The Role of Wnt Signalling in Excitatory Hippocampal Synapse Formation and Function

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Wnt Signalling in Excitatory Hippocampal Synapse Formation and Function The role of Wnt signalling in excitatory hippocampal synapse formation and function Derek Anane UCL PhD Thesis Supervisors: Prof. Patricia C. Salinas Dr. Alasdair Gibb 1 I, Derek Anane confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract The formation of a functional neural network is dependent on the correct assembly of cell-cell contacts. Apposition of pre and post synaptic terminals is a highly regulated process culminating in the formation of the functional junction points called synapses. Whilst much is understood of the processes involved in bringing axon and target together less is understood of the mechanisms controlling synapse assembly and maintenance. Wnts are highly glycosylated secretary proteins which have been demonstrated to be involved at several stages of the developing nervous system. Through a range of signalling pathways Wnts are able to produce cellular effects including embryonic patterning, fate and movement. Much recent research has been focused on the role of Wnts in synapse formation and function. In this thesis I present data from hippocampal cultures showing Wnt7a regulation of excitatory synapses. Exposure of developing hippocampal neurons to Wnt7a results in an increase in the density of surface GluA1, GluA2 and GluN1 puncta on dendritic spines. Wnt7a also regulates the co-localisation of postsynaptic glutamate receptor puncta with presynaptic sites labelled with vesicular glutamate transporter protein (vGlut). Interestingly the Wnt7a mediated increase in excitatory synapse formation is no longer present on neurons from mature cultures. At the main postsynaptic site of excitatory synaptic transmission I identified Wnt7a and Dvl mediated maturation of glutamatergic receptor localisation. Both exogenous Wnt7a and overexpression of Dvl in 14DIV hippocampal cultures caused an increase in the size and number of receptor puncta located on spines and the proportion of spines containing GluA1, GluA2 and GluN1 puncta. In my thesis I also present in vivo functional data, using animals null for both Wnt7a and Dvl expression. These animals demonstrate defects in evoked post synaptic currents and paired pulse ratio at the CA3-CA1 hippocampal synapse. In conclusion this report demonstrates the crucial role of Wnt7a – Dvl signalling in the regulation of excitatory synapse formation in the hippocampus. Furthermore amongst the myriad ways in which Wnt7a-Dvl signalling affects development of the CNS, Wnt7a acts directly at postsynaptic sites to increase synaptic strength. 3 Thesis Contents Title Page…………………………………………………………………………………...…1 Abstract…………………………………………………………………………………...…..3 Thesis Contents……………………………………………………………………………….4 List of Abbreviations………………………………………………………………................8 Chapter 1: Introduction…………………………………………………………………….11 1.1 Synapses: Presynaptic terminus……………………………………………………….13 1.2 Synapses: Postsynaptic terminal……………………………………………………….17 1.2.1 GABAergic postsynaptic specialisation……………………………………………17 1.2.2 Excitatory postsynaptic specialisation: Dendritic spines…………………………21 1.2.3 Metabotropic glutamate receptors…………………………………………………26 1.2.4 Kainate receptors…………………………………………………………………...26 1.2.5 AMPA receptors…………………………………………………………………….27 1.2.6 NMDA receptors…………………………………………………………………….29 1.2.7 Developmental regulation of glutamate receptor expression…………………….31 1.3 Synaptogenesis…………………………………………………………………………..35 1.3.1 Axon