A Morphometric Study on Anthyllis Vulneraria (Fabaceae) from Poland and Its Taxonomic Implications

Total Page:16

File Type:pdf, Size:1020Kb

A Morphometric Study on Anthyllis Vulneraria (Fabaceae) from Poland and Its Taxonomic Implications Biologia 67/2: 296^309, 2012 Section Botany DOI: 10.2478/sl 1756-012-0013-1 A morphometric study on Anthyllis vulneraria (Fabaceae) from Poland and its taxonomic implications Kaja R o l a Department of Plant Taxonomy, Phytogeography & Herbarium, Institute of Botany, Jagiellonian University, Kopernika 27, PL-31-501 Krakow, Poland; e-mail: kajaskubalaQi.nteria.pl A bstract: The paper presents results of morphometric analysis of Anthyllis vulneraria L. in Poland based on 828 herbarium specimens. This study investigates live taxa which have been recognized in Poland: Anthyllis vulneraria L. ssp. vulneraria, Anthyllis vulneraria ssp. polyph.ylla (DC.) Nyman, A. vulneraria ssp. m aritim a (Schweigg.) Corb., A. vulneraria ssp. alpestris Asch. et Graebn. and A. vulneraria ssp. carpatica (Pant.) Nyman as well as three intermediate taxa of presumably hybrid origin. Multivariate statistical analyses of 12 quantitative and 10 qualitative characteristics revealed conspicuous variation within A. vulneraria. Analysis of variance (ANOVA), principal coordinate analysis (PCoA), correspondence analysis (CA) and discriminant analysis (DA) proved the taxonomic usefulness of quantitative characteristics such as number of rosette leaves, calyx length, inflorescence length, the ratio of leaf length/width, bract length as well as qualitative characteristics such as stem hairiness, calyx colour, calyx indumentum, distances between stem leaves and form of rosette leaves. The issues concerning intermediate morphotypes occurring in Poland and their status are discussed. Finally, a key for determination of tax a within A. vulneraria in Poland and distribution maps based on the material examined are provided. Key words: Anthyllis vulneraria', biometry; Fabaceae; morphological variability; multivariate statistics; Poland; systematic key; taxonomy Introduction ten morphologically indistinct (Juzepczuk 1945; Puidet et al. 2005). Most taxa are morphologically similar, Anthyllis L. belongs to the tribe Loteae (Polhill 1981; and some of them have presumably hybrid origin. The Allan & Porter 2000) within the family Fabaceae. An­ wide variation in morphology observed nowadays sug­ thyllis L. is taxonomically very complex. It consists of gests that there are a few taxa within A. vulneraria numerous taxa wherein the status of most of them re­ and intermediates, which could be commonly found on mains questionable. The number of species within the the border ranges. The species was probably divided genus has been previously reported to range from 25 into several taxa with distinct geographical ranges in (Cullen 1986) up to 60 (Minjaev & Akulova 1987). the past (Jalas 1950). This differentiation has not, Anthyllis vulneraria L. is a very polymorphic so far as is known, led to complete genetic isolation species, consisting of 30 intraspecific taxa (many of (Marsden-Jones & Turrill 1933). As a result of many them frequently recognized as species), between which factors such as climate change and the ability to oc­ intermediates occur, often over a large area (Cullen cupy disturbed habitats, there was a partial blurring 1968). Some researchers distinguish only one poly­ of the primary border-lines of particular morphotypes typic species - A. vulneraria (Stankov & Taliev 1949; as well as diagnostic morphological differences (Jalas Jalas 1950; Jalas 1952). On the other hand, Rothmaler 1950). Therefore, in spite of the fact that it is not so (1941) and Juzepczuk (1945) claim that there are sev­ widespread to recognize A. vulneraria as species com­ eral separate and more or less independent species dis­ plex, it should be considered in such a way, because the tinguishable in Europe. These inter-grading variants complexity of this taxon is evident (Krall 1983; Köster might be, to some extent, ecologically and geograph­ 2010). ically separated (Cullen 1986); however, their classifi­ Anthyllis vulneraria has wide distribution through­ cation is complicated. It should be noted here that in out most of Europe (Becker 1911) from the Atlantic spite of wide variability within A. vulneraria, chromo­ coast to the Baltic region; south to the Mediter­ some