texas, March 4-6, 2002/ edited by Kimery C. Vories, Dianne Throgmorton; sponsored by U.S. Dept. of the Interior, Office of Surface Mining and Fish and Wildlife Service, Bat Conservation International, the National Cave and Karst Management Symposium, USDA Natural Resources Conservation Service, the National Speleological Society, Texas Parks and Wildlife, the Lower Colorado River Authority, the Indiana Karst Conservancy, and Coal Research Center, Southern Illinois University at Carbondale. p. cm. Includes bibliographical references. ISBN 1-885189-05-2 1. Bat ConservationBUnited States Congresses. 2. Bat Gate Design BUnited States Congresses. 3. Cave Management BUnited State Congresses. 4. Strip miningBEnvironmental aspectsBUnited States Congresses. -
Incident Report for 2011
British Cave Rescue Council The representative body for voluntary underground rescue in the British Isles Incident Report for Period 1st January 2011 - 31st December 2011 (4) (5) Cave Rescue Organisation Rescue Cave Cornwall Rescue & Search Cumbria Mines Ore RU CRO Derbyshire CRO Devon CRG Gloucestershire Irish CRO Rescue Mendip Cave Midlands CRO CRO Wales North CRO Scottish SouthCRO East South & Mid CRT Wales Swaledale Mountain Rescue FRA Wharfedale Upper TOTALS Caving Incidents 11 - - 4 1 2 2 6 1 1 1 - 6 - 0 35 Assisting Authorities(3) - 2 - 5 - 1 - - - - - - 1 - - 9 Persons Assisted 23 - - 8 1 3 2 10 1 1 1 - 19 - 0 69 Fatalities 0 - - 0 0 0 1 0 0 0 0 - 5 - 0 6 Persons Injured(1) 5 - - 4 1 0 - 4 1 1 1 - 1 - 0 18 Helicopter assistance (2) 2 - - 0 0 0 - 0 0 0 0 - - - 0 2 Animal Incidents 6 1(5) - 2 0 - 1 0 0 3 0 - - - 0 13 Assistance to other teams 0 - - 0 0 3 - 0 0 0 0 - - - 2 - Totals Underground Incidents 17 3 - 11 1 6 3 6 1 4 1 - 7 - 2 57 ‘Surface Incidents’ include fell/moorland rescues and searches. Teams, chiefly although not exclusively in the north, carry out these duties as part of their normal workload. These incidents are usually recorded in the Mountain Rescue (England & Wales) Incident Report for 2011. Surface Incidents 65 39 - - - - - - - - - - 2 25 36 167 Persons Assisted 90 6 - - - - - - - - - 5 25 26 152 Fatalities 2 1 - - - - - - - - - 4 2 5 14 Persons Injured 45 5 - - - - - - - - - 0 13 18 81 Surface Animal Incidents - - - - - - - - - - - - - - 0 Assistance to other teams - - - - - - - - - - - - - - 0 Totals Surface Incidents 65 39 - - - - - - - - - 2 25 36 128 Notes: 1. -
The Effect of the Ionosphere on Ultra-Low-Frequency Radio-Interferometric Observations? F
A&A 615, A179 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833012 & © ESO 2018 Astrophysics The effect of the ionosphere on ultra-low-frequency radio-interferometric observations? F. de Gasperin1,2, M. Mevius3, D. A. Rafferty2, H. T. Intema1, and R. A. Fallows3 1 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] 2 Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany 3 ASTRON – the Netherlands Institute for Radio Astronomy, PO Box 2, 7990 AA Dwingeloo, The Netherlands Received 13 March 2018 / Accepted 19 April 2018 ABSTRACT Context. The ionosphere is the main driver of a series of systematic effects that limit our ability to explore the low-frequency (<1 GHz) sky with radio interferometers. Its effects become increasingly important towards lower frequencies and are particularly hard to calibrate in the low signal-to-noise ratio (S/N) regime in which low-frequency telescopes operate. Aims. In this paper we characterise and quantify the effect of ionospheric-induced systematic errors on astronomical interferometric radio observations at ultra-low frequencies (<100 MHz). We also provide guidelines for observations and data reduction at these frequencies with the LOw Frequency ARray (LOFAR) and future instruments such as the Square Kilometre Array (SKA). Methods. We derive the expected systematic error induced by the ionosphere. We compare our predictions with data from the Low Band Antenna (LBA) system of LOFAR. Results. We show that we can isolate the ionospheric effect in LOFAR LBA data and that our results are compatible with satellite measurements, providing an independent way to measure the ionospheric total electron content (TEC). -
A.C./D.C. Atmospheric Global Electric Circuit Phenomena
