Studies on the Depilatory Activity of Sodium Sulphide and Some Related Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Studies on the Depilatory Activity of Sodium Sulphide and Some Related Compounds STUDIES ON THE DEPILATORY ACTIVITY OF SODIUM SULPHIDE AND SOME RELATED COMPOUNDS By J. M. GILLESPIE4 [Manuscript received August 22, 1950] Summary The depilatory action of sodium sulphide on sheepskin has been investigated by measuring the pull required to remove wool from skin, the swelling of wool root shafts, and the mechanical strength of wool. The rate of action is augmented by increase in temperature, pH value, and concentration of sulphide in the solu­ tion employed up to 1.0M, but is reduced by increase to higher concentrations. The reciprocal action of the hydroxyl and hydrosulphide ions in digesting keratin is explained in Appendix I in terms of the ionization of sulphydryl groups. Solutions of l.OM sodium sulphide, partially oxidized with peroxide and adjusted to pH 12.8, completely loosen wool in 18 hours at 20°C. only if the oxidation-reduction potential is lower than -400 millivolts. Salts of various oxyacids of sulphur are less effective depilatories than sodium sulphide, the activity diminishing with increase in the number of oxygen atoms in the anion and approximately with the heat of formation. Sodium selenide and sodium telluride possess depilatory activity equal to that of sodium sulphide. I. INTRODUCTION For hundreds of years, chemicals have been used in the leather industry to remove hair, wool, and epidermis from skins and hides prior to tanning .. Lime, alone or "sharpened" with arsenic sulphide, was used originally, but recently sodium sulphide was found to have pronounced depilatory powers and it is today the most widely used adjunct to lime. Merrill (1925), Marriott (1928), and others have determined the optimal conditions for the un-hairing of hides. The findings of these workers are not directly applicable to the pro­ blem of de-wooling sheepskins for, whereas hair is of so little value that in the tannery the usual procedure is to immerse the hides completely in the un-hairing solution, wool is such a valuable product that precautions must be taken to prevent damage by the alkaline solutions used to loosen it from the skin. Consequently, the technique of applying the depilatory as a paste to the flesh side of the skin has been developed to minimize contamination of the wool. This chemical de-wooling process has received practically no scientific in­ vestigation in the past and it is still largely empirical. The viscosity of the paste, the concentration of sodium sulphide, and the time of application vary from place to place and, although the concentration is sometimes varied ac­ cording to the thickness of the skins, strict control is seldom exercised. Usually, 4 Formerly Division of Industrial Chemistry, now Biochemistry Unit, Wool Textile Re­ search Laboratory, C.S.I.R.O., Melbourne. J88 J. M. GILLESPIE too, the wool is removed approximately 24 hours after application of the depila­ tory to the skins, regardless of the hastening or retarding influences of such factors as temperature and thickness of skin. If the depilatory has low viscosity, and is therefore easily applied, excess may contaminate the wool at the edge of the skin and weaken or even dis­ solve it. Contamination also occurs when the wool is pushed off the skin onto the depilatory-contaminated pulling beam. In addition, the calcium compounds in this contaminated wool and on the root ends of the detached wool precipi­ tate calcium soaps during scouring and contribute further to deterioration in the quality of the wool. Consequently, wool obtained by chemical loosening may be characterized by a harsh handle, lack of lustre, and the presence of particles of calcium salts, disintegrated wool, and weakened fibres, which break up and are lost during combing. It was with the object of defining more accurately the minimum require­ ments for depilatory activity, with special reference to the influence of physical and chemical factors, that the present investigation was undertaken. II. METHODS OF INVESTIGATION ( a) Preparation of Reagents Except when otherwise stated, the reagents used were of analytical reagent quality 'or better. The sodium salts of hydrogen sulphide, selenide, and tellu­ ride were specially prepared. Sodium sulphide was prepared from the chemically pure salt, hydrogen sulphide being liberated by mixing it with hot hydrochloric acid, washed by bubbling through water, and absorbed in pure sodium hydroxide. This solu­ tion of sodium hydrosulphide was stored in sealed paraffin wax-lined bottles and diluted with water and adjusted to the required pH with sodium hydroxide immediately before use. Although, at the pH values used in these investiga­ tions, the material was actually a mixture of sodium sulphide and hydro­ sulphide, for convenience it is referred to as sodium sulphide and its properties are accurately defined by the pH and the molarity in terms of the hydrogen sulphide content. Sodium selenide and sodium