Reduced Β-Catenin Expression Affects Patterning of Bone Primordia, but Not Bone Maturation Tobias Pflug, Uyen Huynh-Do and Stefan Rudloff*

Total Page:16

File Type:pdf, Size:1020Kb

Reduced Β-Catenin Expression Affects Patterning of Bone Primordia, but Not Bone Maturation Tobias Pflug, Uyen Huynh-Do and Stefan Rudloff* © 2017. Published by The Company of Biologists Ltd | Biology Open (2017) 6, 582-588 doi:10.1242/bio.023572 RESEARCH ARTICLE Reduced β-catenin expression affects patterning of bone primordia, but not bone maturation Tobias Pflug, Uyen Huynh-Do and Stefan Rudloff* ABSTRACT disassembled and β-catenin accumulates in the cell and is Wnt/β-catenin signaling is involved in patterning of bone primordia, subsequently translocated to the nucleus, where it transactivates but also plays an important role in the differentiation of chondrocytes canonical Wnt target genes (Cadigan and Peifer, 2009; Heuberger and osteoblasts. During these processes the level of β-catenin must be and Birchmeier, 2010; Roose et al., 1998). Additional players that β tightly regulated. Excess β-catenin leads to conditions with increased affect the level of -catenin during bone development and repair bone mass, whereas loss of β-catenin is associated with osteoporosis include the extracellular Wnt inhibitors Dickkopf and Sclerostin or, in extreme cases, the absence of limbs. In this study, we examined (Florio et al., 2016; Ke et al., 2012; Qiang et al., 2008). β skeletogenesis in mice, which retain only 25% of β-catenin. These Early during embryonic development Wnt/ -catenin signaling embryos showed severe morphological abnormalities of which the plays crucial roles in determining the future body axes, and lack of hindlimbs and misshaped front paws were the most striking. maintaining gastrulation and mesoderm production (Hikasa and Surprisingly however, calcification of bone primordia occurred Sokol, 2013; Holstein, 2012). During later stages, Wnt signals are normally. Moreover, the Wnt-dependent regulatory network of important for induction, growth and organization of the future limbs transcription factors driving the differentiation of cartilage and bone, (Kengaku et al., 1998). Hereby, reciprocal signals between as well as the expression of extracellular matrix components, were mesenchymal and ectodermal cells promote the formation of the preserved. These findings show that 25% β-catenin is insufficient for limb organizer, called the apical ectodermal ridge (AER) (Barrow the correct patterning of bone primordia, but sufficient for their et al., 2003; McQueeney et al., 2002; Narita et al., 2007). The AER mineralization. Our approach helps to identify bone morphogenetic promotes the proliferation of the underlying mesenchymal cells via processes that can proceed normally even at low β-catenin levels, in Fgf signaling and induces the zone of polarizing activity (ZPA) at contrast to those that require high β-catenin dosages. This information the posterior side of the growing limb bud. Limb patterning involves could be exploited to improve the treatment of bone diseases by fine- multiple signaling protein gradients (Wnt, Fgf and Shh), originating tuning the individual β-catenin dosage requirements. from either AER or ZPA, that in turn affect the expression of different Hox genes (Wellik and Capecchi, 2003; Capdevila and KEY WORDS: β-catenin dosage, Canonical Wnt signaling, Bone Izpisúa Belmonte, 2001; Chiang et al., 2001). The individual bones development, Limb patterning of stylopodium (humerus or femur), zeugopodium (radius/ulna or tibia/fibula) and autopodium (hand or foot) are initially set up as INTRODUCTION aggregates of tightly packed mesenchymal cells (Hall and Miyake, Canonical Wnt signaling activates the transcription of β-catenin- 2000). These mesenchymal condensations differentiate into dependent target genes during many stages of bone development cartilage and are later replaced by bone via endochondral and maintenance (Duan and Bonewald, 2016), whereby a osteogenesis. The orderly progression of these processes again cytoplasmic multi-protein complex composed of the scaffolding crucially depends on the timely activation of Wnt/β-catenin proteins Axin and APC (Heuberger and Birchmeier, 2010; signaling in the respective cell types (Lu et al., 2013; Tamamura Munemitsu et al., 1995), and the kinases CK1α and GSK3β et al., 2005). The molecular mechanisms