STATES PATENT of FICE 2,414,438 Electrodeposition of SELENIUM Mortimer C

Total Page:16

File Type:pdf, Size:1020Kb

STATES PATENT of FICE 2,414,438 Electrodeposition of SELENIUM Mortimer C Patented Jan. 21, 1947. 2,414,438 UNITED STATES PATENT of FICE 2,414,438 ELECTRoDEPoSITION OF SELENIUM Mortimer C. Bloom, Newton Highlands, Mass, as signor, by mesne assignments, to Federal Tele phone and Radio Corporation, New York, N.Y., a corporation of Delaware No Drawing. Application December 1, 1942, Serial No. 467,562 4. Claims. (C. 204-56) 2 This invention relates to the electro-deposition Another way of preparing the solution is to of Selenium and has for its object to provide a, dissolve powdered selenium in a solution of SO method of depositing metallic selenium evenly in dium hydroxide. This will form the desired so a pure form and without the use of corrosive SO dium selenide (Na2Se2). It will form, in addi lutionS. tion, sodium selenite (Na2Set4O3) which is use Another object is to attain an even and fine less for the purpose of anodic plating as the --4 grained selenium deposit on a base element which ions will pass to the cathode rather than the will be useful for a rectifier or photocell. anode. Consequently, it is preferred to use a so Selenium has heretofore been electro-deposited lution containing only the desired selenide and cathodically by the use of solutions producing O not the selenite; and the selenide free from the quadrivalent selenium cations (Se). Such a selenite can be had by the method of treating Condition is had in a selenious acid solution Con with the gas H2Se, taining an excess of acid as disclosed and claimed For the anode almost any conducting plate or in copending application Ser. No. 420,906, filed element may be used, for example, platinum and November 29, 1941, of which I am a joint inventor. 15 nickel. Deposits on carbon are even more ad In the use of that method the Set ions carry the herent. For the cathode almost any conductor Selenium to the cathode, depositing it there in can be used although one should be selected which metallic form. Unless the proper plating condi is non-reactive with the solution. Cathodes of tions are maintained, the base plate or element platinum and carbon have been found satisfac on which selenium is deposited by the cathodic 20 tory; and a mixture of carbon and Selenium is method may sometimes become corroded by the even better as the selenium in it will tend to re acid of the Solution, and sometimes the selenium plenish the solution. deposit is pitted by hydrogen released at the cath The current density through the solution is not Ode from the acid. very critical; and in general, the higher the cur In accordance with my present invention, I 25 rent the shorter is the time needed for a deposit. electro-deposit metallic selenium on an anode in It is preferable however not to use excessive cur a non-acid Solution having anions containing rents, in order to avoid the evolution of oxygen. Selenium in the negative valence, thereby avoid A current density of 10 amperes per Square foot ing the tendency toward corrosion and pitting of anode surface has been found satisfactory and Sometimes encountered in an acid solution. My 30 a good deposit will be obtained in about twenty invention is practiced by immersing a conductive minutes at this density. element as an anode in such a solution. The cath The selenium deposits thus obtained can be Ode preferably contains selenium which can pass made fine-grained and will be free from all in into the Solution to replenish that used up in the purities which do not deposit anodically, and also electro-deposition on the anode. 