numbers of all the taxa examined in this study ranean Basin as well as in North Africa (Algeria, Mo­ are the same (2n = 12) (Bolkhovskikh et al. 1969; rocco, Ethiopia) (Bennett et al. 2001); east to SW Van Loon & Kieft 1980; Yeh et al. 1986; Dempsey Asia - mainly Turkey (Cullen 1976) and the Caucasus et al. 1994; Lövkvist & Hultgprd 1999), which means and Iran (Marsden-Jones & Turrill 1933). It has also they are diploid. Furthermore, A. vulneraria consists been introduced into North America and New Zealand of local morphotypes in limited areas, which are of­ (Hulten & Fries 1986). A morphometric study on Anthyllis vulneraria (Fabaceae) from Poland 297 There are many studies concerning morpholog­ leaves often reduced to a single leaflet (Cullen 1976), ical variability and taxonomic problems of different Anthyllis vulneraria ssp. alpestris has a distinctly dif­ A. vulneraria taxa (e.g. Sagorski 1908; Cullen 1976; ferent calyx from the other analyzed taxa. Its specific Łukaszewska ei al. 1983; Akeroyd 1988; Cagibtti et al. villous to hirsute hairiness (Cullen 1968; Jasicovä 1988) 1990; Gonzalez 1998; Rich 2001; Puidet et al. 2005; gives it a unique, smoky-greyish colour (Kostrakiewicz Ilcim et al. 2008). Cullen (1976) presented a biosystem- 1959), The length of the calyx is relatively high, ranging atic study of A. vulneraria in Europe with particular on average from 1.4 to 1.6 cm. While A. vulneraria ssp. emphasis on Western Europe* The taxa included there carpatica has sparse sericeous and a usually yellowish were treated as one species divided into a number of calyx (Cullen 1968; Jasicovä 1988), which differs this subspecies and varieties. This treatment is also adopted taxa from the previous one* here. Furthermore, Cullen (1976) distinguished two ag­ Anthyllis vulneraria has been genetically investi­ gregates - Vulneraria and Alpestris aggregate - into gated. Several studies have been made in order to de­ which subspecies are grouped. These subspecies form termine molecular traits that would resolve the complex fairly natural groups corresponding to aggregates. But (Koster 2010). However, the results of different molecu­ these aggregates have no nomenclatural standing and lar analysis are quite contentious (Akeroyd 1988; Kropf intermediates do occur between them. Cullen (1976) et al. 2002; Allan et al* 2003; Nanni et al. 2004; 1 Ion­ discussed division of the group and tried to evaluate ian' et al. 2006; Van Glabeke et al. 2007; Degtjareva taxonomic characteristics of the species. In addition, he et al. 2008; Köster et al. 2008). An issue concerning A. provided distribution maps for each taxon in Europe. vulneraria was included in the Study of molecular phy- Puidet et al. (2005) analyzed morphological vari­ logeny of the genus Anthyllis. The internal transcribed ability of eight taxa of A. vulneraria in Estonia. Most spacers ITS1 and ITS2 of the nuclear ribosomal DNA of the characteristics examined were'statistically sig­ and additional polymorphic chloroplast SSR of 10 An­ nificant in species determination. This investigation re­ thyllis species, including 11 subspecies of A. vulneraria sulted in distinction of three species groups: Vulner­ were analyzed (Nanni et al. 2004), of which 3 are consid­ aria, Macrocephala and Coccinea. In Poland, the study ered in this study. The other investigation used the am­ of morphological variability of A. vulneraria was car­ plified fragment length polymorphism (AFLP) analysis ried out in northern Poland on populations from the to find differentiation in the species complex (Köster et. Baltic coast (Łukaszewska et al. 1983). Multivariate al. 2008). However, the study showed that, the taxa of A. statistical analyses confirm the differences between pop­ vulneraria cannot be differentiated by AFLP patterns, ulations primarily on the basis of fertile parts of the because the analyzed specimens of 7 taxa belonging to plants, but they also considered vegetative characteris­ A. vulneraria did not comprise groups correlated with tics (Łukaszewska ftf al. 1983)- the subspecies (Köster et al. 2008). Several characteristics which distinguish the taxa In Poland, some examinations concerning differen­ within A. vulneraria were! given in different publica­ tiation within A. vulneraria were also conducted. Kali­ tions. The most distinct and well-defined features which nowski et. al. (1983) analyzed the