telluride were prepared immediately before use by direct combination of the elements at an elevated temperature in the absence of oxygen (Vallance, Twiss, and Russell 1931). The exact stoichio­ metric weights of the elements were used to avoid the formation of poly­ compounds. Sodium selenide was also prepared by reduction of sodium: sele­ nate with carbon, and by combination of the elements in the vapour phase at low· pressure. The kieselguhr and kaolin employed were finely ground commercial mineral specimens. (b) Preparation of Depilatories The chemical substances used in the depilatories were dissolved in distilled water. The actual content of active reducing material was determined by standard iodometric procedures (Hall 1936). Unless otherwise stated, the DEPILATORY ACTION OF SODIUM SULPHIDE 189 solutions were adjusted to a suitable physical state with kieselguhr. Before use, the pH of the depilatory was adjusted to the required value by the addi­ tion of hydrochloric acid or sodium hydroxide. For pH measurements, a Leeds and Northrup valve potentiometer was used in combination with a Cambridge high alkalinity glass electrode. ( c) Measurement of Wool Loosening Activity The method of measuring wool loosening was that due to Lennox (1945). From the central area of a fresh sheep skin, pieces 5 X 5 cm. were cut, and blood and dirt removed by thorough rinsing in running water. In most ex­ periments the skin pieces were then immersed for 30 min. in an alkaline buffer of the same pH as the depilatory to be applied. Sodium carbonate (0.2M) or 0.2M trisodium phosphate was used for this purpose. A measured amount of the depilatory was applied to the flesh side of. the skin, covered with a glass plate to restrict evaporation and oxidation, and the whole then placed in a moist chamber at 20°C. The progress of wool loosening was followed by the determination, at suitable time intervals, of the depilation load. A depilation load of less than 1 was considered to indicate complete loosening of the wool. (d) Measurement of Eh Any chemical process that depends for its efficiency on reduction must be influenced by the reducing intensity of the system. The normal measure of this, particularly in biological systems, is the oxidation-reduction potential, but this only applies if the system is reversible. In the system now under study there are the reversible reactions: 2 NaHS ~ Na2S2 + 2 (H), 2 (H) + cystine ~ 2 cysteine, and the irreversible oxidation of sulphide to sulphite or thiosulphate. The irreversible nature of the latter reaction and the ease with which the platinum electrodes are poisoned by systems containing sulphydryl compounds render Eh measurements difficult and of doubtful accuracy. However, some measurements were made using a valve potentiometer and platinum electrodes similar to those described by Gillespie (1946). The electrodes were cleaned in boiling concentrated nitric acid after each reading, a mean value from four electrodes being obtained for each Eh. The potentials were converted to the H2 standard and the results given later are presented in this form. ( e) Fibre Strength Measurements Histological observation has shown that most de-wooling chemicals act by reducing the strength of the keratinous region of the wool root, and conse­ quently the mode of action of depilatories can be investigated by determining their effect on wool fibres. The single fibre breaking-strength apparatus described by Fookes (1946) was used in these investigations. The technique is open to t~e criticism that 190 J. M. GILLESPIE no provision was made for constant loading rates or for maintaining a humidi­ fied atmosphere. These were overcome by care in operation and the inclusion of samples of wool of known strength at frequent intervals during testing. Observations on these revealed any change in testing conditions. 'Vith these precautions, satisfactory comparative figures were obtained. The chemicals under test were dissolved in air-free distilled water, some­ times with the addition of the wetting agent, cetyl trimethylammonium bromide. The wool used was merino 60-64's cleaned by extraction with solvents in the fol­ lowing order: high aromatic light petroleum, acetone, water, acetone. About 30 kg. of wool was thus treated and after careful picking to remove foreign matter, it was thoroughly randomized. It had a normal content of cystine and possessed no detectable sulphydryl groups. (f ) Wool Root Studies The wool fibres with roots attached were pulled from a sheep each day. The roots, consisting of root bulb with about 5 mm. of attached shaft, were placed in the cavity of a well slide, a few drops of the reagent under test was added, and the preparation covered with a slip and placed on the stage of a dissecting microscope. Swelling was detected and semi-quantitatively mea­ sured with an eyepiece micrometer. There was usually a lag period before swelling commenced, followed by a period of rapid expansion lasting about 30 sec., and finally a much longer period during which the rate of swelling be­ came progressively slower.