35 from impurities which do deposit anodically but l I have found that the selenides meet the re only at different voltage and current levels from quirements for the solution. The selenides of so that being used. As the selenide solutions are dium, potassium or ammonia, and also of the less non-acid they will not tend to corrode ordinary common alkali elements, such as lithium, rubid base elements used as the anode; and there will ium and caesium may be used, as Well as alkaline 40 be an absence of pitting of the selenium deposit. selenides formed from the alkaline earth group. The selenium thus obtained may be scraped off Sodium selenide (Na2Se) is easily and cheaply and used for purposes requiring a pure selenium. obtainable for the purpose. This can be prepared On the other hand, the deposit is uniform and by passing the gas H2Se through a Sodium hy fine-grained so that it can be used as deposited on droxide (NaOH) solution. The Sodium hydroxide 45 the anode in a selenium rectifier or photocell. A solution may be of practically any strength. A counterelectrode may be applied to the selenium concentration of 100 grams of sodium hydroxide as by spraying the surface with Wood's metal in per liter of solution has been found satisfactory; a well-known manner. and both double this concentration and half this What is claimed is: concentration have also been found satisfactory. 50 1. In a process for forming an adherent fine These concentrations are not - critical. The grained coating of metallic selenium upon an elec amount of gas passed through is not critical but tro-conductor surface, the step that comprises preferably there should be used enough gas to sat electro-depositing the metallic selenium upon said urate or nearly saturate the solution with the electro-conductor as the anode of a pair of elec g2S. 55 trodes in an aqueous alkaline solution that com 3 2,414488 prises essentially a selenide selected from the electro-depositing the metallic selenium upon sai class consisting of ammonium, alkali metal, and electro-conductor as the anode of a pair of elec alkaline earth metal selenides. trodes in an aqueous alkaline solution compris 2. In a process for forming an adherent fine ing essentially potassium selenide. grained coating of metallic selenium upon an elec 4. In a process for forming an adherent fine tro-conductor surface, the step that comprises grained coating of metallic selenium upon an elec electro-depositing the metallic selenium upon tro-conductor Surface, the step that comprise said eelctro-conductor as the anode of a pair of electro-depositing the metallic selenium upon electrodes in an aqueous alkaline solution com said electro-conductor as the anode of a pair of prising essentially sodium selenide. 10 electrodes in an aqueous alkaline solution com 3. In a process for forming an adherent fine prising essentially ammonium selenide. grained coating of metallic selenium upon an elec tro-conductor surface, the step that comprises MORTIMER C.BLOOM. .
Recommended publications
  • Diffraction of Selenium with Sulfide Solution and of Sulfur With
    LFIDE SOL UTI01 UTIONS 1- known that selenium dissolves in solutions of alkali and alkaline-earth sulfides to form com- \yith niixed anions [I]. The solubility of seleniunl in sodium sulfide solutions is utilized in tech- -, . or example, sodium sulfide is used for extraction of selenium from sludge by-products in the . acid and pulp and paper industries (21. Several variants have been devised for smelting of dusts .~d-nianufacturingplants with formation of polysulfide slags containing selenium, which are then cd to further hydrometallurgical treatment [8, 41. There are also other possibiIities for effective ion of the properties of solutions of sodium selenosulfides. This makes it all the more necessary %, v.2,!y the interaction of selenium with sodium sulfides and of sulfur with solutions of sodium selenides, .kc. Information on the subject in the literature is very limited. abl le 1 contains data on the solubility of selenium in solutions of sodium mono- and polysulfides, ts! n the niain reactions occurring in the dissolution process. selenium and sulfur were dissolved in the various solutions in closed flasks, agitated by magnetic ,'.~:,.I*s.In order to avoid oxidation of the sulfides and selenides, the samples were withdrawn with the s c ! rubber bulb in a mechanical sampling device through an inverted Schott funnel contained in the reac- ;l.isk. Control experiments were conducted in an atmosphere of technical nitrogen additionally treated pyrogallol to remove oxygen. Sodium sulfide of analytical grade, sulfur containing 99.9% S, and selenium containing 99.99% Se were :W i in the experiments. The potentials were measured with an R-300 potentiometer with the aid of a platinum electrode, 11 .t 0.001 Q.