underlying bone formation (Behrens et al., 1998; Munemitsu et al., 1995), tightly regulates the are highly complex and involve the activation of mutually exclusive level of β-catenin. In the absence of canonical Wnt signaling this transcription factors and extracellular matrix genes in chondrocytes degradation machinery continuously phosphorylates β-catenin at its and osteoblasts. As the master regulator of chondrogenesis, Sox9 N-terminal region. This marks the protein for ubiquitination and drives not only the expression of cartilage-specific collagen type II proteasomal degradation (Aberle et al., 1997) and the transcription and Aggrecan, but also maintains the proliferation of chondrocytes of canonical Wnt target genes is repressed. Upon binding of a and prohibits their differentiation into osteoblasts and thus canonical Wnt ligand to the co-receptor pair Frizzled and Lrp5/6 ossification (Lefebvre and de Crombrugghe, 1998; Dy et al., (Heuberger and Birchmeier, 2010), the degradation machinery is 2012; Hattori et al., 2010). The activity of Sox9 is itself regulated by several upstream signals, of which canonical Wnt signaling exerts Department of Clinical Research, Department of Nephrology and Hypertension, an inhibiting effect. Lastly, Sox9 inhibits the expression of Runx2, a Bern University Hospital, University of Bern, Freiburgstrasse 15, Bern CH-3010, key transcription factor for bone development (Liu and Lee, 2013). Switzerland. Conversely, activation of canonical Wnt signaling in pre-osteoblasts *Author for correspondence ([email protected]) triggers the expression of Runx2 and other bone-promoting factors such as Sp7 or Atf4 (Huang et al., 2007; Yang and Karsenty, 2004). S.R., 0000-0001-6333-0830 Their importance for osteoblast differentiation has been shown in This is an Open Access article distributed under the terms of the Creative Commons Attribution knock-out mice or overexpression studies, which result in loss of License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. bone formation or ectopic ossification, respectively (Komori et al., 1997; Ueta et al., 2001). Furthermore, these transcription factors Received 13 December 2016; Accepted 20 March 2017 activate genes like type I collagen alpha 1, osteocalcin or bone Biology Open 582 RESEARCH ARTICLE Biology Open (2017) 6, 582-588 doi:10.1242/bio.023572 sialoprotein that are characteristic for the extracellular matrix of Phenotypically, mutant embryos showed major developmental bone (Ducy et al., 1997; Kern et al., 2001; Ganss et al., 1999). defects with increasing severity in the caudal half of the embryo It is therefore not surprising that many human genetic diseases are (hindlimbs and tail), as well as in the distal parts of the forelimbs associated with mutations that cause a loss of function (LOF) or a (Fig. 1; Fig. S2). In more detail, most mutant embryos did not have gain of function (GOF) of different genes of the Wnt signaling any hindlimb structures (Fig. 1A,C and G), displayed a spina bifida pathway. GOF mutations in both mice and humans lead to unusually (white arrowhead in Fig. 1A,B), an unusually curled tail (asterisk in high bone mass (Regard et al., 2012), while LOF mutations are Fig. 1A,C and Fig. S2A) and only rudimentary pelvic bones (black usually associated with low bone mass. One of the most extreme arrowhead in Fig. 1C). In very few embryos, truncated hindlimbs LOF mutations is the Tetra-amelia syndrome. It is caused by were present (black arrowhead in Fig. S2A). Forelimbs were always mutations in WNT3, which leads to the complete loss of the developed; however, their appearance was abnormal, and the formation of all four limbs (Niemann et al., 2004). In this study, we digits showed severe malformations (Fig. 1A). To gain more restricted β-catenin expression during bone development without insight into the skeletal changes, we performed Alcian Blue disturbing the machinery of the Wnt signaling pathway. To this end, (cartilage) and Alizarin Red (calcified bone) staining on whole we conditionally expressed β-catenin only from the ROSA26 locus mount embryos (Fig. 1C,D; Fig. S2A) and isolated forelimbs (Rudloff and Kemler, 2012) in all tissues caudal to the heart (Fig. 1E,F; Fig. S2B-D). Shape and size of the skeletal elements of (Hierholzer and Kemler, 2009). We found that the morphogenesis forelimb zeugopodia and stylopodia seemed not to be