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub
    US 20050044778A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub. Date: Mar. 3, 2005 (54) FUEL COMPOSITIONS EMPLOYING Publication Classification CATALYST COMBUSTION STRUCTURE (51) Int. CI.' ........ C10L 1/28; C1OL 1/24; C1OL 1/18; (76) Inventor: William C. Orr, Denver, CO (US) C1OL 1/12; C1OL 1/26 Correspondence Address: (52) U.S. Cl. ................. 44/320; 44/435; 44/378; 44/388; HOGAN & HARTSON LLP 44/385; 44/444; 44/443 ONE TABOR CENTER, SUITE 1500 1200 SEVENTEENTH ST DENVER, CO 80202 (US) (57) ABSTRACT (21) Appl. No.: 10/722,127 Metallic vapor phase fuel compositions relating to a broad (22) Filed: Nov. 24, 2003 Spectrum of pollution reducing, improved combustion per Related U.S. Application Data formance, and enhanced Stability fuel compositions for use in jet, aviation, turbine, diesel, gasoline, and other combus (63) Continuation-in-part of application No. 08/986,891, tion applications include co-combustion agents preferably filed on Dec. 8, 1997, now Pat. No. 6,652,608. including trimethoxymethylsilane. Patent Application Publication Mar. 3, 2005 US 2005/0044778A1 FIGURE 1 CALCULATING BUNSEN BURNER LAMINAR FLAME VELOCITY (LFV) OR BURNING VELOCITY (BV) CONVENTIONAL FLAME LUMINOUS FLAME Method For Calculating Bunsen Burner Laminar Flame Velocity (LHV) or Burning Velocity Requires Inside Laminar Cone Angle (0) and The Gas Velocity (Vg). LFV = A, SIN 2 x VG US 2005/0044778A1 Mar. 3, 2005 FUEL COMPOSITIONS EMPLOYING CATALYST Chart of Elements (CAS version), and mixture, wherein said COMBUSTION STRUCTURE element or derivative compound, is combustible, and option 0001) The present invention is a CIP of my U.S.
    [Show full text]
  • Ecodesign of Large-Scale Photovoltaic (PV) Systems with Multi-Objective Optimization and Life-Cycle Assessment (LCA)
    %NVUEDELOBTENTIONDU %0$503"5%&-6/*7&34*5² %&506-064& $ÏLIVRÏPAR Institut National Polytechnique de Toulouse (INP Toulouse) $ISCIPLINEOUSPÏCIALITÏ Génie des procédés et de l'Environnement 0RÏSENTÏEETSOUTENUEPAR Jorge RaÞl PEREZ GALLARDO LE vendredi 25 octobre 2013 4ITRE Ecodesign of large-scale photovoltaic (PV) systems with multi-objective optimization and Life-Cycle Assessment (LCA) Écoconception de systèmes photovoltaïques (PV) à grande échelle par optimisation multi-objectif et Analyse du Cycle de Vie (ACV) %COLEDOCTORALE Mécanique, Energétique, Génie civil et Procédés (MEGeP) 5NITÏDERECHERCHE Laboratoire de Génie Chimique - UMR 5503 $IRECTEURS DE4HÒSE Mme Catherine AZZARO-PANTEL (INP-Toulouse, France ) M. Stéphan ASTIER (INP-Toulouse, France) 2APPORTEURS Mme Valérie LAFOREST (ENSM-Saint-Etienne, France) M. Moises GRAELLS (UPC-Barcelone, Espagne) MEMBRES DUJURY: Mme Corinne ALONSO (LAAS CNRS-Toulouse, France ) M. Pascal ESCRIBE (EDF EN France Région Sud, France ) M. Serge DOMENECH (INP-Toulouse, France ) M. Xavier ROBOAM (INP-Toulouse, France ) M. Pascal MAUSSION (INP-Toulouse, France ) Abstract . Ecodesign of large-scale photovoltaic (PV) systems with multi-objective optimization and Life-Cycle Assessment (LCA) Because of the increasing demand for the provision of energy worldwide and the numerous damages caused by a major use of fossil sources, the contribution of renewable energies has been increasing significantly in the global energy mix with the aim at moving towards a more sustainable development. In this context, this work aims at the development of a general methodology for designing PV systems based on ecodesign principles and taking into account simultaneously both techno-economic and environmental considerations. In order to evaluate the environmental performance of PV systems, an environmental assessment technique was used based on Life Cycle Assessment (LCA).