geographic impact differentiate the examined taxa are: the type of stem on the izoenzymatic variability of .1. vulneraria pop­ hairiness, the distribution of leaves on the stem, the ulations in Poland to determine whether there exists abundance of rosette leaves, calyx colour and length. any differentiation between populations of inland and Anthyllis vulneraria Ssp. m,ariiim,a (Schweigg.) Corb. coastal areas. The study confirmed significant differ­ can be distinguish by silky and dense calyx hairi­ ences among populations depending on geographic dis­ ness (Kostrakiewicz 1959), as well as by some inflo­ tance (Kalinowski et. al. 1983). rescences with a few flowers (sometimes not fully de­ In conclusion, different investigations concerning veloped) (Krall 1983). Anthyllis vulneraria ssp. poly- intraspecific taxa of A, vulneraria based on molecular phylla (DC.) Nyman is most readily distinguished by its studies have not. resolved the problem of distinguishing patent hairs on the stems and petioles (Kostrakiewicz
Recommended publications
  • Cally Plant List a ACIPHYLLA Horrida
    Cally Plant List A ACIPHYLLA horrida ACONITUM albo-violaceum albiflorum ABELIOPHYLLUM distichum ACONITUM cultivar ABUTILON vitifolium ‘Album’ ACONITUM pubiceps ‘Blue Form’ ACAENA magellanica ACONITUM pubiceps ‘White Form’ ACAENA species ACONITUM ‘Spark’s Variety’ ACAENA microphylla ‘Kupferteppich’ ACONITUM cammarum ‘Bicolor’ ACANTHUS mollis Latifolius ACONITUM cammarum ‘Franz Marc’ ACANTHUS spinosus Spinosissimus ACONITUM lycoctonum vulparia ACANTHUS ‘Summer Beauty’ ACONITUM variegatum ACANTHUS dioscoridis perringii ACONITUM alboviolaceum ACANTHUS dioscoridis ACONITUM lycoctonum neapolitanum ACANTHUS spinosus ACONITUM paniculatum ACANTHUS hungaricus ACONITUM species ex. China (Ron 291) ACANTHUS mollis ‘Long Spike’ ACONITUM japonicum ACANTHUS mollis free-flowering ACONITUM species Ex. Japan ACANTHUS mollis ‘Turkish Form’ ACONITUM episcopale ACANTHUS mollis ‘Hollard’s Gold’ ACONITUM ex. Russia ACANTHUS syriacus ACONITUM carmichaelii ‘Spätlese’ ACER japonicum ‘Aconitifolium’ ACONITUM yezoense ACER palmatum ‘Filigree’ ACONITUM carmichaelii ‘Barker’s Variety’ ACHILLEA grandifolia ACONITUM ‘Newry Blue’ ACHILLEA ptarmica ‘Perry’s White’ ACONITUM napellus ‘Bergfürst’ ACHILLEA clypeolata ACONITUM unciniatum ACIPHYLLA monroi ACONITUM napellus ‘Blue Valley’ ACIPHYLLA squarrosa ACONITUM lycoctonum ‘Russian Yellow’ ACIPHYLLA subflabellata ACONITUM japonicum subcuneatum ACONITUM meta-japonicum ADENOPHORA aurita ACONITUM napellus ‘Carneum’ ADIANTUM aleuticum ‘Japonicum’ ACONITUM arcuatum B&SWJ 774 ADIANTUM aleuticum ‘Miss Sharples’ ACORUS calamus ‘Argenteostriatus’
    [Show full text]
  • THE ALPINE GARDEN SOCIETY's 60Th SEED LIST 2011-12 Please Read Through These Notes and Also the Notes on the Back O
    WELCOME TO THE ALPINE GARDEN SOCIETY’S 60th SEED LIST 2011-12 Please read through these notes and also the notes on the back of the order forms before completing the forms. The main distribution will begin in December and will continue into the new year. The seeds offered originate from various sources and cannot be guaranteed true to name. Neither The Alpine Garden Society nor any official of the Society can be held responsible for what is supplied. Members are reminded that named cultivars and hybrids cannot be relied upon to come true, and plants raised from seed from cultivars should not be labelled with the names of those cultivars. Seeds of many species are in short supply and we can never have enough to meet all requests. Members who request very rare or popular species must realise that they are likely to be disappointed and are advised to spread their requests throughout a variety of seeds on the list. Surplus seeds are those remaining after all applications for main distribution seeds have been met. Please see the notes on the back of the order form for futher information. On-line ordering will again be offered this year. You will be able to view the seed list, make your selections, order and pay for your seed order on line. We will take care to ensure parity between on line ordering and postal ordering so neither system will get priority. Please go to http://www.alpinegardensociety.net/seed/exchange/ and follow the instructions on the page. Overseas Members: Members outside the UK and the EU are reminded that most countries restrict the import of some species.
