WNT3A Promotes Neuronal Regeneration Upon Traumatic Brain Injury
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Detailed Review Paper on Retinoid Pathway Signalling
1 1 Detailed Review Paper on Retinoid Pathway Signalling 2 December 2020 3 2 4 Foreword 5 1. Project 4.97 to develop a Detailed Review Paper (DRP) on the Retinoid System 6 was added to the Test Guidelines Programme work plan in 2015. The project was 7 originally proposed by Sweden and the European Commission later joined the project as 8 a co-lead. In 2019, the OECD Secretariat was added to coordinate input from expert 9 consultants. The initial objectives of the project were to: 10 draft a review of the biology of retinoid signalling pathway, 11 describe retinoid-mediated effects on various organ systems, 12 identify relevant retinoid in vitro and ex vivo assays that measure mechanistic 13 effects of chemicals for development, and 14 Identify in vivo endpoints that could be added to existing test guidelines to 15 identify chemical effects on retinoid pathway signalling. 16 2. This DRP is intended to expand the recommendations for the retinoid pathway 17 included in the OECD Detailed Review Paper on the State of the Science on Novel In 18 vitro and In vivo Screening and Testing Methods and Endpoints for Evaluating 19 Endocrine Disruptors (DRP No 178). The retinoid signalling pathway was one of seven 20 endocrine pathways considered to be susceptible to environmental endocrine disruption 21 and for which relevant endpoints could be measured in new or existing OECD Test 22 Guidelines for evaluating endocrine disruption. Due to the complexity of retinoid 23 signalling across multiple organ systems, this effort was foreseen as a multi-step process. -
Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R. -
The Extracellular Matrix Phenome Across Species
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.06.980169; this version posted March 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The extracellular matrix phenome across species Cyril Statzer1 and Collin Y. Ewald1* 1 Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach-Zürich CH-8603, Switzerland *Corresponding authors: [email protected] (CYE) Keywords: Phenome, genotype-to-phenotype, matrisome, extracellular matrix, collagen, data mining. Highlights • 7.6% of the human phenome originates from variations in matrisome genes • 11’671 phenotypes are linked to matrisome genes of humans, mice, zebrafish, Drosophila, and C. elegans • Expected top ECM phenotypes are developmental, morphological and structural phenotypes • Nonobvious top ECM phenotypes include immune system, stress resilience, and age-related phenotypes 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.06.980169; this version posted March 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Abstract 2 Extracellular matrices are essential for cellular and organismal function. Recent 3 genome-wide and phenome-wide association studies started to reveal a broad 4 spectrum of phenotypes associated with genetic variants. However, the phenome or 5 spectrum of all phenotypes associated with genetic variants in extracellular matrix 6 genes is unknown. -
Original Article Parathyroid Hormone Induces Epithelial-To-Mesenchymal Transition Via the Wnt/Β-Catenin Signaling Pathway in Human Renal Proximal Tubular Cells
Int J Clin Exp Pathol 2014;7(9):5978-5987 www.ijcep.com /ISSN:1936-2625/IJCEP0001621 Original Article Parathyroid hormone induces epithelial-to-mesenchymal transition via the Wnt/β-catenin signaling pathway in human renal proximal tubular cells Yunshan Guo1*, Zhen Li1*, Raohai Ding1, Hongdong Li1, Lei Zhang1, Weijie Yuan2, Yanxia Wang1 1Department of Nephrology, General Hospital of Ji’nan Military Command, Ji’nan 250031, China; 2Department of Nephrology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wu Jin Road, Shanghai 200080, China. *Equal contributors. Received July 30, 2014; Accepted August 21, 2014; Epub August 15, 2014; Published September 1, 2014 Abstract: Epithelial-to-mesenchymal transition (EMT) has been shown to play an important role in renal fibrogen- esis. Recent studies suggested parathyroid hormone (PTH) could accelerate EMT and subsequent organ fibrosis. However, the precise molecular mechanisms underlying PTH-induced EMT remain unknown. The present study was to investigate whether Wnt/β-catenin signaling pathway is involved in PTH-induced EMT in human renal proximal tubular cells (HK-2 cells) and to determine the profile of gene expression associated with PTH-induced EMT. PTH could induce morphological changes and gene expression characteristic of EMT in cultured HK-2 cells. Suppressing β-catenin expression or DKK1 limited gene expression characteristic of PTH-induced EMT. Based on the PCR array analysis, PTH treatment resulted in the up-regulation of 18 genes and down-regulation of 9 genes compared with the control. The results were further supported by a western blot analysis, which showed the increased Wnt4 protein expression. Wnt4 overexpression also promotes PTH-induced EMT in HK-2 cells. -