    [Show full text]
  • Diffraction of Selenium with Sulfide Solution and of Sulfur With
    LFIDE SOL UTI01 UTIONS 1- known that selenium dissolves in solutions of alkali and alkaline-earth sulfides to form com- \yith niixed anions [I]. The solubility of seleniunl in sodium sulfide solutions is utilized in tech- -, . or example, sodium sulfide is used for extraction of selenium from sludge by-products in the . acid and pulp and paper industries (21. Several variants have been devised for smelting of dusts .~d-nianufacturingplants with formation of polysulfide slags containing selenium, which are then cd to further hydrometallurgical treatment [8, 41. There are also other possibiIities for effective ion of the properties of solutions of sodium selenosulfides. This makes it all the more necessary %, v.2,!y the interaction of selenium with sodium sulfides and of sulfur with solutions of sodium selenides, .kc. Information on the subject in the literature is very limited. abl le 1 contains data on the solubility of selenium in solutions of sodium mono- and polysulfides, ts! n the niain reactions occurring in the dissolution process. selenium and sulfur were dissolved in the various solutions in closed flasks, agitated by magnetic ,'.~:,.I*s.In order to avoid oxidation of the sulfides and selenides, the samples were withdrawn with the s c ! rubber bulb in a mechanical sampling device through an inverted Schott funnel contained in the reac- ;l.isk. Control experiments were conducted in an atmosphere of technical nitrogen additionally treated pyrogallol to remove oxygen. Sodium sulfide of analytical grade, sulfur containing 99.9% S, and selenium containing 99.99% Se were :W i in the experiments. The potentials were measured with an R-300 potentiometer with the aid of a platinum electrode, 11 .t 0.001 Q.
    [Show full text]
  • 1/2 Toxic Compound Data Sheet Name: Indene CAS Number: 00095
    1/2 Toxic Compound Data Sheet Name: Indene CAS Number: 00095-13-6 Justification: This compound is listed in Ohio Administrative Code 3745 - 114 - 01 because it fulfills one or more of the following criteria: substances that are known to be, or may reasonably be anticipated to be, carcinogenic, mutagenic, teratogenic, or neurotoxic, causes reproductive dysfunction, is acutely or chronically toxic, or causes the threat of adverse environmental effects through ambient concentrations, bioaccumulation, or atmospheric deposition. lndene is acutely toxic with effects on the upper respiratory system (mucous membranes), pulmonary irritation, liver and kidney effects. Molecular Weight (g/mol): 116.15 Synonyms: Indonaphthene U.S. EPA Carcinogenic Classification (IRIS): Not listed on IRIS. PBT: Not listed as persistent, bioaccumulative and toxic. NTP: Not listed by the National Toxicology Program. HAP: Not listed as a hazardous air pollutant (HAP) by U.S. EPA. 112r: Not listed under Section 112(r) of the Clean Air Act. ACGIH: TLV: 10 ppm or 47,505 µg/m3. Critical effects include upper respiratory irritation or damage, pulmonary irritation, and liver and kidney effects. HSDB: Listed in the Hazardous Substances Data Bank. Inhalation of indene vapors is expected to cause irritation of mucous membranes. International IARC: Not listed by International Agency for Research on Cancer (IARC). ATSDR (MRL): Not listed by ATSDR. DataSheet Indene.wpd 2/2 Reference Material 1. American Conference of Governmental Industrial Hygienists (ACGIH) 2006. TLVs and BEIs:
    [Show full text]
  • Silver Halide Photographic Materials