A.C./D.C. Atmospheric Global Electric Circuit Phenomena M. J. Rycroft R. G. Harrison CAESAR Consultancy, Department of Meteorology, 35 Millington Road, University of Reading, Cambridge CB3 9HW, U. K. Reading RG6 6BB, U. K. [email protected] [email protected] Abstract—We review the global circuit driven by thunderstorms known as column sprites and carrot sprites, which may occur and electrified rain clouds. With the ionosphere at an above an active thunderstorm ~ 1ms after a large positive equipotential of ~ +250kV with respect to the Earth, the load in cloud-to-ground lightning flash - see Fullekrug et al. [9]. They the circuit is the fair weather atmosphere; its conductivity is showed a sprite alters the ionospheric potential by only ~ 1V. mainly determined by the flux of galactic cosmic rays. The circuit exhibits variability in both space and time by more than fifteen orders of magnitude. We discuss results produced by a new II. SOME NEW THOUGHTS ON THE GLOBAL CIRCUIT electrical engineering analogue model of the circuit constructed A principal feature of the global circuit is the enormous using the PSpice software package. Finally, we consider several range of spatial scales that is inherent in the many phenomena interesting new experimental observations relating to the topic. being considered. These aspects are illustrated as a function of altitude in Fig. 1, where words in black indicate physical Keywords-analogue model, atmospheric conductivity profile, features and words in blue indicate regions where interesting global circuit, ionosphere, key results, thunderstorms,variability physical phenomena occur. Here CCNs refer to cloud condensation nuclei, SC to stratocumulus clouds, TCs to I. -
Department of Mining Engineering Mining.Mines.Edu
DEPARTMENT OF MINING ENGINEERING MINING.MINES.EDU Mines has been ranked as the #1 mining school in the world by the QS World University Rankings since 2015. Stewards of Earth resources degrees offered The Department of Mining Engineering focuses on training engineers w ith a strong Courses include hands-on labs and engineering background w ho understand the geology of ore deposits and best presentations by industry partners. methods for safe and environmentally sound extraction of minerals. As stewards of Mining Engineering natural resources, graduates learn to provide supply of critical resources, minerals and Bachelor?s, master's and raw materials for economic grow th and sustainability of society in a circular economy. PhD offered Underground Const ruct ion student-led organizations and Tunnel Engineering Master?s and PhD offered - Society for Mining, Metallurgy and Exploration (SME) Eart h Resource - International Society of Explosives Development Engineering Engineers (ISEE) Master?s and PhD offered - Society of Women Engineers (SW E) - Women In Mining (W IM) minors - Mine Rescue Team featuring national Mining Engineering competitions + - International Mining Games featuring Explosives Engineering international competitions + Underground Const ruct ion + and Tunnel Engineering Mineral Processing and research opportunities for undergrad students + Eart h Mechanics There are several world-renow ned research centers and institutes w ithin the (Coming in AY 20 21) department that offer hands-on experience and research activities for students. Space Mining + Coming soon! - Kroll Institute for Extractive Metallurgy (KIEM) - Underground Construction and Tunneling (UCT) - Earth Mechanics Institute (EMI) 40+ industry partners - Center for Critical Minerals - Center for Sustainable Mining - Edgar Experimental Mine - Virtual and Augmented Reality Lab $65K - Mine Automation and Robotics Average salary for - Rock Mechanics Lab 20 18-19 BS graduates - Mineral Processing Lab (10 0 % placement - Mine Ventilation Lab rate reported) . -
Coal Mine Safety Engineering