    [Show full text]
  • 1/2 Toxic Compound Data Sheet Name: Indene CAS Number: 00095
    1/2 Toxic Compound Data Sheet Name: Indene CAS Number: 00095-13-6 Justification: This compound is listed in Ohio Administrative Code 3745 - 114 - 01 because it fulfills one or more of the following criteria: substances that are known to be, or may reasonably be anticipated to be, carcinogenic, mutagenic, teratogenic, or neurotoxic, causes reproductive dysfunction, is acutely or chronically toxic, or causes the threat of adverse environmental effects through ambient concentrations, bioaccumulation, or atmospheric deposition. lndene is acutely toxic with effects on the upper respiratory system (mucous membranes), pulmonary irritation, liver and kidney effects. Molecular Weight (g/mol): 116.15 Synonyms: Indonaphthene U.S. EPA Carcinogenic Classification (IRIS): Not listed on IRIS. PBT: Not listed as persistent, bioaccumulative and toxic. NTP: Not listed by the National Toxicology Program. HAP: Not listed as a hazardous air pollutant (HAP) by U.S. EPA. 112r: Not listed under Section 112(r) of the Clean Air Act. ACGIH: TLV: 10 ppm or 47,505 µg/m3. Critical effects include upper respiratory irritation or damage, pulmonary irritation, and liver and kidney effects. HSDB: Listed in the Hazardous Substances Data Bank. Inhalation of indene vapors is expected to cause irritation of mucous membranes. International IARC: Not listed by International Agency for Research on Cancer (IARC). ATSDR (MRL): Not listed by ATSDR. DataSheet Indene.wpd 2/2 Reference Material 1. American Conference of Governmental Industrial Hygienists (ACGIH) 2006. TLVs and BEIs:
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,755,589 Sandman (45) Date of Patent: Jul
    United States Patent (19) 11 Patent Number: 4,755,589 Sandman (45) Date of Patent: Jul. 5, 1988 (54) AROMATIC SELENUM COMPOUND POLYMER OTHER PUBLICATIONS Balodia et al., J. Org. Chem. USSR (Engl. Transl.) 15, 75 Inventor: Daniel J. Sandman, Acton, Mass. 343 (1979). Gladysz et al., J. Org. Chem. 43, 1204 (1978). Assignee: GTE Laboratories Incorporated, Battistoni, P. et al., Gazz. Chim, Ital. III, 505 (1981). 73 Sandman, D. J. et al. (1982) J. Chen. Soc., Chem. Com Waltham, Mass. mun. pp. 1133-1134. Ohnishi, S. et al. (1982) Chemistry Letters, pp. (21) Appl. No.: 870,122 1841-1842. Endres, H. et al. (1982) Mol. Cryst. Liq. Cryst. 86 22 Filed: Jun. 3, 1986 111-122. K. Y. Jen et al., J. Polymer Sci., Polymer Lett. 21, 441 (1983). Related U.S. Application Data S. Tanaka, et al., Makromol. Chem., Rapid Commun. 4, 62 Division of Ser. No. 507,156, Jun. 23, 1983, Pat. No. 231-235 (1983). 4,597,914. T. Hasegawa et al., J. Polymer Sci., Polymer Lett. 22, 365 (1984). (51) Int. Cl* .............................................. CO8G 83/00 Primary Examiner-Harold D. Anderson 52) U.S. C. ................. ... 528/397; 528/388 Attorney, Agent, or Firm-Hamilton, Brook, Smith & 58 Field of Search ...................... 528/397,388 Reynolds 56) References Cited 57 ABSTRACT U.S. PATENT DOCUMENTS This invention constitutes a method for preparing mo lecular and polymeric aromatic selenide compounds 3,149,101 9/1964 Hubel et al. ........................ 260/239 such as bis-phenyl selenide and poly(p-phenylene sele 3,354,129 11/1967 Edmonds et al. ................... 528/265 3,790,536 2/1974 Vidaurri.............................