altered of the distal forelimbs, hindlimbs and the tail was disturbed. We between control (Fig. 1F) and β-catenin knockdown embryos further showed that the expression of genes underlying the patterning process in the forelimb autopodia was severely disturbed. Yet, the formation of mineralized matrix in these bone anlagen appeared to proceed normally. More surprisingly, we could show that the underlying molecular machinery that controls the differentiation of chondrocytes and osteoblasts was preserved in β- catenin knockdown mice. Thus, low β-catenin expression levels are insufficient for correct patterning of the skeleton, but adequate for the maturation of skeletal primordia. RESULTS Knockdown of β-catenin leads to developmental defects in the caudal embryo Expression of Cdx1::Cre mediates recombination in the three germ layers of the primitive streak region throughout the posterior embryo, caudal to the heart at mid-gastrulation (Hierholzer
Recommended publications
  • A Commentary on WNT7A Implication in Cervical Cancer Development
    ndrom Sy es tic & e G n e e n G e f T o Artaza-Irigaray et al., J Genet Syndr Gene Ther 2015, 6:3 Journal of Genetic Syndromes h l e a r n a DOI: 10.4172/2157-7412.1000267 r p u y o J & Gene Therapy ISSN: 2157-7412 Commentary Open Access A Commentary on WNT7A Implication in Cervical Cancer Development Cristina Artaza-Irigaray1,2, Adriana Aguilar-Lemarroy1 and Luis F Jave-Suárez1* 1División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico 2Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS) - Universidad de Guadalajara, Jalisco, Mexico Cervical Cancer (CC) is the fourth leading cause of cancer Conversely, silencing Wnt7a in HaCaT cells induced an increase in cell deaths in women worldwide and is associated directly with Human proliferation and migration rates. These results suggest that the loss of papillomavirus (HPV) infection [1]. Many authors have reported Wnt7a expression probably contributes to increased cell proliferation that HPV can immortalize human cells without leading to cell and migration during cervical tumor development. transformation by itself [2,3]. Thus, cervical carcinogenesis is a As responses always lead to new questions, the next step was multistep process involving HPV infection and additional alterations. to elucidate the way in which Wnt7a ligand expression was being In 2005, canonical Wnt signaling pathway activation was proposed repressed. Wnt7a is known to possess tumor suppressor properties as a second hit during epithelial malignant transformation but this in several cancers and is frequently inactivated due to CpG-island hypothesis remains controversial [3,4].
    [Show full text]
  • Deregulated Wnt/Β-Catenin Program in High-Risk Neuroblastomas Without
    Oncogene (2008) 27, 1478–1488 & 2008 Nature Publishing Group All rights reserved 0950-9232/08 $30.00 www.nature.com/onc ONCOGENOMICS Deregulated Wnt/b-catenin program in high-risk neuroblastomas without MYCN amplification X Liu1, P Mazanek1, V Dam1, Q Wang1, H Zhao2, R Guo2, J Jagannathan1, A Cnaan2, JM Maris1,3 and MD Hogarty1,3 1Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA; 2Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA and 3Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA Neuroblastoma (NB) is a frequently lethal tumor of Introduction childhood. MYCN amplification accounts for the aggres- sive phenotype in a subset while the majority have no Neuroblastoma (NB) is a childhood embryonal malig- consistently identified molecular aberration but frequently nancy arising in the peripheral sympathetic nervous express MYC at high levels. We hypothesized that acti- system. Half of all children with NB present with features vated Wnt/b-catenin (CTNNB1) signaling might account that define their tumorsashigh riskwith poor overall for this as MYC is a b-catenin transcriptional target and survival despite intensive therapy (Matthay et al., 1999). multiple embryonal and neural crest malignancies have A subset of these tumors are characterized by high-level oncogenic alterations in this pathway. NB cell lines without genomic amplification of the MYCN proto-oncogene MYCN amplification express higher levels of MYC and (Matthay et al., 1999) but the remainder have no b-catenin (with aberrant nuclear localization) than MYCN- consistently identified aberration to account for their amplified cell lines.
