United States Patent Office Patented Jan

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Jan 2,729,676 United States Patent Office Patented Jan. 3, 1956 1. In order that those skilled in the art may better under stand how the present invention may be carried into 2,729,676 effect, the following methods are provided by way of illustration.To prepare g,6'-diselenodipropionic acid, an alkali PREPARATION OF fSELENODIPROPIONICCD s Selenide such as sodium, potassium, or ammonium selen Donald L. MacPeek, Charleston, W. Va., and William H. ide and the like is slowly reacted with beta propiono Rauscher, Brunswick, N. Y., assignors to the United lactone in aqueous solution to form the addition product. States of America as represented by the Secretary of The product is acidified with a suitable acid such as hydro the Army 0. chloric acid, etc. and the desired product is obtained by No Drawing. Application April 29, 1953, a suitable method such as extraction. The following Serial No. 352,053 examples are illustrative of preferred embodiments of the foregoing method. 1 Claim. (C. 260-537) EXAMPLE This invention relates to fungicidal compounds and 5 A quantity of 38 grams (0.25 mole) of sodium selenide more particularly to new compositions of matter having is dissolved as completely as possible in 50 ml. of water pronounced fungicidal activity. contained in a 500 ml. 3 necked flask having standard Electronic equipment in use may be exposed in many . taper joints. The flask is fitted with a dropping funnel instances to a combination of severe climatic conditions and motor stirrer. The mixture is stirred for about 10 Such as extremes of heat, cold, and humidity. The pres 20 minutes to aid solution and then is placed in a 15° C. ence of high humidity may have many deleterious effects bath. This bath temperature is maintained throughout upon the electrical insulation and consequently upon the the run. A quantity of 18 grams (0.25 mole) of beta surface characteristics of hook-up wire. propionolactone is added dropwise over a period of 30 It is known that currents may flow through the volume minutes with the evolution of much heat. After the com of the insulation and over its surface in various ways. 25 pletion of the addition, the mixture is then acidified by At high humidity, the current over the surface may be the dropwise addition of 50 ml. of concentrated hydro relatively large and may change markedly with change chloric acid. During the progress of the reaction, the in humidity. In electronic applications, such currents color of the solution changes to a deep red color and may flow from the bare conductor at a terminal back along considerable solid precipitates. The solution is allowed the surface of the wire insulation to some point where 30 to stand for a while to permit the HaSe formed in the the wire insulation may touch ground, an uninsulated reaction to escape. The reaction mixture is then placed component or another wire. Also, in the latter case, the in a continuous extractor and sufficient ether is added current may flow along the second wire to another ter to permit the extractor to function. After 6 hours of extraction, the ether possesses a definite yellow color and minal.Mold growth is associated with high humidities and 35 upon evaporation of the ether, a dry yellow residue hav moisture and moid growth both increase the dissipation ing a disagreeable odor remains. factor and capacitance measured along the surface of hook-up wire insulation. This increase is greatest at low EXAMPLE II frequencies and is apparently due to the polarization In this example, all quantities and conditions are kept effects of moisture absorbed at the surface. 40 the same as in Example I except for the temperature. Inasmuch as the deleterious factors of mold and high The addition of the lactone is started at 22 C. and a humidity are intimately related, surface electrical proper constant temperature is not maintained. The temper ties of hook-up wire can be greatly improved by the de ature will rise to about 85-95 C. by the end of the velopment of fungicidal compositions which remain stable addition and then fall back to room temperature. at high temperatures and which can be incorporated into hook-up wire so as to make it resistant to contamination EXAMPLE III In this example all quantities and conditions are kept byIt mold. is, therefore, a primary object of the present inven the same as in Example I other than that the temper tion to provide new compositions of matter having pro ature is maintained as near 0° C. as possible throughout nounced fungicidal activity and stability at high temper 50 theIt reaction.has been found from the above examples that the ature.It is a further object of the present