    [Show full text]
  • Biological Chemistry of Hydrogen Selenide
    antioxidants Review Biological Chemistry of Hydrogen Selenide Kellye A. Cupp-Sutton † and Michael T. Ashby *,† Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-405-325-2924 † These authors contributed equally to this work. Academic Editors: Claus Jacob and Gregory Ian Giles Received: 18 October 2016; Accepted: 8 November 2016; Published: 22 November 2016 Abstract: There are no two main-group elements that exhibit more similar physical and chemical properties than sulfur and selenium. Nonetheless, Nature has deemed both essential for life and has found a way to exploit the subtle unique properties of selenium to include it in biochemistry despite its congener sulfur being 10,000 times more abundant. Selenium is more easily oxidized and it is kinetically more labile, so all selenium compounds could be considered to be “Reactive Selenium Compounds” relative to their sulfur analogues. What is furthermore remarkable is that one of the most reactive forms of selenium, hydrogen selenide (HSe− at physiologic pH), is proposed to be the starting point for the biosynthesis of selenium-containing molecules. This review contrasts the chemical properties of sulfur and selenium and critically assesses the role of hydrogen selenide in biological chemistry. Keywords: biological reactive selenium species; hydrogen selenide; selenocysteine; selenomethionine; selenosugars; selenophosphate; selenocyanate; selenophosphate synthetase thioredoxin reductase 1. Overview of Chalcogens in Biology Chalcogens are the chemical elements in group 16 of the periodic table. This group, which is also known as the oxygen family, consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive element polonium (Po).
    [Show full text]
  • United States Patent Office Patented Jan
    2,729,676 United States Patent Office Patented Jan. 3, 1956 1. In order that those skilled in the art may better under stand how the present invention may be carried into 2,729,676 effect, the following methods are provided by way of illustration.To prepare g,6'-diselenodipropionic acid, an alkali PREPARATION OF fSELENODIPROPIONICCD s Selenide such as sodium, potassium, or ammonium selen Donald L. MacPeek, Charleston, W. Va., and William H. ide and the like is slowly reacted with beta propiono Rauscher, Brunswick, N. Y., assignors to the United lactone in aqueous solution to form the addition product. States of America as represented by the Secretary of The product is acidified with a suitable acid such as hydro the Army 0. chloric acid, etc. and the desired product is obtained by No Drawing. Application April 29, 1953, a suitable method such as extraction. The following Serial No. 352,053 examples are illustrative of preferred embodiments of the foregoing method. 1 Claim. (C. 260-537) EXAMPLE This invention relates to fungicidal compounds and 5 A quantity of 38 grams (0.25 mole) of sodium selenide more particularly to new compositions of matter having is dissolved as completely as possible in 50 ml. of water pronounced fungicidal activity. contained in a 500 ml. 3 necked flask having standard Electronic equipment in use may be exposed in many . taper joints. The flask is fitted with a dropping funnel instances to a combination of severe climatic conditions and motor stirrer. The mixture is stirred for about 10 Such as extremes of heat, cold, and humidity.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • 1. Give the Correct Names for Each of the Compounds Listed Below. A