    [Show full text]
  • Estrogen Receptor-<Alpha> Knockout Mice Exhibit Resistance To
    Developmental Biology 238, 224–238 (2001) doi:10.1006/dbio.2001.0413, available online at http://www.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Estrogen Receptor-␣ Knockout Mice Exhibit Resistance to the Developmental Effects of Neonatal Diethylstilbestrol Exposure on the Female Reproductive Tract John F. Couse,*,† Darlene Dixon,‡ Mariana Yates,* Alicia B. Moore,‡ Liang Ma,§,1 Richard Maas,§ and Kenneth S. Korach*,2 *Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; †Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695; ‡Comparative Pathobiology Section, Laboratory of Experimental Pathology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; and §Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts 02115 Data indicate that estrogen-dependent and -independent pathways are involved in the teratogenic/carcinogenic syndrome that follows developmental exposure to 17␤-estradiol or diethylstilbestrol (DES), a synthetic estrogen. However, the exact role and extent to which each pathway contributes to the resulting pathology remain unknown. We employed the ␣ERKO mouse, which lacks estrogen receptor-␣ (ER␣), to discern the role of ER␣ and estrogen signaling in mediating the effects of neonatal DES exposure. The ␣ERKO provides the potential to expose DES actions mediated by the second known ER, ER␤, and those that are ER-independent. Wild-type and ␣ERKO females were treated with vehicle or DES (2 ␮g/pup/day for Days 1–5) and terminated after 5 days and 2, 4, 8, 12, and 20 months for biochemical and histomorphological analyses.
    [Show full text]
  • Wnt Proteins Synergize to Activate Β-Catenin Signaling Anshula Alok1, Zhengdeng Lei1,2,*, N
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 1532-1544 doi:10.1242/jcs.198093 RESEARCH ARTICLE Wnt proteins synergize to activate β-catenin signaling Anshula Alok1, Zhengdeng Lei1,2,*, N. Suhas Jagannathan1,2, Simran Kaur1,‡, Nathan Harmston2, Steven G. Rozen1,2, Lisa Tucker-Kellogg1,2 and David M. Virshup1,3,§ ABSTRACT promoters and enhancers to drive expression with distinct Wnt ligands are involved in diverse signaling pathways that are active developmental timing and tissue specificity. However, in both during development, maintenance of tissue homeostasis and in normal and disease states, multiple Wnt genes are often expressed various disease states. While signaling regulated by individual Wnts in combination (Akiri et al., 2009; Bafico et al., 2004; Benhaj et al., has been extensively studied, Wnts are rarely expressed alone, 2006; Suzuki et al., 2004). For example, stromal cells that support the and the consequences of Wnt gene co-expression are not well intestinal stem cell niche express at least six different Wnts at the same understood. Here, we studied the effect of co-expression of Wnts on time (Kabiri et al., 2014). While in isolated instances, specific Wnt β the β-catenin signaling pathway. While some Wnts are deemed ‘non- pairs have been shown to combine to enhance -catenin signaling canonical’ due to their limited ability to activate β-catenin when during embryonic development, whether this is a general expressed alone, unexpectedly, we find that multiple Wnt combinations phenomenon remains unclear (Cha et al., 2008; Cohen et al., 2012; can synergistically activate β-catenin signaling in multiple cell types.
    [Show full text]
  • Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome Katheryn L
    University of Kentucky UKnowledge Animal and Food Sciences Faculty Publications Animal and Food Sciences 1-25-2016 Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome Katheryn L. Cerny University of Kentucky, [email protected] Rosanne A. C. Ribeiro University of Kentucky Myoungkun Jeoung University of Kentucky, [email protected] CheMyong Ko University of Illinois at Urbana-Champaign Phillip J. Bridges University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/animalsci_facpub Part of the Animal Sciences Commons, Cell and Developmental Biology Commons, Food Science Commons, and the Physiology Commons Repository Citation Cerny, Katheryn L.; Ribeiro, Rosanne A. C.; Jeoung, Myoungkun; Ko, CheMyong; and Bridges, Phillip J., "Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome" (2016). Animal and Food Sciences Faculty Publications. 7. https://uknowledge.uky.edu/animalsci_facpub/7 This Article is brought to you for free and open access by the Animal and Food Sciences at UKnowledge. It has been accepted for inclusion in Animal and Food Sciences Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome Notes/Citation Information Published in PLOS ONE, v. 11, no. 1, e0147685, p. 1-17. © 2016 Cerny et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Ror2 Functions As a Noncanonical Wnt Receptor That Regulates NMDAR-Mediated Synaptic Transmission