invention to provide presence of small traces of atmospheric oxygen causes esters of 6,6'-diselenodipropionic acid having fungicidal decomposition of the metastable sodium selenide solu properties. tion to form plates of metallic selenium (gray form) upon It is another object to provide a method for preparing 55 the surface. They become heavy and sink leaving a fresh g,8-diselenodipropionic acid. liquid surface exposed where more decomposition and In accordance with the present invention there are loss can take place. To obviate this difficulty, it has been provided diesters of 6,6'-diselenodipropionic acid having found that flushing the apparatus in which the reaction the general formula takes place with nitrogen and also flushing the distilled 60 water from which the solution is made reduces the quan ROOC-CH2-CHg-Se-Se-CH2-CH-COOR tity of selenium which precipitates but does not com wherein R is an alkyl or an alkoxy alkyl radical. pletely eliminate the difficulty. Method of preparing Also, in accordance with the present invention, there (3,6'-diselenodipropionic acid taking these factors into is provided a method for preparing diselenodipropionic consideration are illustrated by the succeeding examples. acid comprising reacting beta propionolactone with sodium 65 selenide, acidifying the reaction product and allowing the EXAMPLE IV acidified reaction product to form the diselenodipropionic A 1 liter 3 necked flask with ground glass joints is fitted with a motor driven stirrer with a mercury seal, acidFor in athe better presence understanding of air. of the present invention, thermometer, and gas entrance and exit tubes. The gas together with other and further objects thereof, reference 70 exit tube is connected first to an empty 500 cc. suction is had to the following description and its scope will be flask which serves as a trap for any expelled reaction mix pointed out in the appended claim. 3 2,729,676 ture. The gases are passed from this flask to a second 4 suction flask which contains a dilute solution of sodium The above example essentially accounts for nearly all hydroxide or other suitable alkali to absorb any evolved the selenium. hydrogen selenide. A manometer is attached to the trap EXAMPLE VI flask to provide a visual means of observing the pressure A 3 necked 2 liter flask is fitted with a mercury sealed inside the system and a dropping funnel is attached to 5 motor driven stirrer, a thermometer, gas inlet and outlet an offset from the gas entrance tube. The apparatus is tubes and a dropping funnel. A flask fitted with a glass flushed with nitrogen for about 20 minutes at which point tube which extends below the level of the water in the about 0.25 mole (38 grams) of sodium selenide is dropped flask serves as a means of visually observing the relative in and covered with 250 ml. of distilled water which rate of the flow of nitrogen which is used to flush the has been flushed with nitrogen. The selenide is allowed 0 apparatus both before and during the reaction. After a to dissolve for about 30 minutes and the flask is then 20 minute period of flushing, 124.95 grams of sodium cooled to 10 C. by suspension in an ice bath. This selenide is placed in the flask and immediately there temperature is maintained as the upper limit for the rest after, 1 liter of distilled water is added through the drop of the reaction period. A weight of 19.5 grams of the ping funnel. The mixture is stirred for 30 minutes to beta propionolactone is added slowly through the drop 5 allow the sodium selenide to go into solution. During ping funnel at the rate of approximately 10 ml. per hour. this entire period, the flask is suspended in a salt-ice bath, The mixture is stirred for about 1 to 2 hours after the the stirring also aiding to bring the solution to reaction lactone is completely added. It is to be noted that with temperature of about 0° C. The data in the following this procedure, no voluminous and amorphous precipi table applies to the temperature control, nitrogen pres tate forms at any time during the reaction. The mix 20 sure and rate of addition of the beta propionolactone to ture is then acidified by the dropwise addition of an the sodium selenide solution. excess of concentrated hydrochloric acid with no large volume of hydrogen selenide being given off and the pre Ml. Lactone cipitate which settles out in this reaction is light yellow, M. of Pressure Added 25 Lactone Nitro not the dark mass obtained by the procedures illustrated gen, in Examples I, II, and III. Thus, the increased fluidity Added p. S. i. per 15 of the entire reaction mixture makes handling much Min. Min. easier and the extraction which follows is much more ----- rapid with more complete removal of the organic prod 18.