extension and target recognition…………………………………………….35 1.3.2 Synapse maturation…………………………………………………………………36 1.4 Synaptogenic Molecules………………………………………………………………...37 1.4.1 Trans-synaptic molecules…………………………………………………………..38 1.4.2 Secreted molecules…………………………………………………………………..40 1.5 Wnts……………………………………………………………………………………...43 1.5.1 Wnts: expression and secretion…………………………………………………….43 1.5.2 Wnt signalling pathways……………………………………………………………45 4 1.6 Wnts and Synapse formation…………………………………………………………49 1.6.1 Dendritic and axonal development………………………………………………...50 1.6.2 Wnts as synaptic organisers………………………………………………………51 1.6.3 Wnts at stable synapses……………………………………………………………..53 1.7 Project aims…………………………………………………………………………… 56 Chapter 2: Materials and methods………………………………………………………...57 2.1 Hippocampal Cell Culture……………………………………………………………...57 2.2 Hippocampal cell calcium phosphate transfection……………………………………57 2.3 Immunofluorescence……………………………………………………………………58 2.4 Image acquisition and analysis of synaptic puncta…………………………………...58 2.5 Dendritic spine-puncta colocalisation analysis………………………………………..59 2.6 Mouse breeding and genotyping……………………………………………………….59 2.7 Acute slice preparation…………………………………………………………………60 2.8 Recording of postsynaptic currents……………………………………………………60 2.9 Analysis of miniature currents…………………………………………………………61 2.10 Analysis of paired currents……………………………………………………………62 2.11 Statistical analysis……………………………………………………………………..63 2.12 Solutions………………………………………………………………………………..63 2.13 Antibodies……………………………………………………………………………...67 Chapter 3: Wnt7a signalling promotes the formation of functional glutamatergic synapses in the Hippocampus………………………………………………………………69 3.1 Introduction……………………………………………………………………………..69 5 3.2 Results…...………………………………………………………………………………72 3.2.1 Wnt7a promotes the formation of excitatory pre and postsynaptic sites………72 3.2.2 The synaptogenic effect of Wnt7a is related to neuronal maturity…77 3.2.3 Wnt7a signalling affects the formation of functional synapses in both mixed hippocampal cultures and at the MF-CA3 synapse………………………………………83 3.3 Discussion………………………………………………………………………………..86 3.3.1 Wnt7a regulates the formation of synapses both pre- and post-synaptically…86 3.3.2 Exposure of mature neurons to exogenous Wnt7a does not affect the localisation of pre- or post-synaptic proteins……………………………………………………88 3.3.3 Exposure of neuronal cultures to Wnt7a increases the amplitude and frequency of excitatory miniature synaptic currents without affecting inhibitory currents. ……..90 Chapter 4: Wnt signalling regulates the localisation of glutamatergic receptors on dendritic spines by acting directly at the postsynaptic terminal………………………92 4.1 Introduction……………………………………………………………………………92 4.2 Results…………………………………………………………………………………..94 4.2.1 Exogenous Wnt7a increases accumulation of glutamate receptors and presynaptic inputs onto the dendritic spines of developing neurons…………………….94 4.2.2 Exogenous Wnt7a does not affect accumulation of synaptic proteins onto the dendritic spines of mature neurons……………………………………………100 4.2.3 Postsynaptic Wnt activation increases accumulation of glutamate receptors and presynaptic inputs onto the dendritic spines of developing neurons………….106 4.2.4 Postsynaptic Wnt activation does not affect accumulation of synaptic proteins onto the dendritic spines of mature neurons…………………………………………….114 4.3 Discussion…………………………………………………………………………120 4.3.1 The role of Wnt7a signalling on NMDAR to synaptic sites………..120 4.3.2 Wnt7a signalling regulates increases in spine maturity through glutamate receptor complementation………………………………………………………………121 4.3.3 Postsynaptic expression of Wnt signalling activates effects both post and presynaptically……………………………………………………………………………..122 6 Chapter 5: Wnt 7a regulates the number and strength of functional synaptic sites…124 5.1 Introduction……………………………………………………………………………124 5.2 Results………………………………………………………………………………….126 5.2.1 Wnt7a gain of function enhances evoked postsynaptic current amplitude and decreases synaptic failure……………………………………...