A Commentary on WNT7A Implication in Cervical Cancer Development
ndrom Sy es tic & e G n e e n G e f T o Artaza-Irigaray et al., J Genet Syndr Gene Ther 2015, 6:3 Journal of Genetic Syndromes h l e a r n a DOI: 10.4172/2157-7412.1000267 r p u y o J & Gene Therapy ISSN: 2157-7412 Commentary Open Access A Commentary on WNT7A Implication in Cervical Cancer Development Cristina Artaza-Irigaray1,2, Adriana Aguilar-Lemarroy1 and Luis F Jave-Suárez1* 1División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico 2Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS) - Universidad de Guadalajara, Jalisco, Mexico Cervical Cancer (CC) is the fourth leading cause of cancer Conversely, silencing Wnt7a in HaCaT cells induced an increase in cell deaths in women worldwide and is associated directly with Human proliferation and migration rates. These results suggest that the loss of papillomavirus (HPV) infection [1]. Many authors have reported Wnt7a expression probably contributes to increased cell proliferation that HPV can immortalize human cells without leading to cell and migration during cervical tumor development. transformation by itself [2,3]. Thus, cervical carcinogenesis is a As responses always lead to new questions, the next step was multistep process involving HPV infection and additional alterations. to elucidate the way in which Wnt7a ligand expression was being In 2005, canonical Wnt signaling pathway activation was proposed repressed. Wnt7a is known to possess tumor suppressor properties as a second hit during epithelial malignant transformation but this in several cancers and is frequently inactivated due to CpG-island hypothesis remains controversial [3,4]. -
EGFR Confers Exquisite Specificity of Wnt9a-Fzd9b Signaling in Hematopoietic Stem Cell Development
bioRxiv preprint doi: https://doi.org/10.1101/387043; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Grainger, et al, 2018 EGFR confers exquisite specificity of Wnt9a-Fzd9b signaling in hematopoietic stem cell development Stephanie Grainger1, Nicole Nguyen1, Jenna Richter1,2, Jordan Setayesh1, Brianna Lonquich1, Chet Huan Oon1, Jacob M. Wozniak2,3,4, Rocio Barahona1, Caramai N. Kamei5, Jack Houston1,2, Marvic Carrillo-Terrazas3,4, Iain A. Drummond5,6, David Gonzalez3.4, Karl Willert#,¥,1, and David Traver¥,1,7. ¥co-corresponding authors: [email protected]; [email protected] #Lead contact 1Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, 92037, USA. 2Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California, 92037, USA. 3Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California, 92093, USA. 4Department of Pharmacology, University of California, San Diego, La Jolla, California, 92092 5Massachusetts General Hospital Nephrology Division, Charlestown, Massachusetts, 02129, USA. 6Harvard Medical School, Department of Genetics, Boston MA 02115 7Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, 92037, USA. Running title: A mechanism for Wnt-Fzd specificity in hematopoietic stem cells Keywords: hematopoietic stem cell (HSC), Wnt, Wnt9a, human, zebrafish, Fzd, Fzd9b, FZD9, EGFR, APEX2 1 bioRxiv preprint doi: https://doi.org/10.1101/387043; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
WNT11-Conditioned Medium Promotes Angiogenesis Through the Activation of Non-Canonical WNT-PKC-JNK Signaling Pathway
G C A T T A C G G C A T genes Article WNT11-Conditioned Medium Promotes Angiogenesis through the Activation of Non-Canonical WNT-PKC-JNK Signaling Pathway § Jingcai Wang y, Min Gong z, Shi Zuo , Jie Xu, Chris Paul, Hongxia Li k, Min Liu, Yi-Gang Wang, Muhammad Ashraf ¶ and Meifeng Xu * Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; [email protected] (J.W.); [email protected] (M.G.); [email protected] (S.Z.); [email protected] (J.X.); [email protected] (C.P.); [email protected] (H.L.); [email protected] (M.L.); [email protected] (Y.-G.W.); [email protected] (M.A.) * Correspondence: [email protected] Current address: Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, y Columbus, OH 43205, USA. Current Address: Department of Neonatology, Children’s Hospital of Soochow University, z Suzhou 215025, Jiangsu, China. § Current Address: Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550025, Guizhou, China. Current Address: Department of Cardiology, The First Affiliated Hospital of Soochow University, k Suzhou 215006, Jiangsu, China. ¶ Current Address: Department of Medicine, Cardiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. Received: 10 August 2020; Accepted: 26 October 2020; Published: 29 October 2020 Abstract: Background: We demonstrated that the transduction of Wnt11 into mesenchymal stem cells (MSCs) (MSCWnt11) promotes these cells differentiation into cardiac phenotypes. In the present study, we investigated the paracrine effects of MSCWnt11 on cardiac function and angiogenesis. -