Recommended publications
  • Diffraction of Selenium with Sulfide Solution and of Sulfur With
    LFIDE SOL UTI01 UTIONS 1- known that selenium dissolves in solutions of alkali and alkaline-earth sulfides to form com- \yith niixed anions [I]. The solubility of seleniunl in sodium sulfide solutions is utilized in tech- -, . or example, sodium sulfide is used for extraction of selenium from sludge by-products in the . acid and pulp and paper industries (21. Several variants have been devised for smelting of dusts .~d-nianufacturingplants with formation of polysulfide slags containing selenium, which are then cd to further hydrometallurgical treatment [8, 41. There are also other possibiIities for effective ion of the properties of solutions of sodium selenosulfides. This makes it all the more necessary %, v.2,!y the interaction of selenium with sodium sulfides and of sulfur with solutions of sodium selenides, .kc. Information on the subject in the literature is very limited. abl le 1 contains data on the solubility of selenium in solutions of sodium mono- and polysulfides, ts! n the niain reactions occurring in the dissolution process. selenium and sulfur were dissolved in the various solutions in closed flasks, agitated by magnetic ,'.~:,.I*s.In order to avoid oxidation of the sulfides and selenides, the samples were withdrawn with the s c ! rubber bulb in a mechanical sampling device through an inverted Schott funnel contained in the reac- ;l.isk. Control experiments were conducted in an atmosphere of technical nitrogen additionally treated pyrogallol to remove oxygen. Sodium sulfide of analytical grade, sulfur containing 99.9% S, and selenium containing 99.99% Se were :W i in the experiments. The potentials were measured with an R-300 potentiometer with the aid of a platinum electrode, 11 .t 0.001 Q.
    [Show full text]
  • 1/2 Toxic Compound Data Sheet Name: Indene CAS Number: 00095
    1/2 Toxic Compound Data Sheet Name: Indene CAS Number: 00095-13-6 Justification: This compound is listed in Ohio Administrative Code 3745 - 114 - 01 because it fulfills one or more of the following criteria: substances that are known to be, or may reasonably be anticipated to be, carcinogenic, mutagenic, teratogenic, or neurotoxic, causes reproductive dysfunction, is acutely or chronically toxic, or causes the threat of adverse environmental effects through ambient concentrations, bioaccumulation, or atmospheric deposition. lndene is acutely toxic with effects on the upper respiratory system (mucous membranes), pulmonary irritation, liver and kidney effects. Molecular Weight (g/mol): 116.15 Synonyms: Indonaphthene U.S. EPA Carcinogenic Classification (IRIS): Not listed on IRIS. PBT: Not listed as persistent, bioaccumulative and toxic. NTP: Not listed by the National Toxicology Program. HAP: Not listed as a hazardous air pollutant (HAP) by U.S. EPA. 112r: Not listed under Section 112(r) of the Clean Air Act. ACGIH: TLV: 10 ppm or 47,505 µg/m3. Critical effects include upper respiratory irritation or damage, pulmonary irritation, and liver and kidney effects. HSDB: Listed in the Hazardous Substances Data Bank. Inhalation of indene vapors is expected to cause irritation of mucous membranes. International IARC: Not listed by International Agency for Research on Cancer (IARC). ATSDR (MRL): Not listed by ATSDR. DataSheet Indene.wpd 2/2 Reference Material 1. American Conference of Governmental Industrial Hygienists (ACGIH) 2006. TLVs and BEIs:
    [Show full text]
  • Biological Chemistry of Hydrogen Selenide
    antioxidants Review Biological Chemistry of Hydrogen Selenide Kellye A. Cupp-Sutton † and Michael T. Ashby *,† Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-405-325-2924 † These authors contributed equally to this work. Academic Editors: Claus Jacob and Gregory Ian Giles Received: 18 October 2016; Accepted: 8 November 2016; Published: 22 November 2016 Abstract: There are no two main-group elements that exhibit more similar physical and chemical properties than sulfur and selenium. Nonetheless, Nature has deemed both essential for life and has found a way to exploit the subtle unique properties of selenium to include it in biochemistry despite its congener sulfur being 10,000 times more abundant. Selenium is more easily oxidized and it is kinetically more labile, so all selenium compounds could be considered to be “Reactive Selenium Compounds” relative to their sulfur analogues. What is furthermore remarkable is that one of the most reactive forms of selenium, hydrogen selenide (HSe− at physiologic pH), is proposed to be the starting point for the biosynthesis of selenium-containing molecules. This review contrasts the chemical properties of sulfur and selenium and critically assesses the role of hydrogen selenide in biological chemistry. Keywords: biological reactive selenium species; hydrogen selenide; selenocysteine; selenomethionine; selenosugars; selenophosphate; selenocyanate; selenophosphate synthetase thioredoxin reductase 1. Overview of Chalcogens in Biology Chalcogens are the chemical elements in group 16 of the periodic table. This group, which is also known as the oxygen family, consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive element polonium (Po).
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,846,032 B2 Liu Et Al
    USOO8846032B2 (12) United States Patent (10) Patent No.: US 8,846,032 B2 Liu et al. (45) Date of Patent: *Sep. 30, 2014 (54) MDCK CELL LINES SUPPORTINGVIRAL 2760/16051; C12N 2760/16164; C12N GROWTH TO HIGHTTERS AND 2760/16111; C12N 2760/16211; C12N BOREACTOR PROCESS USING THE SAME 2760/16221; C12N 2760/16351; C12N 2830/85; C12N5/00; C12N 5/0043; C12N (75) Inventors: Jonathan Liu, Milpitas, CA (US); 5/005; C12N5/0075; C07K 14/11; C12O Richard Schwartz, Bethesda, MD (US); 1/70; G01N 2333/11 Mark Thompson, Morgan Hill, CA See application file for complete search history. (US); Luis Maranga, Santa Clara, CA (US); Mridul Ghosh, San Jose, CA (US); Ajit Subramanian, Berkeley, CA (56) References Cited (US); Simon Sheng-Tsiung Hsu, Palo U.S. PATENT DOCUMENTS Alto, CA (US) 5,824,536 A 10, 1998 Webster et al. (73) Assignee: MedImmune, LLC, Gaithersburg, MD 5.948,410 A 9/1999 Van Scharrenburg et al. 6,194,191 B1 2/2001 Zhang et al. (US) 6,245,549 B1 6/2001 Ewasyshyn et al. 6,455,298 B1 9, 2002 Groner et al. (*) Notice: Subject to any disclaimer, the term of this 6,656,720 B2 12/2003 Groner patent is extended or adjusted under 35 6,726,907 B1 4/2004 Zhang et al. U.S.C. 154(b) by 0 days. 6.825,036 B2 11/2004 Makizumi et al. 6.951,752 B2 10/2005 Reiter et al. This patent is Subject to a terminal dis 7,553,665 B2 6/2009 Aloni et al.