………………………….126 5.2.2 Wnt7a/Dvl1 loss of function at the MF-CA3 synapse decreases evoked postsynaptic current amplitude and increases the frequency of synaptic failures……………………………………………………………………………………...127 5.2.3 Wnt7a gain of function decreases paired pulse ratios in hippocampal cultures……………………………………………………………………………………..130 5.2.4 Wnt7a/Dvl1 loss of function at MF-CA3 synapses results in a decreased Paired pulse ratio…………………………………………………………………………………..132 5.3 Discussion………………………………………………………………………………134 Chapter 6: Discussion……………………………………………………………………..137 6.1 Summary of Results…………………………………………………………………...137 6.2 The role of Wnt7a signalling in pre and postsynaptic excitatory synapse formation… ………………………………………………………………………………………………139 6.3 Wnt7a signalling strongly regulates synaptic transmission in the CA3 region of the hippocampus and the implications for memory and learning………………………….141 6.4 The role of Wnt7a signalling in neurodegenerative and neurological disorders …144 Acknowledgements………………………………………………………………………...147 References………………………………………………………………………………….148 7 List of Abbreviations AChR – Acetyl choline receptor AMPA - α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid AMPA-R – AMPA receptor BDNF – Brain-derived neurotrophic factor BSA – Bovine serum albumin CaMKII – Ca 2+ /calmodulin-dependent kinase 2 CaMKK-– Ca 2+ /calmodulin-dependent kinase kinase CK1 α - Casein kinase 1 α CNS – Central nervous system CRD – Cysteine-rich domain Daam1- Dishevelled associated activator of morphogenesis 1 DFz2 – Drosophila Frizzled 2 DIV – Days in vitro Dkk1 – Dikkopf-1 Dvl1 – Dishevelled-1 EPSC – Excitatory postsynaptic current ER – Endoplasmic reticulum Evi- Eveness interrupted FGF – Fibroblast growth factor FGF-R – FGF receptor Fz – Frizzled 8 GABA - γ-aminobutyric acid GC – Granule cell dGRIP- Drosophila glutamate receptor interacting protein GSK3β – Glycogen synthase kinase 3β GTPase- Guanosine Triphosphate hydroxase HBSS – Hank’s balanced salt solution HSPG – Heperan sulfate proteoglycan
Recommended publications
  • THE GENOMIC STRUCTURE of the ZEBRAFISH Wnt8b GE NE
    THE GENOMIC STRUCTURE OF THE ZEBRAFISH wnt8b GENE by Yvonne Marie Beckham Department of Zoology Submitted in partial fulfilment of the requirements for the degree of Master of Science Faculty of Graduate Studies The University of Western Ontario London, Ontario December 1997 O Yvonne Marie Beckham, 1997 National Library Bibliothèque nationale du Canada Acquisitions and Acquisitions et Bibliographie Services seMces bibliographiques 395 Weüingtaci Street 395. Ne Wellington OttawaON K1AON4 OttawaON K1AW canada canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Lhrary of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, districbuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur fonnat électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. ABSTRACT Screening of a zebrafish genomic library to identify the prornoter elements of the zebrafish ivnr8b gene resulted in the isolation of two clones. p8b-3H and p8b-7A. Southem blot analysis demonstrated that clone p8b- 3H contained the 3' portion of the cDNA. p8b-7A showed only weak hybridization to the wnr8b cDNA used to initially isolate this clone.