    RoR2 functions as a noncanonical Wnt receptor that regulates NMDAR-mediated synaptic transmission Waldo Cerpaa,1, Elena Latorre-Estevesa,b, and Andres Barriaa,2 aDepartment of Physiology and Biophysics and bMolecular and Cellular Biology Program, University of Washington, Seattle, WA 98195 Edited* by Richard L. Huganir, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved March 6, 2015 (received for review September 16, 2014) Wnt signaling has a well-established role as a regulator of nervous receptor for noncanonical Wnt ligands capable of regulating syn- system development, but its role in the maintenance and regula- aptic NMDARs. In hippocampal neurons, activation of RoR2 by tion of established synapses in the mature brain remains poorly noncanonical Wnt ligand Wnt5a activates PKC and JNK, two understood. At excitatory glutamatergic synapses, NMDA receptors kinases involved in the regulation of NMDAR currents. In ad- (NMDARs) have a fundamental role in synaptogenesis, synaptic dition, we show that signaling through RoR2 is necessary for plasticity, and learning and memory; however, it is not known what the maintenance of basal NMDAR-mediated synaptic trans- controls their number and subunit composition. Here we show that mission and the acute regulation of NMDAR synaptic responses the receptor tyrosine kinase-like orphan receptor 2 (RoR2) func- by Wnt5a. tions as a Wnt receptor required to maintain basal NMDAR- Identification of RoR2 as a Wnt receptor that regulates syn- aptic NMDARs provides a mechanism for Wnt signaling to mediated synaptic transmission. In addition, RoR2 activation by a control synaptic transmission and synaptic plasticity acutely, and noncanonical Wnt ligand activates PKC and JNK and acutely en- is a critical first step toward understanding the role played by hances NMDAR synaptic responses.
    [Show full text]
  • Wnt7a Predicts Poor Prognosis, and Contributes to Growth and Metastasis in Tongue Squamous Cell Carcinoma
    ONCOLOGY REPORTS 41: 1749-1758, 2019 Wnt7a predicts poor prognosis, and contributes to growth and metastasis in tongue squamous cell carcinoma BO JIA1*, XIAOLING QIU1*, HONGXING CHU1, XIANG SUN1, SHUAIMEI XU2, XINYUAN ZHAO2 and JIANJIANG ZHAO1 Departments of 1Oral Surgery and 2Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China Received May 10, 2018; Accepted September 3, 2018 DOI: 10.3892/or.2019.6974 Abstract. Regional and distant metastases are the principal oncogene, and a potential prognostic and therapeutic target for reasons underlying the high mortality rate associated with patients with TSCC. tongue squamous cell carcinoma (TSCC); however, the precise molecular mechanisms involved in tongue tumorigen- Introduction esis remain unknown. The present study aimed to determine the expression and mechanism of regulation of Wnt7a in the Tongue squamous cell carcinoma (TSCC) is one of the most growth and metastasis of TSCC. Wnt7a mRNA and protein common types of head and neck cancer (HNC) (1,2); >3,000 expression levels were examined in TSCC tissues using reverse people worldwide are diagnosed with TSCC annually and its transcription-quantitative polymerase chain reaction and accounts for 24% of all HNC cases (3). Although many patients immunohistochemical staining. A loss-of-function assay was are identified at the earlier stages of the disease, the 5‑year performed in TSCC cell lines using Wnt7a small interfering survival rate for advanced-stage TSCC is only ~50%, due to RNA or short hairpin RNA, after which, cell proliferation, high invasiveness and metastasis (4). In addition, no effective migration and invasion were analyzed using Cell Counting drugs are currently available for the treatment and control of Kit-8, tumorigenicity and Transwell assays, respectively.