    [Show full text]
  • STATES PATENT of FICE 2,414,438 Electrodeposition of SELENIUM Mortimer C
    Patented Jan. 21, 1947. 2,414,438 UNITED STATES PATENT of FICE 2,414,438 ELECTRoDEPoSITION OF SELENIUM Mortimer C. Bloom, Newton Highlands, Mass, as signor, by mesne assignments, to Federal Tele phone and Radio Corporation, New York, N.Y., a corporation of Delaware No Drawing. Application December 1, 1942, Serial No. 467,562 4. Claims. (C. 204-56) 2 This invention relates to the electro-deposition Another way of preparing the solution is to of Selenium and has for its object to provide a, dissolve powdered selenium in a solution of SO method of depositing metallic selenium evenly in dium hydroxide. This will form the desired so a pure form and without the use of corrosive SO dium selenide (Na2Se2). It will form, in addi lutionS. tion, sodium selenite (Na2Set4O3) which is use Another object is to attain an even and fine less for the purpose of anodic plating as the --4 grained selenium deposit on a base element which ions will pass to the cathode rather than the will be useful for a rectifier or photocell. anode. Consequently, it is preferred to use a so Selenium has heretofore been electro-deposited lution containing only the desired selenide and cathodically by the use of solutions producing O not the selenite; and the selenide free from the quadrivalent selenium cations (Se). Such a selenite can be had by the method of treating Condition is had in a selenious acid solution Con with the gas H2Se, taining an excess of acid as disclosed and claimed For the anode almost any conducting plate or in copending application Ser.
    [Show full text]
  • Nomenclature Notes
    Rules of Nomenclature for Binary Compounds There are three types of binary compounds: Type I. A metal of fixed charge and a nonmetal; Type II. A metal of variable charge and a nonmetal; and Type III. Two nonmetals Metals of ‘variable charge’ tend to be transition elements with some exceptions; metals of fixed charge tend to be the alkali metals and the alkaline earths, along with zinc, cadmium and silver. Nonmetals are those compounds to the right of the bold zig-zag line (see Periodic Table attached) The rules for naming binary compounds are then as follows: • Rule 1. When writing a formula or naming a compound: a). For Type I and Type II compounds, first list the metal then the nonmetal; b) For Type III compounds always list the electropositive species first (the element furthest left in the periodic table) and then the electronegative species. Type III species tend to be exclusively covalently bound compounds. NOTE: It becomes very important that you KNOW YOUR IONS AND THEIR CHARGES (especially the anions, since any given element anion does not have varying charges)!!! • Rule 2. All compound must be neutral UNLESS indicated otherwise. • Rule 3. When naming binary compounds: a). For compounds of Type I and Type II, always use the FULL name of the metal and add the suffix -ide to the root name of the nonmetal (i.e. Metal Nonmetide); b). Type II compounds are handled the same as Type I except the charge on the metal is indicated by using a roman numeral in parentheses immediately following the metal (i.e.
    [Show full text]
  • (Z,Z)-Selanediylbis(2-Propenamides): Novel Class of Organoselenium Compounds with High Glutathione Peroxidase-Like Activity
    molecules Article (Z,Z)-Selanediylbis(2-propenamides): Novel Class of Organoselenium Compounds with High Glutathione Peroxidase-Like Activity. Regio- and Stereoselective Reaction of Sodium Selenide with 3-Trimethylsilyl-2-propynamides Mikhail V. Andreev, Vladimir A. Potapov * , Maxim V. Musalov and Svetlana V. Amosova A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of The Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia; [email protected] (M.V.A.); [email protected] (M.V.M.); [email protected] (S.V.A.) * Correspondence: [email protected] Academic Editor: Derek J. McPhee Received: 3 December 2020; Accepted: 14 December 2020; Published: 15 December 2020 Abstract: The efficient regio- and stereoselective synthesis of (Z,Z)-3,30-selanediylbis(2-propenamides) in 76–93% yields was developed based on the reaction of sodium selenide with 3-trimethylsilyl-2- propynamides. (Z,Z)-3,30-Selanediylbis(2-propenamides) are a novel class of organoselenium compounds. To date, not a single representative of 3,30-selanediylbis(2-propenamides) has been described in the literature. Studying glutathione peroxidase-like properties by a model reaction showed that the activity of the obtained products significantly varies depending on the organic moieties in the amide group. Divinyl selenide, which contains two lipophilic cyclohexyl substituents in the amide group, exhibits very high glutathione peroxidase-like activity and this compound is considerably superior to other products in this respect. Keywords: (Z,Z)-3,30-selanediylbis(2-propenamides); 3-trimethylsilyl-2-propynamides; sodium selenide; glutathione peroxidase-like activity; regioselective reactions; stereoselective reactions; desilylation 1. Introduction Vinyl selenides are important intermediates for organic synthesis [1–9].