    [Show full text]
  • Regulation of Dishevelled DEP Domain Swapping by Conserved Phosphorylation Sites
    Regulation of Dishevelled DEP domain swapping by conserved phosphorylation sites Gonzalo J. Beitiaa,1, Trevor J. Rutherforda,1, Stefan M. V. Freunda, Hugh R. Pelhama, Mariann Bienza, and Melissa V. Gammonsa,2 aMedical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom Edited by Roeland Nusse, Stanford University School of Medicine, Stanford, CA, and approved May 13, 2021 (received for review February 20, 2021) Wnt signals bind to Frizzled receptors to trigger canonical and with these effectors even if present at a low cellular concentra- noncanonical signaling responses that control cell fates during tion (1, 3, 12). animal development and tissue homeostasis. All Wnt signals are The DEP domain is a small globular domain composed of three relayed by the hub protein Dishevelled. During canonical (β-catenin– α-helices and a flexible hinge loop between the first (H1) and sec- dependent) signaling, Dishevelled assembles signalosomes via dy- ond helix (H2), which, in the monomeric configuration, folds back namic head-to-tail polymerization of its Dishevelled and Axin (DIX) on itself to form a prominent “DEP finger” that is responsible domain, which are cross-linked by its Dishevelled, Egl-10, and Pleck- for binding to Frizzled (Fig. 1A) (13). DEP dimerization involves strin (DEP) domain through a conformational switch from monomer a highly unusual mechanism called “domain swapping” (14). During to domain-swapped dimer. The domain-swapped conformation of this process, H1 of one DEP monomer is exchanged with H1 from a DEP masks the site through which Dishevelled binds to Frizzled, im- reciprocal one through outward motions of the hinge loops, replacing plying that DEP domain swapping results in the detachment of Dish- intra- with intermolecular contacts.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • The Extracellular Matrix Phenome Across Species
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.06.980169; this version posted March 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The extracellular matrix phenome across species Cyril Statzer1 and Collin Y. Ewald1* 1 Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach-Zürich CH-8603, Switzerland *Corresponding authors: [email protected] (CYE) Keywords: Phenome, genotype-to-phenotype, matrisome, extracellular matrix, collagen, data mining. Highlights • 7.6% of the human phenome originates from variations in matrisome genes • 11’671 phenotypes are linked to matrisome genes of humans, mice, zebrafish, Drosophila, and C. elegans • Expected top ECM phenotypes are developmental, morphological and structural phenotypes • Nonobvious top ECM phenotypes include immune system, stress resilience, and age-related phenotypes 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.06.980169; this version posted March 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Abstract 2 Extracellular matrices are essential for cellular and organismal function. Recent 3 genome-wide and phenome-wide association studies started to reveal a broad 4 spectrum of phenotypes associated with genetic variants. However, the phenome or 5 spectrum of all phenotypes associated with genetic variants in extracellular matrix 6 genes is unknown.
    [Show full text]
  • Original Article Parathyroid Hormone Induces Epithelial-To-Mesenchymal Transition Via the Wnt/Β-Catenin Signaling Pathway in Human Renal Proximal Tubular Cells
    Int J Clin Exp Pathol 2014;7(9):5978-5987 www.ijcep.com /ISSN:1936-2625/IJCEP0001621 Original Article Parathyroid hormone induces epithelial-to-mesenchymal transition via the Wnt/β-catenin signaling pathway in human renal proximal tubular cells Yunshan Guo1*, Zhen Li1*, Raohai Ding1, Hongdong Li1, Lei Zhang1, Weijie Yuan2, Yanxia Wang1 1Department of Nephrology, General Hospital of Ji’nan Military Command, Ji’nan 250031, China; 2Department of Nephrology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wu Jin Road, Shanghai 200080, China. *Equal contributors. Received July 30, 2014; Accepted August 21, 2014; Epub August 15, 2014; Published September 1, 2014 Abstract: Epithelial-to-mesenchymal transition (EMT) has been shown to play an important role in renal fibrogen- esis. Recent studies suggested parathyroid hormone (PTH) could accelerate EMT and subsequent organ fibrosis. However, the precise molecular mechanisms underlying PTH-induced EMT remain unknown. The present study was to investigate whether Wnt/β-catenin signaling pathway is involved in PTH-induced EMT in human renal proximal tubular cells (HK-2 cells) and to determine the profile of gene expression associated with PTH-induced EMT. PTH could induce morphological changes and gene expression characteristic of EMT in cultured HK-2 cells. Suppressing β-catenin expression or DKK1 limited gene expression characteristic of PTH-induced EMT. Based on the PCR array analysis, PTH treatment resulted in the up-regulation of 18 genes and down-regulation of 9 genes compared with the control. The results were further supported by a western blot analysis, which showed the increased Wnt4 protein expression. Wnt4 overexpression also promotes PTH-induced EMT in HK-2 cells.