    1. Give the correct names for each of the compounds listed below. a) NaCl sodium chloride n) ZrS2 zirconium sulfide b) FrBr francium bromide o) AgI silver iodide c) KF potassium fluoride p) BaSe barium selenide d) RaS radium sulfide q) MgO magnesium oxide e) LiI lithium iodide r) LaBr3 lanthanum bromide f) Li3N lithium nitride s) Sr3N2 strontium nitride g) AlBr3 aluminum bromide t) Cd3As2 cadmium arsenide h) CdCl2 cadmium chloride u) Rb2Se rubidium selenide i) K2O potassium oxide v) Rb3N rubidium nitride j) InF3 indium fluoride w) BaF2 barium fluoride k) ZnO zinc oxide x) ZrTe2 zirconium telluride l) Y2O3 yttrium oxide y) Cs3P cesium phosphide m) CaTe calcium telluride z) Y2O3 yttrium oxide 2. Write the correct chemical formula for each of the following compounds. a) potassium bromide KBr n) potassium nitride K3N b) zinc bromide ZnBr2 o) aluminum bromide AlBr3 c) lithium iodide LiI p) zinc phosphide Zn3P2 d) scandium chloride ScCl3 q) magnesium sulfide MgS e) magnesium chloride MgCl2 r) hafnium chloride HfCl4 f) magnesium oxide MgO s) barium sulfide BaS g) hydrogen sulfide H2S t) tantalum oxide Ta2O5 h) gallium iodide GaI3 u) zirconium nitride Zr3N4 i) sodium oxide Na2O v) potassium selenide K2Se j) magnesium selenide MgSe w) germanium fluoride GeF4 k) calcium fluoride CaF2 x) francium phosphide Fr3P l) aluminum oxide Al2O3 y) zinc arsenide Zn3As2 m) beryllium chloride BeCl2 z) scandium telluride Sc2Te3 L. h. s. – Chemistry – Nomenclature – Answers – Page 1 3. Give the correct names for each of the compounds listed below. a) CaSO4 calcium
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,846,032 B2 Liu Et Al
    USOO8846032B2 (12) United States Patent (10) Patent No.: US 8,846,032 B2 Liu et al. (45) Date of Patent: *Sep. 30, 2014 (54) MDCK CELL LINES SUPPORTINGVIRAL 2760/16051; C12N 2760/16164; C12N GROWTH TO HIGHTTERS AND 2760/16111; C12N 2760/16211; C12N BOREACTOR PROCESS USING THE SAME 2760/16221; C12N 2760/16351; C12N 2830/85; C12N5/00; C12N 5/0043; C12N (75) Inventors: Jonathan Liu, Milpitas, CA (US); 5/005; C12N5/0075; C07K 14/11; C12O Richard Schwartz, Bethesda, MD (US); 1/70; G01N 2333/11 Mark Thompson, Morgan Hill, CA See application file for complete search history. (US); Luis Maranga, Santa Clara, CA (US); Mridul Ghosh, San Jose, CA (US); Ajit Subramanian, Berkeley, CA (56) References Cited (US); Simon Sheng-Tsiung Hsu, Palo U.S. PATENT DOCUMENTS Alto, CA (US) 5,824,536 A 10, 1998 Webster et al. (73) Assignee: MedImmune, LLC, Gaithersburg, MD 5.948,410 A 9/1999 Van Scharrenburg et al. 6,194,191 B1 2/2001 Zhang et al. (US) 6,245,549 B1 6/2001 Ewasyshyn et al. 6,455,298 B1 9, 2002 Groner et al. (*) Notice: Subject to any disclaimer, the term of this 6,656,720 B2 12/2003 Groner patent is extended or adjusted under 35 6,726,907 B1 4/2004 Zhang et al. U.S.C. 154(b) by 0 days. 6.825,036 B2 11/2004 Makizumi et al. 6.951,752 B2 10/2005 Reiter et al. This patent is Subject to a terminal dis 7,553,665 B2 6/2009 Aloni et al.
    [Show full text]
  • Nomenclature Notes
    Rules of Nomenclature for Binary Compounds There are three types of binary compounds: Type I. A metal of fixed charge and a nonmetal; Type II. A metal of variable charge and a nonmetal; and Type III. Two nonmetals Metals of ‘variable charge’ tend to be transition elements with some exceptions; metals of fixed charge tend to be the alkali metals and the alkaline earths, along with zinc, cadmium and silver. Nonmetals are those compounds to the right of the bold zig-zag line (see Periodic Table attached) The rules for naming binary compounds are then as follows: • Rule 1. When writing a formula or naming a compound: a). For Type I and Type II compounds, first list the metal then the nonmetal; b) For Type III compounds always list the electropositive species first (the element furthest left in the periodic table) and then the electronegative species. Type III species tend to be exclusively covalently bound compounds. NOTE: It becomes very important that you KNOW YOUR IONS AND THEIR CHARGES (especially the anions, since any given element anion does not have varying charges)!!! • Rule 2. All compound must be neutral UNLESS indicated otherwise. • Rule 3. When naming binary compounds: a). For compounds of Type I and Type II, always use the FULL name of the metal and add the suffix -ide to the root name of the nonmetal (i.e. Metal Nonmetide); b). Type II compounds are handled the same as Type I except the charge on the metal is indicated by using a roman numeral in parentheses immediately following the metal (i.e.