    [Show full text]
  • Safety Data Sheet Page 1/5 Acc
    Safety Data Sheet Page 1/5 acc. to OSHA HCS Printing date 05/02/2018 Revision date 05/01/2018 Version 1 1 Identification Product identifier Product name: Sodium selenide Stock number: 36187 CAS Number: 1313-85-5 EC number: 215-212-0 Index number: 034-002-00-8 Relevant identified uses of the substance or mixture and uses advised against. Identified use: SU24 Scientific research and development Details of the supplier of the safety data sheet Manufacturer/Supplier: Alfa Aesar Thermo Fisher Scientific Chemicals, Inc. 30 Bond Street Ward Hill, MA 01835-8099 Tel: 800-343-0660 Fax: 800-322-4757 Email: [email protected] www.alfa.com Information Department: Health, Safety and Environmental Department Emergency telephone number: During normal business hours (Monday-Friday, 8am-7pm EST), call (800) 343-0660. After normal business hours, call Carechem 24 at (866) 928-0789. 2 Hazard(s) identification Classification of the substance or mixture in accordance with 29 CFR 1910 (OSHA HCS) GHS06 Skull and crossbones Acute Tox. 2 H300 Fatal if swallowed. Acute Tox. 3 H331 Toxic if inhaled. GHS08 Health hazard STOT RE 2 H373 May cause damage to the central nervous system, the liver and the digestive system through prolonged or repeated exposure. Route of exposure: Oral, Inhalation. Hazards not otherwise classified No information known. Label elements GHS label elements The product is classified and labeled in accordance with 29 CFR 1910 (OSHA HCS) Hazard pictograms GHS06 GHS08 Signal word Danger Hazard statements H300 Fatal if swallowed. H331 Toxic if inhaled. H373 May cause damage to the central nervous system, the liver and the digestive system through prolonged or repeated exposure.
    [Show full text]
  • Selenium-Containing Polymers: Synthesis and Applications
    The Free Internet Journal Review for Organic Chemistry Archive for Arkivoc 2019, part ii, 144-162 Organic Chemistry Selenium-containing polymers: synthesis and applications Elżbieta Wojaczyńska* and Andrzej Trochimczuk Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50 370, Poland Email: [email protected] Dedicated to Professor Lorenzo Testaferri on the occasion of his 75th birthday Received 09-29-2019 Accepted 11-22-2019 Published on line 11-30-2019 Abstract This mini-review focuses on selected connections between selenium and polymer chemistry: synthesis of Se- containing conjugated polymers, use of Se compounds as RAFT agents, and applications of immobilized Se derivatives in organic synthesis. S POLYM e R conjugated RAFT organic polymers agents synthesis Keywords: Conjugated polymers, immobilization, polymerization, selenium DOI: https://doi.org/10.24820/ark.5550190.p011.077 Page 144 ©AUTHOR(S) Arkivoc 2019, ii, 144-162 Wojaczyńska, E. et al. Table of Contents 1. Introduction 2. Selenium-containing Conjugated Polymers 3. Selenium Compounds as RAFT Agents 4. Application of Selenium-containing Polymers in Chemical Synthesis 5. Conclusions References Authors’ biographies 1. Introduction Unique properties of selenium can be utilized to modify the properties of various materials. The use of its compounds in polymer science has gained an attention in the recent years, also due to their possible applications in the area of biomedical engineering.1 In the first part of this contribution, we focus on the recent achievements on the preparation of selenium-containing conjugated polymers. A review in this field appeared five years ago,2 and since that time new articles have been published.