Scholars' Mine Professional Degree Theses Student Theses and Dissertations 1941 Coal mine safety engineering Charles F. Herbert Follow this and additional works at: https://scholarsmine.mst.edu/professional_theses Part of the Mining Engineering Commons Department: Recommended Citation Herbert, Charles F., "Coal mine safety engineering" (1941). Professional Degree Theses. 152. https://scholarsmine.mst.edu/professional_theses/152 This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Professional Degree Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. COAL MINE SAFETY ENGINEERING BY CHARLES F. HERBERT A THESIS submitted t o the f aculty of the SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI ill pa::: tial fulfillment of the wC l'k I'squi:l;'ed fo1' the Degree Of ENGINEER OF MINES Rolla , ->1:0 . 1941 Approved by ...... ~ .................. ... ~, ' Professor of Mining Engineering CHAPTER I Page HISTORY OF COAL MINE SAFETy. ................... 1 CHAPTER II ENGINEERING. • . 7 Surface Operations.......................... 8 Underground Mine Methods and Conditions ..... 14 Roof and Floor. 15 Explosives and Blasting ...•••.............. 17 Ventilation. • . • . • . 20 Dust..... ...•. ...................... .. .• 25 Haulage. • . 27 Elec trici ty. -
The Solar Wind – Atmospheric Electricity – Cloud Microphysics – Atmospheric Dynamics Connection: the Need to Clarify and Quantify the Links
ISSI Team, March 26, 2014 The Solar Wind – Atmospheric Electricity – Cloud Microphysics – Atmospheric Dynamics Connection: The Need to Clarify and Quantify the Links Brian A. Tinsley University of Texas at Dallas [email protected] http://www.utdallas.edu/physics/faculty/tinsley.html OUTLINE • Evidence for the electrical connection: Day-to-day timescale unique to electrical connection Dynamic responses to four independent space weather inputs, plus one tropospheric input , with only current density (Jz) in common • Qualitative account of the connection: Global circuit models account for location and timing of responses • Models needed: Charging of clouds Charging of layer clouds Charging of convective and cyclonic clouds • Models needed: Electrical effects on cloud microphysics Five pathways to microphysical changes • Models needed: Connection to global circulation To account for observed NAO and AO responses on day-to-day and inter-annual timescale, blocking, and storm track changes Summary and Conclusions THE ELECTRICAL CONNECTION Each of about 1000 highly electrified storms around the globe sends about 1 Ampere to the Ionosphere , and it charges to ~ 250 kV. The local downward current density, Jz, is given by Ohm’s Law in three dimensions: 2 Jz = Vi /(RM + RS + RT ) where RM + RS + RT are the column resistances (Ω-m ) of the mesosphere, stratosphere, and troposphere respectively. Any change in Vi , RM, RS, or RT affects Jz. RM and RS and RT vary with cosmic ray flux, relativistic electron flux, and solar proton flux. Vi varies with IMF and solar wind speed changes. Schematic of a section through the global atmospheric electric circuit in the dawn-dusk magnetic meridian. -
Generation Region of Polar Cusp Hiss Observed by ISIS Satellites
Adv. Polar Upper Atmos. Res., 14, 55-65, 2000 Generation region of polar cusp hiss observed by ISIS satellites Tadanori Ondoh Space Earth Environment Laboratory, Kitano, Tokorozawa 359-1152 Abstract: Polar cusp VLF hiss of irregular spectra is observed mainly at geomagnetic invariant latitudes from 74° to 84°, and at geomagnetic local times from IO to 14 hours. This occurrence region corresponds well to a region of cusp precipitations of low energy electrons below 1 keV. Changes of lower cutoff frequency of polar cusp hiss are related with plasma irregularities in the polar cusp ionosphere. The whistler-mode Cerenkov radiation from electrons below 1 keV is discussed for generating the- polar cusp hiss, but this mechanism can not work in the polar cusp ionosphere for VLF frequencies much lower than a local electron gyrofrequency. The whistler-mode VLF Cerenkov radiation is generated from the electrons below 1 keV at high altitude(-6 R1) cusp magnetosphere, where a local electron gyrofrequency is in VLF band. The whistler-mode cusp hiss generated at high altitudes will propagate along field-aligned cusp plasma down to a strong geomagnetic field region where the cusp structure fades out. Below this region, the whistler-mode hiss spreads over the polar cusp ionosphere where low energy electron precipitations produce ionospheric irregularities. 1. Introduction There have been hitherto published a few papers on satellite observations of polar cusp VLF emissions. Gurnett and Frank (1978) first observed ELF-ULF magnetic noises and whistler-mode hiss at invariant latitudes of 76° -82° in high altitude cusp region. Irregular spectra of polar cusp hiss in the topside ionosphere were reported by Ondoh et al.