    [Show full text]
  • A Commentary on WNT7A Implication in Cervical Cancer Development
    ndrom Sy es tic & e G n e e n G e f T o Artaza-Irigaray et al., J Genet Syndr Gene Ther 2015, 6:3 Journal of Genetic Syndromes h l e a r n a DOI: 10.4172/2157-7412.1000267 r p u y o J & Gene Therapy ISSN: 2157-7412 Commentary Open Access A Commentary on WNT7A Implication in Cervical Cancer Development Cristina Artaza-Irigaray1,2, Adriana Aguilar-Lemarroy1 and Luis F Jave-Suárez1* 1División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico 2Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS) - Universidad de Guadalajara, Jalisco, Mexico Cervical Cancer (CC) is the fourth leading cause of cancer Conversely, silencing Wnt7a in HaCaT cells induced an increase in cell deaths in women worldwide and is associated directly with Human proliferation and migration rates. These results suggest that the loss of papillomavirus (HPV) infection [1]. Many authors have reported Wnt7a expression probably contributes to increased cell proliferation that HPV can immortalize human cells without leading to cell and migration during cervical tumor development. transformation by itself [2,3]. Thus, cervical carcinogenesis is a As responses always lead to new questions, the next step was multistep process involving HPV infection and additional alterations. to elucidate the way in which Wnt7a ligand expression was being In 2005, canonical Wnt signaling pathway activation was proposed repressed. Wnt7a is known to possess tumor suppressor properties as a second hit during epithelial malignant transformation but this in several cancers and is frequently inactivated due to CpG-island hypothesis remains controversial [3,4].
    [Show full text]
  • EGFR Confers Exquisite Specificity of Wnt9a-Fzd9b Signaling in Hematopoietic Stem Cell Development
    bioRxiv preprint doi: https://doi.org/10.1101/387043; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Grainger, et al, 2018 EGFR confers exquisite specificity of Wnt9a-Fzd9b signaling in hematopoietic stem cell development Stephanie Grainger1, Nicole Nguyen1, Jenna Richter1,2, Jordan Setayesh1, Brianna Lonquich1, Chet Huan Oon1, Jacob M. Wozniak2,3,4, Rocio Barahona1, Caramai N. Kamei5, Jack Houston1,2, Marvic Carrillo-Terrazas3,4, Iain A. Drummond5,6, David Gonzalez3.4, Karl Willert#,¥,1, and David Traver¥,1,7. ¥co-corresponding authors: [email protected]; [email protected] #Lead contact 1Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, 92037, USA. 2Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California, 92037, USA. 3Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California, 92093, USA. 4Department of Pharmacology, University of California, San Diego, La Jolla, California, 92092 5Massachusetts General Hospital Nephrology Division, Charlestown, Massachusetts, 02129, USA. 6Harvard Medical School, Department of Genetics, Boston MA 02115 7Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, 92037, USA. Running title: A mechanism for Wnt-Fzd specificity in hematopoietic stem cells Keywords: hematopoietic stem cell (HSC), Wnt, Wnt9a, human, zebrafish, Fzd, Fzd9b, FZD9, EGFR, APEX2 1 bioRxiv preprint doi: https://doi.org/10.1101/387043; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • WNT4 and WNT3A Activate Cell Autonomous Wnt Signaling Independent of Secretion
    bioRxiv preprint doi: https://doi.org/10.1101/333906; this version posted September 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Running Title: Secretion-independent Wnt signaling Research article WNT4 and WNT3A activate cell autonomous Wnt signaling independent of secretion Deviyani M. Rao1, Rebecca L. Ferguson1, Tomomi M. Yamamoto2, Benjamin G. Bitler2, Matthew J. Sikora1 Affiliation: 1Dept. of Pathology, 2Dept. of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus Corresponding author: Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: @mjsikora Funding This work was supported by R00 CA193734 (MJS) and R00 CA194318 (BGB) from the National Institutes of Health, and