    [Show full text]
  • (Z,Z)-Selanediylbis(2-Propenamides): Novel Class of Organoselenium Compounds with High Glutathione Peroxidase-Like Activity
    molecules Article (Z,Z)-Selanediylbis(2-propenamides): Novel Class of Organoselenium Compounds with High Glutathione Peroxidase-Like Activity. Regio- and Stereoselective Reaction of Sodium Selenide with 3-Trimethylsilyl-2-propynamides Mikhail V. Andreev, Vladimir A. Potapov * , Maxim V. Musalov and Svetlana V. Amosova A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of The Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia; [email protected] (M.V.A.); [email protected] (M.V.M.); [email protected] (S.V.A.) * Correspondence: [email protected] Academic Editor: Derek J. McPhee Received: 3 December 2020; Accepted: 14 December 2020; Published: 15 December 2020 Abstract: The efficient regio- and stereoselective synthesis of (Z,Z)-3,30-selanediylbis(2-propenamides) in 76–93% yields was developed based on the reaction of sodium selenide with 3-trimethylsilyl-2- propynamides. (Z,Z)-3,30-Selanediylbis(2-propenamides) are a novel class of organoselenium compounds. To date, not a single representative of 3,30-selanediylbis(2-propenamides) has been described in the literature. Studying glutathione peroxidase-like properties by a model reaction showed that the activity of the obtained products significantly varies depending on the organic moieties in the amide group. Divinyl selenide, which contains two lipophilic cyclohexyl substituents in the amide group, exhibits very high glutathione peroxidase-like activity and this compound is considerably superior to other products in this respect. Keywords: (Z,Z)-3,30-selanediylbis(2-propenamides); 3-trimethylsilyl-2-propynamides; sodium selenide; glutathione peroxidase-like activity; regioselective reactions; stereoselective reactions; desilylation 1. Introduction Vinyl selenides are important intermediates for organic synthesis [1–9].
    [Show full text]
  • Safety Data Sheet Page 1/5 Acc
    Safety Data Sheet Page 1/5 acc. to OSHA HCS Printing date 05/02/2018 Revision date 05/01/2018 Version 1 1 Identification Product identifier Product name: Sodium selenide Stock number: 36187 CAS Number: 1313-85-5 EC number: 215-212-0 Index number: 034-002-00-8 Relevant identified uses of the substance or mixture and uses advised against. Identified use: SU24 Scientific research and development Details of the supplier of the safety data sheet Manufacturer/Supplier: Alfa Aesar Thermo Fisher Scientific Chemicals, Inc. 30 Bond Street Ward Hill, MA 01835-8099 Tel: 800-343-0660 Fax: 800-322-4757 Email: [email protected] www.alfa.com Information Department: Health, Safety and Environmental Department Emergency telephone number: During normal business hours (Monday-Friday, 8am-7pm EST), call (800) 343-0660. After normal business hours, call Carechem 24 at (866) 928-0789. 2 Hazard(s) identification Classification of the substance or mixture in accordance with 29 CFR 1910 (OSHA HCS) GHS06 Skull and crossbones Acute Tox. 2 H300 Fatal if swallowed. Acute Tox. 3 H331 Toxic if inhaled. GHS08 Health hazard STOT RE 2 H373 May cause damage to the central nervous system, the liver and the digestive system through prolonged or repeated exposure. Route of exposure: Oral, Inhalation. Hazards not otherwise classified No information known. Label elements GHS label elements The product is classified and labeled in accordance with 29 CFR 1910 (OSHA HCS) Hazard pictograms GHS06 GHS08 Signal word Danger Hazard statements H300 Fatal if swallowed. H331 Toxic if inhaled. H373 May cause damage to the central nervous system, the liver and the digestive system through prolonged or repeated exposure.
    [Show full text]
  • Standard X-Ray Diffraction Powder Patterns NATIONAL BUREAU of STANDARDS
    NBS MONOGRAPH 25—SECTION 1 9 CO Q U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Standard X-ray Diffraction Powder Patterns NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essentia! services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration
    [Show full text]