    Europaisches Patentamt European Patent Office © Publication number: 0 350 903 Office europeen des brevets A1 © EUROPEAN PATENT APPLICATION © Application number: 89112787.0 © Int. CI.4: G03C 1/043 © Date of filing: 12.07.89 ® Priority: 12.07.88 JP 173474/88 © Applicant: FUJI PHOTO FILM CO., LTD. 210 Nakanuma Minami Ashigara-shi @ Date of publication of application: Kanagawa(JP) 17.01.90 Bulletin 90/03 © Inventor: Sasaki, Hirotomo © Designated Contracting States: 210, Nakanuma, Minami DE FR GB NL Ashigara-shi Kanagawa(JP) Inventor: Shishido, Tadao 210, Nakanuma, Minami Ashigara-shi Kanagawa(JP) Inventor: Mifune, Hiroyuki 210, Nakanuma, Minami Ashigara-shi Kanagawa(JP) © Representative: Patentanwalte Dr. Solf & Zapf Zeppelinstrasse 53 D-8000 Munchen 80(DE) © Silver halide photographic materials. © A silver halide photographic material comprising silver halide emulsion including a telluroether compound of the formula (I): U-Te-L2 (I) wherein Li and Lz each independently represents a substituted or unsubstituted aliphatic group, and at least one of Li or L2 represents an aliphatic group which is substituted with at least one hydroxyl group, mercapto group, amino group, ether group, selenoether group, thioether group, ammonium group, sulfonyl group, carbamoyl group, carbonamido group, sulfamoyl group, sulfonamido group, acyloxy group, sulfonyloxy group, ureido group, thioureido group, thioamido group, oxysulfonyl group, oxycarbonylamino group, sulfonic acid group or salt thereof, phosphoric acid group or salt thereof, phosphoric ester group, sulfinic acid group or a salt thereof, phosphino group or heterocyclic group. < CO o O) LO CL LU Xerox Copy Centre EP 0 350 803 A1 SILVER HALIDE PHOTOGRAPHIC MATERIALS FIELD OF THE INVENTION This invention concerns silver halide photographic materials and, more precisely, it concerns silver 5 halide photographic materials which contain novel telluroether compounds.
    [Show full text]
  • US 2004/0237384 A1 Orr (43) Pub
    US 2004O237384A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0237384 A1 Orr (43) Pub. Date: Dec. 2, 2004 (54) FUEL COMPOSITIONS EXHIBITING (52) U.S. Cl. ................. 44/314; 44/320; 44/358; 44/359; IMPROVED FUEL STABILITY 44/360; 44/444 (76) Inventor: William C. Orr, Denver, CO (US) Correspondence Address: (57)57 ABSTRACT HOGAN & HARTSON LLP ONE TABOR CENTER, SUITE 1500 A fuel composition of the present invention exhibits mini 1200 SEVENTEENTH ST mized hydrolysis and increased fuel Stability, even after DENVER, CO 80202 (US) extended storage at 65 F. for 6–9 months. The composition, which is preferably not strongly alkaline (3.0 to 10.5), is (21) Appl. No.: 10/722,063 more preferably weakly alkaline to mildly acidic (4.5 to 8.5) (22) Filed: Nov. 24, 2003 and most preferably slightly acidic (6.3 to 6.8), includes a e ars lower dialkyl carbonate, a combustion improving amount of Related U.S. Application Data at least one high heating combustible compound containing at least one element Selected from the group consisting of (63) Continuation-in-part of application No. 08/986,891, aluminum, boron, bromine, bismuth, beryllium, calcium, filed on Dec. 8, 1997, now Pat. No. 6,652,608. cesium, chromium, cobalt, copper, francium, gallium, ger manium, iodine, iron, indium, lithium, magnesium, manga Publication Classification nese, molybdenum, nickel, niobium, nitrogen, phosphorus, potassium, palladium, rubidium, Sodium, tin, Zinc, (51) Int. Cl." ........ C10L 1/12; C1OL 1/30; C1OL 1/28; praseodymium, rhenium, Silicon, Vanadium, or mixture, and C1OL 1/18 a hydrocarbon base fuel.