by a grant from the Cancer League of Colorado, Inc (MJS). Authors' contributions DMR and MJS conceived of the project and experiments. DMR, RLF, and MJS designed and performed experiments. RLF, DMR, and TMY developed models for the project. DMR, RLF, BGB, and MJS contributed to data analysis and interpretation. DMR wrote the draft manuscript; all authors read and revised the manuscript, and have read and approved of this version of the manuscript. bioRxiv preprint doi: https://doi.org/10.1101/333906; this version posted September 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Recruitment of Adenomatous Polyposis Coli and B-Catenin to Axin-Puncta
    Oncogene (2008) 27, 5808–5820 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $32.00 www.nature.com/onc ORIGINAL ARTICLE Recruitment of adenomatous polyposis coli and b-catenin to axin-puncta MC Faux, JL Coates, B Catimel, S Cody, AHA Clayton, MJ Layton and AW Burgess Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Parkville, Victoria, Australia The adenomatous polyposis coli (APC)tumour suppressor coli (APC) form a complex that promotes the phos- is a multifunctional protein involved in the regulation of phorylation of b-catenin by glycogen synthase kinase-3-b Wnt signalling and cytoskeletal dynamics. Little is known (GSK3-b), which consequently targets b-catenin for about how APC controls these disparate functions. In this ubiquitination by bTrCP and destruction by the study, we have used APC- and axin-fluorescent fusion proteasome (Aberle et al., 1997; Orford et al., 1997; proteins to examine the interactions between these Kitagawa et al., 1999). Wnt stimulation and APC proteins and show that the functionally distinct popula- mutations disrupt the APC/axin complex and result in tions of APC are also spatially separate. Axin-RFP forms increased levels of b-catenin in the nucleus and cytoplasmic punctate structures, similar to endogenous cytoplasm (Munemitsu et al., 1995). b-Catenin is known axin puncta. Axin-RFP recruits b-catenin destruction to interact with members of the Tcf family of transcrip- complex proteins, including APC, b-catenin, glycogen tion factors to activate transcription of genes involved in synthase kinase-3-b (GSK3-b)and casein kinase-1- a proliferation and cellular transformation (Korinek (CK1-a).
    [Show full text]
  • Deregulated Wnt/Β-Catenin Program in High-Risk Neuroblastomas Without
    Oncogene (2008) 27, 1478–1488 & 2008 Nature Publishing Group All rights reserved 0950-9232/08 $30.00 www.nature.com/onc ONCOGENOMICS Deregulated Wnt/b-catenin program in high-risk neuroblastomas without MYCN amplification X Liu1, P Mazanek1, V Dam1, Q Wang1, H Zhao2, R Guo2, J Jagannathan1, A Cnaan2, JM Maris1,3 and MD Hogarty1,3 1Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA; 2Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA and 3Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA Neuroblastoma (NB) is a frequently lethal tumor of Introduction childhood. MYCN amplification accounts for the aggres- sive phenotype in a subset while the majority have no Neuroblastoma (NB) is a childhood embryonal malig- consistently identified molecular aberration but frequently nancy arising in the peripheral sympathetic nervous express MYC at high levels. We hypothesized that acti- system. Half of all children with NB present with features vated Wnt/b-catenin (CTNNB1) signaling might account that define their tumorsashigh riskwith poor overall for this as MYC is a b-catenin transcriptional target and survival despite intensive therapy (Matthay et al., 1999). multiple embryonal and neural crest malignancies have A subset of these tumors are characterized by high-level oncogenic alterations in this pathway. NB cell lines without genomic amplification of the MYCN proto-oncogene MYCN amplification express higher levels of MYC and (Matthay et al., 1999) but the remainder have no b-catenin (with aberrant nuclear localization) than MYCN- consistently identified aberration to account for their amplified cell lines.
