Investigating the Effect of Ethanol on Wnt7a and Its Potential Implications in Fetal Alcohol Spectrum Disorder
Total Page:16
File Type:pdf, Size:1020Kb
University of Central Florida STARS Honors Undergraduate Theses UCF Theses and Dissertations 2020 Investigating the Effect of Ethanol on Wnt7a and its Potential Implications in Fetal Alcohol Spectrum Disorder Erika Lytle University of Central Florida Part of the Genetics and Genomics Commons Find similar works at: https://stars.library.ucf.edu/honorstheses University of Central Florida Libraries http://library.ucf.edu This Open Access is brought to you for free and open access by the UCF Theses and Dissertations at STARS. It has been accepted for inclusion in Honors Undergraduate Theses by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation Lytle, Erika, "Investigating the Effect of Ethanol on Wnt7a and its Potential Implications in Fetal Alcohol Spectrum Disorder" (2020). Honors Undergraduate Theses. 730. https://stars.library.ucf.edu/honorstheses/730 INVESTIGATING THE EFFECT OF ETHANOL ON WNT7A AND ITS POTENTIAL IMPLICATIONS IN FETAL ALCOHOL SPECTRUM DISORDER by ERIKA LYTLE A thesis submitted in fulfillment of the requirements for the Honors in the Major Program in Biomedical Sciences in the Burnett School of Biomedical Sciences and in the Burnett Honors College at the University of Central Florida Orlando, Florida Spring Term, 2020 Thesis Chair: Steven Ebert, PhD i ABSTRACT Fetal Alcohol Spectrum Disorders (FASDs), are caused by maternal alcohol consumption during pregnancy [3]. FASD encompasses a wide variety of cardiac and neural anomalies, while also associated with improper limb development, abnormal craniofacial features, problems within the central nervous system (CNS), and disabilities in learning and communication. Gene- regulating FASDs have not been well studied during the crucial phases of early embryonic development. Genes within the Wnt/Beta-catenin pathway control a vast amount of embryonic developmental processes. Among them is the Wnt7a gene, a significant downstream gene regulator which positively controls neural stem cell proliferation and cardiomyocyte differentiation on a large scale during early embryonic development. This project will serve to provide potential insight into the genes involved in FASD. We hypothesize that ethanol administration to early embryonic mice will suppress Wnt7a expression in the heart and brain, leading to FASD development. RNA-sequencing (RNA-Seq) and real-time quantitative PCR (qPCR) were used to measure Wnt7a gene expression within the early embryonic mouse heart and brain. After evaluation of RNA-Seq data and a comparative analysis using the 2-ΔΔCT method, it is evident Wnt7a is present in embryonic mouse age E10.5 heart and brain samples, and Wnt7a is suppressed at age E10.5 in embryonic mouse heart, but not brain, when induced with ethanol. ii TABLE OF CONTENTS LIST OF FIGURES ....................................................................................................................... v LIST OF TABLES ........................................................................................................................ vi LIST OF ABBREVIATIONS .................................................................................................... vii BACKGROUND ............................................................................................................................ 1 Fetal Alcohol Spectrum Disorder ..................................................................................... 1 Clinical Diagnosis of FASD .................................................................................... 2 Effects of FASD on the Embryonic Heart ................................................................ 3 Wnt7a .................................................................................................................................. 3 Wnt7a in the Embryonic Brain ................................................................................ 5 Wnt7a in the Embryonic Heart ................................................................................ 6 Effects of Ethanol on Wnt7a .................................................................................... 7 Significance ........................................................................................................................ 8 METHODS ................................................................................................................................... 10 Ethanol Administration to Wild-Type C57/BL6J Mice ............................................... 10 Testing for Wnt7a Presence in Early Embryonic Heart and Brain ........................... 