    [Show full text]
  • Supplementary Figure 1. Expression of Wnt Genes in SC of Naïve
    A Days after CCI Days after CCI Naive Sham 1 3 5 10 Naive Sham 1 3 5 10 500bp 400bp Wnt1 Wnt2 250bp 250bp 400bp 400bp Wnt2b Wnt3 250bp 250bp 400bp 400bp Wnt3a Wnt4 250bp 250bp 300bp 400bp Wnt5a Wnt5b 200bp 250bp 400bp 400bp Wnt6 Wnt7a 250bp 250bp 400bp 400bp Wnt7b Wnt8a 250bp 250bp 400bp 350bp Wnt8b Wnt9a 250bp 200bp 400bp 400bp Wnt9b Wnt10a 250bp 250bp 400bp 400bp Wnt10b Wnt11 250bp 250bp 400bp 400bp Wnt16 GAPDH 250bp 250bp B 5 Wnt1 5 Wnt2 5 Wnt3a ** 4 4 4 * ** ** 3 3 * 3 * * 2 2 * 2 1 1 1 0 0 0 NaïveSham 1 3 5 10 Naïve Sham 1 3 5 10 Naïve Sham 1 3 5 10 Days after CCI Days after CCI Days after CCI 5 Wnt5b 5 Wnt8b 4 4 ** 3 ** 3 ** Relative mRNA Expression (fold of change) ** 2 * 2 1 1 0 0 NaïveSham 1 3 5 10 NaïveSham 1 3 5 10 Days after CCI Days after CCI Supplementary Figure 1 A B Negative Weak Moderate Strong Negative Weak Moderate Strong Large-sized cells 100% 100% 80% 80% 60% 60% 40% 20% 40% 0% 20% Sham CCI-1d CCI-14d Medium-sized cells Wnt3a immunoreactivity cells 0% 100% CGRP(+) IB4(+) 80% Small cells 60% 40% 20% 0% Sham CCI-1d CCI-14d Wnt3a immunoreactivity cells Small cells 100% 80% 60% 40% 20% 0% Sham CCI-1d CCI-14d Fig. S2 4 Fz1 4 Fz3 4 Fz4 4 Fz5 ** 3 3 ** 3 3 2 ** 2 2 ** 2 * 1 1 1 1 0 0 0 0 NaïveSham 1 5 10 NaïveSham 1 5 10 Naïve Sham 1 5 10 NaïveSham 1 5 10 Days after CCI Days after CCI Days after CCI Days after CCI 4 Fz6 4 Fz7 4 Fz8 4 Fz9 (Fold of Change) of (Fold 3 3 3 ** 3 Relative mRNA Expression Expression mRNA Relative ** 2 2 2 ** 2 * 1 1 1 1 0 0 0 0 NaïveSham 1 5 10 NaïveSham 1 5 10 Naïve Sham 1d 5d 10d NaïveSham 1
    [Show full text]
  • The Role of Wnt Signalling in Excitatory Hippocampal Synapse Formation and Function
    The role of Wnt signalling in excitatory hippocampal synapse formation and function Derek Anane UCL PhD Thesis Supervisors: Prof. Patricia C. Salinas Dr. Alasdair Gibb 1 I, Derek Anane confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract The formation of a functional neural network is dependent on the correct assembly of cell-cell contacts. Apposition of pre and post synaptic terminals is a highly regulated process culminating in the formation of the functional junction points called synapses. Whilst much is understood of the processes involved in bringing axon and target together less is understood of the mechanisms controlling synapse assembly and maintenance. Wnts are highly glycosylated secretary proteins which have been demonstrated to be involved at several stages of the developing nervous system. Through a range of signalling pathways Wnts are able to produce cellular effects including embryonic patterning, fate and movement. Much recent research has been focused on the role of Wnts in synapse formation and function. In this thesis I present data from hippocampal cultures showing Wnt7a regulation of excitatory synapses. Exposure of developing hippocampal neurons to Wnt7a results in an increase in the density of surface GluA1, GluA2 and GluN1 puncta on dendritic spines. Wnt7a also regulates the co-localisation of postsynaptic glutamate receptor puncta with presynaptic sites labelled with vesicular glutamate transporter protein (vGlut). Interestingly the Wnt7a mediated increase in excitatory synapse formation is no longer present on neurons from mature cultures. At the main postsynaptic site of excitatory synaptic transmission I identified Wnt7a and Dvl mediated maturation of glutamatergic receptor localisation.
    [Show full text]
  • Uterine Epithelial Estrogen Receptor Α Is Dispensable for Proliferation but Essential for Complete Biological and Biochemical Responses
    Uterine epithelial estrogen receptor α is dispensable for proliferation but essential for complete biological and biochemical responses Wipawee Winuthayanona, Sylvia C. Hewitta, Grant D. Orvisb,c, Richard R. Behringerc, and Kenneth S. Koracha,1 aLaboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709; bDevelopmental Biology Program, Sloan–Kettering Institute, York Avenue, New York, NY 10065; and cDepartment of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030 Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved September 17, 2010 (received for review May 7, 2010) Female fertility requires estrogen to specifically stimulate estrogen uterine epithelial DNA synthesis was stromal ERα-dependent via receptor α (ERα)-dependent growth of the uterine epithelium in induction of autocrine or paracrine mitogenic factors in the stro- adult mice, while immature females show proliferation in both ma that stimulated the epithelial proliferation (5). Evaluating an stroma and epithelium. To address the relative roles of ERα in epithelial-specific role for ERα in tissue proliferation was re- mediating estrogen action in uterine epithelium versus stroma, a cently reported in the mammary gland. Use of a MMTV-Cre uterine epithelial-specific ERα knockout (UtEpiαERKO) mouse line crossed with floxed ERα mice demonstrated that mammary gland was generated by crossing Esr mice with Wnt7a-Cre mice. Expres- growth and ductal epithelial cell proliferation required the mam- sion of Wnt7a directed Cre activity generated selective deletion of mary epithelial ERα (6), which contrasted with previous me- ERα in uterine epithelium, and female UtEpiαERKO are infertile.