    [Show full text]
  • Atlas of the Flora of New England: Fabaceae
    Angelo, R. and D.E. Boufford. 2013. Atlas of the flora of New England: Fabaceae. Phytoneuron 2013-2: 1–15 + map pages 1– 21. Published 9 January 2013. ISSN 2153 733X ATLAS OF THE FLORA OF NEW ENGLAND: FABACEAE RAY ANGELO1 and DAVID E. BOUFFORD2 Harvard University Herbaria 22 Divinity Avenue Cambridge, Massachusetts 02138-2020 [email protected] [email protected] ABSTRACT Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Fabaceae growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 172 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area and on herbarium specimens), habitat, chromosome information, and common names are also provided. KEY WORDS: flora, New England, atlas, distribution, Fabaceae This article is the eleventh in a series (Angelo & Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012a, 2012b, 2012c) that presents the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). Seven more articles are planned. The atlas is posted on the internet at http://neatlas.org, where it will be updated as new information becomes available. This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states.
    [Show full text]
  • Handbook a “Improving the Availability of Data and Information
    Improving the availability of data and information on species, habitats and sites Focus Area A Handbook on the application of existing scientific approaches, methods, tools and knowledge for a better implementation of the Birds and Habitat Directives Environment FOCUS AREA A IMPROVING THE AVAILABILITY OF DATA AND i INFORMATION ON SPECIES, HABITATS AND SITES Imprint Disclaimer This document has been prepared for the European Commis- sion. The information and views set out in the handbook are Citation those of the authors only and do not necessarily reflect the Schmidt, A.M. & Van der Sluis, T. (2021). E-BIND Handbook (Part A): Improving the availability of data and official opinion of the Commission. The Commission does not information on species, habitats and sites. Wageningen Environmental Research/ Ecologic Institute /Milieu Ltd. guarantee the accuracy of the data included. The Commission Wageningen, The Netherlands. or any person acting on the Commission’s behalf cannot be held responsible for any use which may be made of the information Authors contained therein. Lead authors: This handbook has been prepared under a contract with the Anne Schmidt, Chris van Swaay (Monitoring of species and habitats within and beyond Natura 2000 sites) European Commission, in cooperation with relevant stakehold- Sander Mücher, Gerard Hazeu (Remote sensing techniques for the monitoring of Natura 2000 sites) ers. (EU Service contract Nr. 07.027740/2018/783031/ENV.D.3 Anne Schmidt, Chris van Swaay, Rene Henkens, Peter Verweij (Access to data and information) for evidence-based improvements in the Birds and Habitat Kris Decleer, Rienk-Jan Bijlsma (Approaches and tools for effective restoration measures for species and habitats) directives (BHD) implementation: systematic review and meta- Theo van der Sluis, Rob Jongman (Green Infrastructure and network coherence) analysis).
    [Show full text]
  • Towards Preserving Threatened Grassland Species and Habitats
    Towards preserving threatened grassland plant species and habitats - seed longevity, seed viability and phylogeography Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Biologie und Vorklinische Medizin der Universität Regensburg vorgelegt von SIMONE B. TAUSCH aus Burghausen im Jahr 2017 II Das Promotionsgesuch wurde eingereicht am: 15.12.2017 Die Arbeit wurde angeleitet von: Prof. Dr. Peter Poschlod Regensburg, den 14.12.2017 Simone B. Tausch III IV Table of contents Chapter 1 General introduction 6 Chapter 2 Towards the origin of Central European grasslands: glacial and postgla- 12 cial history of the Salad Burnet (Sanguisorba minor Scop.) Chapter 3 A habitat-scale study of seed lifespan in artificial conditions 28 examining seed traits Chapter 4 Seed survival in the soil and at artificial storage: Implications for the 42 conservation of calcareous grassland species Chapter 5 How precise can X-ray predict the viability of wild flowering plant seeds? 56 Chapter 6 Seed dispersal in space and time - origin and conservation of calcareous 66 grasslands Summary 70 Zusammenfassung 72 References 74 Danksagung 89 DECLARATION OF MANUSCRIPTS Chapter 2 was published with the thesis’ author as main author: Tausch, S., Leipold, M., Poschlod, P. and Reisch, C. (2017). Molecular markers provide evidence for a broad-fronted recolonisation of the widespread calcareous grassland species Sanguisorba minor from southern and cryptic northern refugia. Plant Biology, 19: 562–570. doi:10.1111/plb.12570. V CHAPTER 1 General introduction THREATENED AND ENDANGERED persal ability (von Blanckenhagen & Poschlod, 2005). But in general, soils of calcareous grasslands exhibit HABITATS low ability to buffer species extinctions by serving as donor (Thompson et al., 1997; Bekker et al., 1998a; Regarding the situation of Europe’s plant species in- Kalamees & Zobel, 1998; Poschlod et al., 1998; Stöck- ventory, Central Europe represents the centre of en- lin & Fischer, 1999; Karlik & Poschlod, 2014).