    [Show full text]
  • Reactivity of WR Towards Diamines and Diols
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by St Andrews Research Repository Index Entry 2,5-Diarylselenophenes can be prepared by reaction of O-methyl Se-hydrogen phenylphosphonodiselenoate with arylacetylenes or by direct reaction of Woollins’ reagent with 1,4-diarylbutane-1,4-diones. 1 Synthesis of Novel 2,5-Diarylselenophenes from Selenation of 1,4-Diarylbutane-1,4- diones or Methanol/Arylacetylenes Guoxiong Hua,a John B. Henry,b Yang Li, a Andrew R. Mountb Alexandra M. Z. Slawina and J. Derek Woollinsa* a EaSTCHEM, School of Chemistry, University of St Andrews, Fife, KY16 9ST, UK b EaSTCHEM, School of Chemistry, University of Edinburgh, The King’ Buildings, West Mains Road, Edinburgh, EH9 3JJ, UK *Corresponding author. Tel.: (+44)-1334-463384; email: [email protected] Reaction of 2,4-bis(phenyl)-1,3-diselenadiphosphetane-2,4-diselenide [PhP(Se)(µ-Se)]2 (Woollins’ reagent, WR) with one equivalent of 1,4-diarylbutane-1,4-diones 1a-g in refluxing toluene affords the corresponding 2,5- diarylselenophenes 2a-g in excellent yields (up to 99%). Alternatively, the 2,5-diarylselenophenes (2a and 2b) can be obtained in 70-80% yields from the reaction of arylacetylene with an equivalent of O-methyl Se-hydrogen phenylphosphonodiselenoate; the latter was derived from WR and methanol. The first X-ray structure of 2,5- diarylselenophenes is presented along with characterisation of their redox properties. Introduction Selenophenes play an important role in the chemistry of organochalcogen compounds.1-3 The first synthesis of selenophene was reported in 1885 by Paal, who obtained 2,5-dimethylselenophene by heating hexane-2,5- dione with phosphorus pentaselenide.4 Since then, several selenium analogues of furans and thiophenes have been prepared by replacing the oxygen or the sulfur atom, respectively, in order to improve the bioactivity of these compounds.
    [Show full text]
  • A General Method for the Formation of Diaryl Selenides Using Copper(I) Catalysts
    TETRAHEDRON LETTERS Pergamon Tetrahedron Letters 44 (2003) 81–84 A general method for the formation of diaryl selenides using copper(I) catalysts Rattan K. Gujadhur and D. Venkataraman* Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA Received 3 October 2002; revised 30 October 2002; accepted 5 November 2002 Abstract—We report a mild, palladium-free synthetic protocol for the cross coupling reaction of aryl iodides and phenyl selenol using 10 mol% CuI/neocuproine, NaOt-BuorK2CO3 as base, in toluene, at 110°C. Using this protocol, we show that a variety of diaryl selenides can be synthesized in good yields from commercially available aryl iodides. © 2002 Elsevier Science Ltd. All rights reserved. Diaryl selenides have attracted considerable interest reaction of sodium selenide with arenediazonium salts.5 because of their potential as anticancer and antioxidant In recent years, only a handful of reports have agents.1 They are also key intermediates in the synthesis appeared in the literature with synthetic protocols for of a plethora of biologically and pharmaceutically the formation of arylselenium bonds that are general, important selenium compounds such as selenonium mild and tolerant. In 1985, Cristau and co-workers first salts, selenoxides, selenimines, and selenide dihalides.2 showed that aryl selenides can be obtained by a cross- In recognition of their importance, various synthetic coupling reaction of aryl halides and sodium benzenese- methods for the formation of diaryl selenides have been lenolate using Ni(II)-based catalysts.6 In 2000, Millois 3 reported in the literature. Earlier methods often and Diaz modified and extended Cristau’s method to require photochemical or harsh reaction conditions accommodate diaryl diselenide as a starting material such as the use of polar, toxic solvents such as HMPA 7 4 instead of sodium benzeneselenolate.
    [Show full text]