    [Show full text]
  • Biological Chemistry of Hydrogen Selenide
    antioxidants Review Biological Chemistry of Hydrogen Selenide Kellye A. Cupp-Sutton † and Michael T. Ashby *,† Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-405-325-2924 † These authors contributed equally to this work. Academic Editors: Claus Jacob and Gregory Ian Giles Received: 18 October 2016; Accepted: 8 November 2016; Published: 22 November 2016 Abstract: There are no two main-group elements that exhibit more similar physical and chemical properties than sulfur and selenium. Nonetheless, Nature has deemed both essential for life and has found a way to exploit the subtle unique properties of selenium to include it in biochemistry despite its congener sulfur being 10,000 times more abundant. Selenium is more easily oxidized and it is kinetically more labile, so all selenium compounds could be considered to be “Reactive Selenium Compounds” relative to their sulfur analogues. What is furthermore remarkable is that one of the most reactive forms of selenium, hydrogen selenide (HSe− at physiologic pH), is proposed to be the starting point for the biosynthesis of selenium-containing molecules. This review contrasts the chemical properties of sulfur and selenium and critically assesses the role of hydrogen selenide in biological chemistry. Keywords: biological reactive selenium species; hydrogen selenide; selenocysteine; selenomethionine; selenosugars; selenophosphate; selenocyanate; selenophosphate synthetase thioredoxin reductase 1. Overview of Chalcogens in Biology Chalcogens are the chemical elements in group 16 of the periodic table. This group, which is also known as the oxygen family, consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive element polonium (Po).
    [Show full text]
  • United States Patent Office Patented Jan
    2,729,676 United States Patent Office Patented Jan. 3, 1956 1. In order that those skilled in the art may better under stand how the present invention may be carried into 2,729,676 effect, the following methods are provided by way of illustration.To prepare g,6'-diselenodipropionic acid, an alkali PREPARATION OF fSELENODIPROPIONICCD s Selenide such as sodium, potassium, or ammonium selen Donald L. MacPeek, Charleston, W. Va., and William H. ide and the like is slowly reacted with beta propiono Rauscher, Brunswick, N. Y., assignors to the United lactone in aqueous solution to form the addition product. States of America as represented by the Secretary of The product is acidified with a suitable acid such as hydro the Army 0. chloric acid, etc. and the desired product is obtained by No Drawing. Application April 29, 1953, a suitable method such as extraction. The following Serial No. 352,053 examples are illustrative of preferred embodiments of the foregoing method. 1 Claim. (C. 260-537) EXAMPLE This invention relates to fungicidal compounds and 5 A quantity of 38 grams (0.25 mole) of sodium selenide more particularly to new compositions of matter having is dissolved as completely as possible in 50 ml. of water pronounced fungicidal activity. contained in a 500 ml. 3 necked flask having standard Electronic equipment in use may be exposed in many . taper joints. The flask is fitted with a dropping funnel instances to a combination of severe climatic conditions and motor stirrer. The mixture is stirred for about 10 Such as extremes of heat, cold, and humidity.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,846,032 B2 Liu Et Al
    USOO8846032B2 (12) United States Patent (10) Patent No.: US 8,846,032 B2 Liu et al. (45) Date of Patent: *Sep. 30, 2014 (54) MDCK CELL LINES SUPPORTINGVIRAL 2760/16051; C12N 2760/16164; C12N GROWTH TO HIGHTTERS AND 2760/16111; C12N 2760/16211; C12N BOREACTOR PROCESS USING THE SAME 2760/16221; C12N 2760/16351; C12N 2830/85; C12N5/00; C12N 5/0043; C12N (75) Inventors: Jonathan Liu, Milpitas, CA (US); 5/005; C12N5/0075; C07K 14/11; C12O Richard Schwartz, Bethesda, MD (US); 1/70; G01N 2333/11 Mark Thompson, Morgan Hill, CA See application file for complete search history. (US); Luis Maranga, Santa Clara, CA (US); Mridul Ghosh, San Jose, CA (US); Ajit Subramanian, Berkeley, CA (56) References Cited (US); Simon Sheng-Tsiung Hsu, Palo U.S. PATENT DOCUMENTS Alto, CA (US) 5,824,536 A 10, 1998 Webster et al. (73) Assignee: MedImmune, LLC, Gaithersburg, MD 5.948,410 A 9/1999 Van Scharrenburg et al. 6,194,191 B1 2/2001 Zhang et al. (US) 6,245,549 B1 6/2001 Ewasyshyn et al. 6,455,298 B1 9, 2002 Groner et al. (*) Notice: Subject to any disclaimer, the term of this 6,656,720 B2 12/2003 Groner patent is extended or adjusted under 35 6,726,907 B1 4/2004 Zhang et al. U.S.C. 154(b) by 0 days. 6.825,036 B2 11/2004 Makizumi et al. 6.951,752 B2 10/2005 Reiter et al. This patent is Subject to a terminal dis 7,553,665 B2 6/2009 Aloni et al.