10 Determining Wnt7a Suppression in Early Embryonic Mouse Heart and Brain Post- Ethanol Administration .................................................................................................. 11 RESULTS ..................................................................................................................................... 14 A Review of Preliminary Studies ................................................................................... 14 Wnt7a Presence in Early Embryonic Heart and Brain ............................................... 16 Determining Wnt7a Suppression ................................................................................... 17 Wnt7a in the Embryonic Heart .............................................................................. 18 Wnt7a in the Embryonic Brain .............................................................................. 20 iii DISCUSSION ............................................................................................................................... 23 APPENDIX A WNT7A CT VALUES AND EXPRESSION FOLD CHANGE IN HEART AND BRAIN E10.5 SAMPLES .................................................................................................. 25 WORKS CITED .......................................................................................................................... 28 iv LIST OF FIGURES Figure 1: An overview of Wnt signaling pathway activation. ......................................................... 5 Figure 2: Experimental protocol for control vs. ethanol administration in wild-type C57/BL6J mice [32]. ....................................................................................................................................... 10 Figure 3: Diagram of experimental method. ................................................................................. 13 Figure 4: RNA-Seq analysis of gene expression in E10.5 mouse hearts, control vs. ethanol treated at E9.5 [32]. ....................................................................................................................... 15 Figure 5: 2% agarose gel highlighting Wnt7a gene in control E10.5 embryonic mouse heart samples at proper band size 307 bp [35]. ...................................................................................... 17 Figure 6: CT Values for Beta-actin and GAPDH of embryonic heart samples age E10.5, where error bars represent standard deviation from the mean.. ............................................................... 19 Figure 7: Expression fold change (2-ΔΔCT) for control and ethanol-treated samples with Wnt7a and housekeeping gene, Beta-actin, in embryonic mouse heart age E10.5, where error bars represent standard deviation from the mean. ................................................................................. 20 Figure 8: CT Values for Beta-actin and GAPDH of embryonic brain samples age E10.5, where error bars represent standard deviation from the mean.. ............................................................... 21 Figure 9: Expression fold change (2-ΔΔCT) for control and ethanol-treated samples with Wnt7a and housekeeping gene, Beta-actin, in embryonic mouse brain age E10.5, where error bars represent standard deviation from the mean. ................................................................................. 22 v LIST OF TABLES Table 1: RNA-Seq data collection from Preliminary Studies. ...................................................... 16 Table 2: CT Values for Beta-actin and GAPDH of embryonic heart samples age E10.5. ............ 26 Table 3: CT Values for Beta-actin and GAPDH of embryonic brain samples age E10.5. ............ 27 vi LIST OF ABBREVIATIONS EtOH- Ethanol FASD- Fetal Alcohol Spectrum Disorder FAS- Fetal Alcohol Syndrome ARND- Alcohol-Related Neurodevelopmental Disorder ARBD- Alcohol-Related Birth Defects CNS- Central Nervous System CHDs- Congenital Heart Defects TOF- Tetralogy of Fallot PKC- Protein Kinase C E3.5- Embryonic Day 3.5 E5- Embryonic Day 5 ADH- Alcohol Dehydrogenase ALDH- Aldehyde Dehydrogenase E9.5- Embryonic Day 9.5 E10.5- Embryonic Day 10.5 E11.5- Embryonic Day 11.5 E12.5- Embryonic Day 12.5 RT-PCR- Reverse-Transcription Polymerase Chain Reaction qPCR- Real-Time Quantitative Polymerase Chain Reaction cDNA- Complimentary DNA RNA-Seq- Genomic RNA-Sequence vii bp- Base Pair (size) GAPDH- Glyceraldehyde 3-phosphate dehydrogenase E15- Embryonic Day 15 IQR- Interquartile Range viii BACKGROUND Fetal Alcohol Spectrum Disorder Maternal consumption of ethanol (EtOH) during pregnancy has been found detrimental to proper fetus development on a systemic scale [1]. Typical teratogenic effects due to alcohol consumption have been implicated in the medical diagnosis Fetal Alcohol Spectrum Disorder (FASD), a term adopted to describe a wide range of effects due to fetal alcohol-related incidences that occur due to maternal