    [Show full text]
  • Glyphosate-Based Herbicide Enhances the Uterine Sensitivity to Estradiol in Rats
    239 2 Journal of M Guerrero Schimpf et al. Estradiol sensitivity after 239:2 197–213 Endocrinology herbicide exposure RESEARCH Glyphosate-based herbicide enhances the uterine sensitivity to estradiol in rats Marlise Guerrero Schimpf1,2, María M Milesi1,2, Enrique H Luque1,2 and Jorgelina Varayoud1,2 1Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina 2Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina Correspondence should be addressed to J Varayoud: [email protected] Abstract In a previous work, we detected that postnatal exposure to a glyphosate-based Key Words herbicide (GBH) alters uterine development in prepubertal rats causing endometrial f estrogen receptors hyperplasia and increasing cell proliferation. Our goal was to determine whether f uterus exposure to low dose of a GBH during postnatal development might enhance f neonatal the sensitivity of the uterus to an estrogenic treatment. Female Wistar pups were f rat subcutaneously injected with saline solution (control) or GBH using the reference dose (2 mg/kg/day, EPA) on postnatal days (PND) 1, 3, 5 and 7. At weaning (PND21), female rats were bilaterally ovariectomized and treated with silastic capsules containing 17β-estradiol (E2, 1 mg/mL) until they were 2 months of age. On PND60, uterine samples were removed and processed for histology, immunohistochemistry and mRNA extraction to evaluate: (i) uterine morphology, (ii) uterine cell proliferation by the detection of Ki67, (iii) the expression of the estrogen receptors alpha (ESR1) and beta (ESR2) and (iv) the expression of WNT7A and CTNNB1.
    [Show full text]
  • Canonical Wnt Signaling Is Necessary for Object Recognition Memory Consolidation
    The Journal of Neuroscience, July 31, 2013 • 33(31):12619–12626 • 12619 Behavioral/Cognitive Canonical Wnt Signaling is Necessary for Object Recognition Memory Consolidation Ashley M. Fortress, Sarah L. Schram, Jennifer J. Tuscher, and Karyn M. Frick Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211 Wnt signaling has emerged as a potent regulator of hippocampal synaptic function, although no evidence yet supports a critical role for Wnt signaling in hippocampal memory. Here, we sought to determine whether canonical ␤-catenin-dependent Wnt signaling is neces- sary for hippocampal memory consolidation. Immediately after training in a hippocampal-dependent object recognition task, mice received a dorsal hippocampal (DH) infusion of vehicle or the canonical Wnt antagonist Dickkopf-1 (Dkk-1; 50, 100, or 200 ng/hemi- sphere). Twenty-four hours later, mice receiving vehicle remembered the familiar object explored during training. However, mice receiving Dkk-1 exhibited no memory for the training object, indicating that object recognition memory consolidation is dependent on canonical Wnt signaling. To determine how Dkk-1 affects canonical Wnt signaling, mice were infused with vehicle or 50 ng/hemisphere Dkk-1 and protein levels of Wnt-related proteins (Dkk-1, GSK3␤, ␤-catenin, TCF1, LEF1, Cyclin D1, c-myc, Wnt7a, Wnt1, and PSD95) were measured in the dorsal hippocampus 5 min or 4 h later. Dkk-1 produced a rapid increase in Dkk-1 protein levels and a decrease in phosphorylated GSK3␤ levels, followed by a decrease in ␤-catenin, TCF1, LEF1, Cyclin D1, c-myc, Wnt7a, and PSD95 protein levels 4 h later. These data suggest that alterations in Wnt/GSK3␤/␤-catenin signaling may underlie the memory impairments induced by Dkk-1.
    [Show full text]