    [Show full text]
  • STATES PATENT of FICE 2,414,438 Electrodeposition of SELENIUM Mortimer C
    Patented Jan. 21, 1947. 2,414,438 UNITED STATES PATENT of FICE 2,414,438 ELECTRoDEPoSITION OF SELENIUM Mortimer C. Bloom, Newton Highlands, Mass, as signor, by mesne assignments, to Federal Tele phone and Radio Corporation, New York, N.Y., a corporation of Delaware No Drawing. Application December 1, 1942, Serial No. 467,562 4. Claims. (C. 204-56) 2 This invention relates to the electro-deposition Another way of preparing the solution is to of Selenium and has for its object to provide a, dissolve powdered selenium in a solution of SO method of depositing metallic selenium evenly in dium hydroxide. This will form the desired so a pure form and without the use of corrosive SO dium selenide (Na2Se2). It will form, in addi lutionS. tion, sodium selenite (Na2Set4O3) which is use Another object is to attain an even and fine less for the purpose of anodic plating as the --4 grained selenium deposit on a base element which ions will pass to the cathode rather than the will be useful for a rectifier or photocell. anode. Consequently, it is preferred to use a so Selenium has heretofore been electro-deposited lution containing only the desired selenide and cathodically by the use of solutions producing O not the selenite; and the selenide free from the quadrivalent selenium cations (Se). Such a selenite can be had by the method of treating Condition is had in a selenious acid solution Con with the gas H2Se, taining an excess of acid as disclosed and claimed For the anode almost any conducting plate or in copending application Ser.
    [Show full text]
  • Nomenclature Notes
    Rules of Nomenclature for Binary Compounds There are three types of binary compounds: Type I. A metal of fixed charge and a nonmetal; Type II. A metal of variable charge and a nonmetal; and Type III. Two nonmetals Metals of ‘variable charge’ tend to be transition elements with some exceptions; metals of fixed charge tend to be the alkali metals and the alkaline earths, along with zinc, cadmium and silver. Nonmetals are those compounds to the right of the bold zig-zag line (see Periodic Table attached) The rules for naming binary compounds are then as follows: • Rule 1. When writing a formula or naming a compound: a). For Type I and Type II compounds, first list the metal then the nonmetal; b) For Type III compounds always list the electropositive species first (the element furthest left in the periodic table) and then the electronegative species. Type III species tend to be exclusively covalently bound compounds. NOTE: It becomes very important that you KNOW YOUR IONS AND THEIR CHARGES (especially the anions, since any given element anion does not have varying charges)!!! • Rule 2. All compound must be neutral UNLESS indicated otherwise. • Rule 3. When naming binary compounds: a). For compounds of Type I and Type II, always use the FULL name of the metal and add the suffix -ide to the root name of the nonmetal (i.e. Metal Nonmetide); b). Type II compounds are handled the same as Type I except the charge on the metal is indicated by using a roman numeral in parentheses immediately following the metal (i.e.
    [Show full text]