WNT4 and WNT3A Activate Cell Autonomous Wnt Signaling Independent of Secretion
bioRxiv preprint doi: https://doi.org/10.1101/333906; this version posted September 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Running Title: Secretion-independent Wnt signaling Research article WNT4 and WNT3A activate cell autonomous Wnt signaling independent of secretion Deviyani M. Rao1, Rebecca L. Ferguson1, Tomomi M. Yamamoto2, Benjamin G. Bitler2, Matthew J. Sikora1 Affiliation: 1Dept. of Pathology, 2Dept. of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus Corresponding author: Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: @mjsikora Funding This work was supported by R00 CA193734 (MJS) and R00 CA194318 (BGB) from the National Institutes of Health, and by a grant from the Cancer League of Colorado, Inc (MJS). Authors' contributions DMR and MJS conceived of the project and experiments. DMR, RLF, and MJS designed and performed experiments. RLF, DMR, and TMY developed models for the project. DMR, RLF, BGB, and MJS contributed to data analysis and interpretation. DMR wrote the draft manuscript; all authors read and revised the manuscript, and have read and approved of this version of the manuscript. bioRxiv preprint doi: https://doi.org/10.1101/333906; this version posted September 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Dual Regulation of Planar Polarization by Secreted Wnts and Vangl2 in the Developing Mouse Cochlea Elvis Huarcaya Najarro1, Jennifer Huang1, Adrian Jacobo2, Lee A
© 2020. Published by The Company of Biologists Ltd | Development (2020) 147, dev191981. doi:10.1242/dev.191981 RESEARCH ARTICLE Dual regulation of planar polarization by secreted Wnts and Vangl2 in the developing mouse cochlea Elvis Huarcaya Najarro1, Jennifer Huang1, Adrian Jacobo2, Lee A. Quiruz1, Nicolas Grillet1 and Alan G. Cheng1,* ABSTRACT on the other. Flamingo (Fmi/Celsr1, Fmi/Celsr2 and Fmi/Celsr3) is Planar cell polarity (PCP) proteins localize asymmetrically to instruct present on both poles of the cell. Defective PCP signaling cell polarity within the tissue plane, with defects leading to deformities represented by a lack of polarized PCP components leads to of the limbs, neural tube and inner ear. Wnt proteins are evolutionarily congenital heart and tracheal abnormalities, skeletal dysplasia, conserved polarity cues, yet Wnt mutants display variable PCP neural tube defects as well as cochlear deformities (Butler and defects; thus, how Wnts regulate PCP remains unresolved. Here, we Wallingford, 2017; White et al., 2018). Despite their crucial roles, have used the developing cochlea as a model system to show that our understanding of upstream signals orchestrating PCP signaling secreted Wnts regulate PCP through polarizing a specific subset of is rather limited. PCP proteins. Conditional deletion of Wntless or porcupine, both of Wnt proteins have been implicated as upstream polarity cues for which are essential for secretion of Wnts, caused misrotated sensory PCP signaling. For example, limb morphogenesis in mice requires a cells and shortened cochlea – both hallmarks of PCP defects. gradient of Wnt5a, which has been reported to act as an instructive Wntless-deficient cochleae lacked the polarized PCP components cue to establish PCP (Gao et al., 2018, 2011). -
Wnt/Β-Catenin Signaling Regulates Regeneration in Diverse Tissues of the Zebrafish
Wnt/β-catenin Signaling Regulates Regeneration in Diverse Tissues of the Zebrafish Nicholas Stockton Strand A dissertation Submitted in partial fulfillment of the Requirements for the degree of Doctor of Philosophy University of Washington 2016 Reading Committee: Randall Moon, Chair Neil Nathanson Ronald Kwon Program Authorized to Offer Degree: Pharmacology ©Copyright 2016 Nicholas Stockton Strand University of Washington Abstract Wnt/β-catenin Signaling Regulates Regeneration in Diverse Tissues of the Zebrafish Nicholas Stockton Strand Chair of the Supervisory Committee: Professor Randall T Moon Department of Pharmacology The ability to regenerate tissue after injury is limited by species, tissue type, and age of the organism. Understanding the mechanisms of endogenous