    [Show full text]
  • Towards an Integrated View of Wnt Signaling in Development Renée Van Amerongen and Roel Nusse*
    HYPOTHESIS 3205 Development 136, 3205-3214 (2009) doi:10.1242/dev.033910 Towards an integrated view of Wnt signaling in development Renée van Amerongen and Roel Nusse* Wnt signaling is crucial for embryonic development in all animal Notably, components at virtually every level of the Wnt signal species studied to date. The interaction between Wnt proteins transduction cascade have been shown to affect both β-catenin- and cell surface receptors can result in a variety of intracellular dependent and -independent responses, depending on the cellular responses. A key remaining question is how these specific context. As we discuss below, this holds true for the Wnt proteins responses take shape in the context of a complex, multicellular themselves, as well as for their receptors and some intracellular organism. Recent studies suggest that we have to revise some of messengers. Rather than concluding that these proteins are shared our most basic ideas about Wnt signal transduction. Rather than between pathways, we instead propose that it is the total net thinking about Wnt signaling in terms of distinct, linear, cellular balance of signals that ultimately determines the response of the signaling pathways, we propose a novel view that considers the receiving cell. In the context of an intact and developing integration of multiple, often simultaneous, inputs at the level organism, cells receive multiple, dynamic, often simultaneous and of both Wnt-receptor binding and the downstream, sometimes even conflicting inputs, all of which are integrated to intracellular response. elicit the appropriate cell behavior in response. As such, the different signaling pathways might thus be more intimately Introduction intertwined than previously envisioned.
    [Show full text]
  • The Draft Genomes of Softshell Turtle and Green Sea Turtle Yield Insights
    LETTERS OPEN The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan Zhuo Wang1,12, Juan Pascual-Anaya2,12, Amonida Zadissa3,12, Wenqi Li4,12, Yoshihito Niimura5, Zhiyong Huang1, Chunyi Li4, Simon White3, Zhiqiang Xiong1, Dongming Fang1, Bo Wang1, Yao Ming1, Yan Chen1, Yuan Zheng1, Shigehiro Kuraku2, Miguel Pignatelli6, Javier Herrero6, Kathryn Beal6, Masafumi Nozawa7, Qiye Li1, Juan Wang1, Hongyan Zhang4, Lili Yu1, Shuji Shigenobu7, Junyi Wang1, Jiannan Liu4, Paul Flicek6, Steve Searle3, Jun Wang1,8,9, Shigeru Kuratani2, Ye Yin4, Bronwen Aken3, Guojie Zhang1,10,11 & Naoki Irie2 The unique anatomical features of turtles have raised Three major hypotheses have been proposed for the evolutionary unanswered questions about the origin of their unique body origin of turtles, including that they (i) constitute early-diverged rep- plan. We generated and analyzed draft genomes of the soft- tiles, called anapsids3, (ii) are a sister group of the lizard-snake-tuatara shell turtle (Pelodiscus sinensis) and the green sea turtle (Lepidosauria) clade4 or (iii) are closely related to a lineage that (Chelonia mydas); our results indicated the close relationship includes crocodilians and birds (Archosauria)5–8. Even using molecular of the turtles to the bird-crocodilian lineage, from which they approaches, inconsistency still remains6–9. To clarify the evolution of split ~267.9–248.3 million years ago (Upper Permian to Triassic). the turtle-specific body plan, we first addressed the question of evolu- We also found extensive expansion of olfactory receptor genes tionary origin of the turtle by performing the first genome-wide phylo- in these turtles.
    [Show full text]