    [Show full text]
  • Nepticulidae, Tineidae, Momphidae, Cosmopterigidae, Gelechiidae, Tortricidae En Geometridae)
    Melding van minerende en andere zeldzame Lepidoptera in België met 10 nieuwe soorten voor de Belgische fauna (Nepticulidae, Tineidae, Momphidae, Cosmopterigidae, Gelechiidae, Tortricidae en Geometridae) Steve Wullaert Samenvatting. De volgende 10 soorten worden als nieuw voor de Belgische fauna gemeld: Bohemannia pulverosella (Stainton, 1849) (Nepticulidae), voor het eerst gevonden door Willem Ellis maar nooit eerder gemeld; Trifurcula eurema (Tutt, 1899) (Nepticulidae), bladmijnen op Lotus corniculatus gevonden door Guido De Prins te Durbuy op 28.ix.2013; Trifurcula cryptella (Stainton, 1856) (Nepticulidae), bladmijnen op Lotus corniculatus gevonden door Zoë Vanstraelen en Steve Wullaert te Gellik op 06.x.2013; Mompha bradleyi Riedl, 1965 (Momphidae), gevangen door Pieter Blondée te Ename op 17.iv.2012; Syncopacma vinella (Bankes, 1898) (Gelechiidae); verscheidene mijnen op Genista tinctoria gevonden door de bladmijnenwerkgroep te Durbuy op 10.x.2012; Tinea dubiella (Stainton, 1859) (Tineidae), enkele imago’s gevangen door Zoë Vanstraelen en Steve Wullaert binnenshuis te Genk op 27.vi.2014; Nemapogon ruricolella (Stainton, 1849) (Tineidae), 1 ex. gevangen door Steve Wullaert te Moerbeke op 06.vi.2009; Cydia illutana (Herrich-Schäffer, 1851) (Tortricidae), 1 ex. gevangen door de bladmijnenwerkgroep te Ploegsteert op 29.v.2010; Sorhagenia janiszewskae Riedl, 1962 (Cosmopterigidae), 1 ex. gevangen door de bladmijnenwerkgroep te Ename in Bos t’Ename op 10.viii.2013; Lampropteryx otregiata (Metcalfe, 1917) (Geometridae), 1 ex. gevangen door
    [Show full text]
  • Worksheet-2B.Pdf
    WHAT’S SO IMPORTANT ABOUT NAMES? Topics Covered: Classificaon and taxonomy Understanding the importance of Linnaeus’s contribuon to science Making and using keys What’s in a name? Giving something a name allows us to talk about it. Names are important not only for people, but also for the plants we culvate in our gardens. In the early days of botany (the 17th and early 18th centuries) plants were given long Lan phrases for names that described their parcular features. As more plants became known, names tended to become longer, and much more difficult to remember and use. Then, in the 18th century, a Swedish biologist named Carl Linnaeus developed and popularised a two‐name (binomial) system for all plant species—GENUS and SPECIES. His system is sll in use today. A useful definion GENUS: A group of organisms SPECIES: that have certain characteriscs in of a species is a group of organisms common but can be divided further which can interbreed to produce into other groups (i.e. into species) ferle offspring Binomial names The use of only two words (the binomial name) made it much easier to categorise and compare different plants and animals. Imagine, for instance, talking about a type of geranium using the old name: Geranium pedunculis bifloris, caule dichotomo erecto, foliis quinquepars incisis; summis sessilibus The binomial name is much easier to use: Geranium maculatum 1 WHAT’S SO IMPORTANT ABOUT NAMES? Who was Carl Linnaeus? Carl Linnaeus (1707–1778) was born and brought up in and around Råshult, in the countryside of southern Sweden.