regeneration provides greater insight into this remarkable biological process while also offering up potential therapeutic targets for promoting regeneration in humans. The Wnt/β-catenin signaling pathway has been implicated in zebrafish regeneration, including the fin and nervous system. The body of work presented here expands upon the role of Wnt/β-catenin signaling in regeneration, characterizing roles for Wnt/β-catenin signaling in multiple tissues. We show that cholinergic signaling is required for blastema formation and Wnt/β-catenin signaling initiation in the caudal fin, and that overexpression of Wnt/β-catenin ligand is sufficient to rescue blastema formation in fins lacking cholinergic activity. Next, we characterized the glial response to Wnt/β-catenin signaling after spinal cord injury, demonstrating that Wnt/β-catenin signaling is necessary for recovery of motor function and the formation of bipolar glia after spinal cord injury. Lastly, we defined a role for Wnt/β-catenin signaling in heart regeneration, showing that cardiomyocyte proliferation is regulated by Wnt/β-catenin signaling. -
Wnt-Independent and Wnt-Dependent Effects of APC Loss on the Chemotherapeutic Response
International Journal of Molecular Sciences Review Wnt-Independent and Wnt-Dependent Effects of APC Loss on the Chemotherapeutic Response Casey D. Stefanski 1,2 and Jenifer R. Prosperi 1,2,3,* 1 Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46617, USA; [email protected] 2 Mike and Josie Harper Cancer Research Institute, South Bend, IN 46617, USA 3 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA * Correspondence: [email protected]; Tel.: +1-574-631-4002 Received: 30 September 2020; Accepted: 20 October 2020; Published: 22 October 2020 Abstract: Resistance to chemotherapy occurs through mechanisms within the epithelial tumor cells or through interactions with components of the tumor microenvironment (TME). Chemoresistance and the development of recurrent tumors are two of the leading factors of cancer-related deaths. The Adenomatous Polyposis Coli (APC) tumor suppressor is lost in many different cancers, including colorectal, breast, and prostate cancer, and its loss correlates with a decreased overall survival in cancer patients. While APC is commonly known for its role as a negative regulator of the WNT pathway, APC has numerous binding partners and functional roles. Through APC’s interactions with DNA repair proteins, DNA replication proteins, tubulin, and other components, recent evidence has shown that APC regulates the chemotherapy response in cancer cells. In this review article, we provide an overview of some of the cellular processes in which APC participates and how they impact chemoresistance through both epithelial- and TME-derived mechanisms. Keywords: adenomatous polyposis coli; chemoresistance; WNT signaling 1. -
The Sec14-Like Phosphatidylinositol Transfer Proteins Sec14l3/SEC14L2
RESEARCH ARTICLE The Sec14-like phosphatidylinositol transfer proteins Sec14l3/SEC14L2 act as GTPase proteins to mediate Wnt/Ca2+ signaling Bo Gong, Weimin Shen, Wanghua Xiao, Yaping Meng, Anming Meng*, Shunji Jia* State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China Abstract The non-canonical Wnt/Ca2+ signaling pathway plays important roles in embryonic development, tissue formation and diseases. However, it is unclear how the Wnt ligand-stimulated, G protein-coupled receptor Frizzled activates phospholipases for calcium release. Here, we report that the zebrafish/human phosphatidylinositol transfer protein Sec14l3/SEC14L2 act as GTPase proteins to transduce Wnt signals from Frizzled to phospholipase C (PLC). Depletion of sec14l3 attenuates Wnt/Ca2+ responsive activity and causes convergent and extension (CE) defects in zebrafish embryos. Biochemical analyses in mammalian cells indicate that Sec14l3-GDP forms complex with Frizzled and Dishevelled; Wnt ligand binding of Frizzled induces translocation of Sec14l3 to the plasma membrane; and then Sec14l3-GTP binds to and activates phospholipase Cd4a (Plcd4a); subsequently, Plcd4a initiates phosphatidylinositol-4,5-bisphosphate (PIP2) signaling, ultimately stimulating calcium release. Furthermore, Plcd4a can act as a GTPase-activating protein to accelerate the hydrolysis of Sec14l3-bound GTP to GDP. Our data provide a new insight into GTPase protein-coupled Wnt/Ca2+ signaling transduction. DOI: 10.7554/eLife.26362.001 *For correspondence: mengam@ mail.tsinghua.edu.cn (AM); jiasj@ mail.tsinghua.edu.cn (SJ) Competing interests: The Introduction authors declare that no Wnt ligands, a large family of secreted lipoglycoproteins, control a large number of developmental competing interests exist.