    [Show full text]
  • Morphological Variation in Eight Taxa of Anthyllis Vulneraria S. Lato (Fabaceae)
    Ann. Bot. Fennici 42: 293–304 ISSN 0003-3847 Helsinki 30 August 2005 © Finnish Zoological and Botanical Publishing Board 2005 Morphological variation in eight taxa of Anthyllis vulneraria s. lato (Fabaceae) Egle Puidet, Jaan Liira, Jaanus Paal, Meelis Pärtel & Silvia Pihu Institute of Botany and Ecology, University of Tartu, 40 Lai Str., 51005 Tartu, Estonia Received 5 Oct. 2004, revised version received 10 Dec. 2004, accepted 17 Dec. 2004 Puidet, E., Liira, J., Paal, J., Pärtel, M. & Pihu, S. 2005: Morphological variation in eight taxa of Anthyllis vulneraria s. lato (Fabaceae). — Ann. Bot. Fennici 42: 293–304. Depending on the literature source, the number of existing Anthyllis species differs almost three-fold. In addition to the well-defined species, there are many cryptic ones. Statistical analysis (general linear models, discriminant analysis) of the morphologi- cal variation of eight Anthyllis taxa (for simplification classified as species) resulted in three groups of species: Vulneraria (A. vulneraria, A. maritima, A. arenaria and A. ¥ baltica), Macrocephala (A. macrocephala, A. ¥ colorata, and A. ¥ polyphylloides), and Coccinea (A. coccinea). Distinguishing features of these groups were calyx colour, corolla colour, hairiness of stems and petioles, and plant height. Key words: Anthyllis vulneraria, morphology, suboptimal classification, taxonomy, variation Introduction tion (Yakovlev et al. 1996). The species number has been given as 25 (Cullen 1986) up to 60 The genus Anthyllis (Fabaceae) is one of eight (Minjaev & Akulova 1987). Although some spe- genera in the tribe Loteae and is morphologically cies in the genus are well defined and universally and molecularly closely related to the genus accepted, there are many cryptic forms that have Hymenocarpus (Polhill 1994).
    [Show full text]
  • Anthyllis Montana Var. Jacquinii (Leguminosae)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2008 Band/Volume: 110B Autor(en)/Author(s): Gutermann Walter Eckard, Kropf Matthias Artikel/Article: Typifications of Kerner names 7: Anthyllis montana var. Jacquinii (Leguminosae). 271-272 V itek, T ill, W a l l n ö f e r , Iger©Naturhistorisches sh eim & R Museuma in e r Wien,(eds.): download Short unter botanical www.biologiezentrum.at notes 271 Typifications of Kerner names 7: Anthyllis montana var. jacquinii (Leguminosae) W. Gutermann* & M. Kropf** Anthyllis montana var. jacquinii [A. K e r n .] RcHB.f., Icon. Fl. Germ. Helv. 22: 83 (1866); op. cit. 22: t. 125 [= MMCLXXVI] f. II, 14-20 (1867) = A. jacquinii A. K e r n ., Z. Ferdinandeums Tirol 15: 287, t. II f. XXII (1870) [reprinted as:Nov. Pl. Sp. 1: 41, t. II f. XXII] = A. montana subsp. jacquinii (R cH B .f.) R o h l e n a , Sitzungsber. Kön. Böhm. Ges. Wiss. Prag, ser. 2, 1912 (1): 30 (1912); H a y e k , Repert. Spec. Nov., Beih. 30 (1): 885 (1926) [isonym]. Neotypus (hoc loco design.): Austria: "Flora exsiccata Austro-Hungarica / 27. Anthyllis Jacquini / A. Kerner / Austria inferior. In rupestribus montis Geissberg ad Perchtoldsdorf. / [sine dato] Wiesbaur" [WU]. K e r n e r considered the populations of the southeastem Alps (E of Lago di Garda) and the mountains of the Balkan peninsula as a species separate from the western A. mon­ tana L. Prior to his own publication in 1870 he used the name A.
    [Show full text]
  • 21 Climate Change and Forest Herbs of Temperate Deciduous Forests
    OUP UNCORRECTED PROOF – FIRSTPROOFS, Wed Oct 23 2013, NEWGEN 460.1 21 Climate Change 460.2 and Forest Herbs of 460.3 Temperate Deciduous 460.4 Forests 460.5 Jesse Bellemare and David A. Moeller 460.6 Climate change is projected to be one of the top threats to biodiversity in coming 460.7 decades (Thomas et al. 2004; Parmesan 2006). In the Temperate Deciduous Forest 460.8 (TDF) biome, mounting climate change is expected to become an increasing and 460.9 long-term threat to many forest plant species (Honnay et al. 2002; Skov and Svenning 460.10 2004; Van der Veken et al. 2007a), on par with major current threats to forest plant bio- 460.11 diversity, such as high rates of deer herbivory, intensive forestry, habitat fragmentation, 460.12 and land use change ( chapters 4, 14, 15, and 16, this volume). At the broadest scale, 460.13 changing climate regimes are predicted to cause major shifts in the geographic distri- 460.14 bution of the climate envelopes currently occupied by forest plants, with many spe- 460.15 cies’ ranges projected to shift northward or to higher elevations to track these changes 460.16 (Iverson and Prasad 1998; Schwartz et al. 2006; Morin et al. 2008; McKenney et al. 460.17 2011). In parallel, these climate-driven range dynamics are likely to include population 460.18 declines or regional extinctions for many plant species, particularly in more south- 460.19 erly areas and along species’ warm-margin distribution limits (Iverson and Prasad 460.20 1998; Hampe and Petit 2005; Schwartz et al.
    [Show full text]
  • Molecular Evidence for Multiple Diversification Patterns of Alpine
    52 August 2003: 463–476 Vargas Alpine plants in Mediterranean Europe Molecular evidence formultiple diversification patterns of alpine plants in Mediterranean Europe Pablo Vargas Real Jardín Botán ico, C.S.I.C., Plaza de Murillo 2, E-28014 Madrid, Spain. [email protected] Apreliminary synthesis of diversification patterns of alpine plants in the Mediterranean region of Europe is presented based on seven plant groups displaying morphological differentiation and infraspecific taxa. Both previous and new phylogenetic results from ITS sequences and fingerprinting data suggest different coloniza- tion routes and modes of speciation in Androsace vitaliana (recent differentiation in the Iberian Peninsula), Anthyllis montana (west-to-east colonization and differentiation in Europe), Arenaria tetraquetra (colonization and differentiation from SE Iberian mountains to the Pyrenees; increasing number of chromosome comple- ments), Saxifraga oppositifolia (colonization from the arctic to the Iberian Peninsula), Saxifraga pentadactylis (differentiation in Mediterranean and Eurosiberian mountains by geographic isolation), and Soldanella alpina (differentiation and colonization from northern Iberia to the Alps, and then to the Pyrenees and the Balkan Peninsula). Relative static diversification of Juniperus communis var. saxatilis in Europe, based on identity of chloroplast trnL-F sequences, is also described. Most morphological variation, expressed by number of sub- species recognized in previous taxonomic treatments of the seven plant groups, appears to have occurred dur- ing the Pleistocene (< 1.75 Myr). Recurrent change of Quaternary climatic conditions in the Mediterranean Basin, coupled with geographic characteristics, life cycle, dispersal mechanisms, and pre-Holocene genetic structure are not convincing factors to account for all the observed diversification. Additionally, stochastic processes are also considered for evaluating present-day distributions and processes of speciation.
    [Show full text]
  • A Phylogenetic Effect on Strontium Concentrations in Angiosperms Neil Willey ∗, Kathy Fawcett
    Environmental and Experimental Botany 57 (2006) 258–269 A phylogenetic effect on strontium concentrations in angiosperms Neil Willey ∗, Kathy Fawcett Centre for Research in Plant Science, Faculty of Applied Sciences, University of the West of England, Frenchay, Bristol BS16 1QY, UK Received 21 February 2005; accepted 8 June 2005 Abstract A Residual Maximum Likelihood (REML) procedure was used to compile Sr concentrations in 103 plant species from experiments with Sr concentrations in 66 plant species from the literature. There were 14 species in common between experiments and the literature. The REML procedure loge-transformed data and removed absolute differences in Sr concentrations arising from soil factors and exposure times to estimate mean relative Sr concentrations for 155 species. One hundred and forty-two species formed a group with a normal frequency distribution in mean relative Sr concentration. A nested hierarchical analysis of variance (ANOVA) based on the most recent molecular phylogeny of the angiosperms showed that plant species do not behave independently for Sr concentration but that there is a significant phylogenetic effect on mean relative Sr concentrations. Concentrations of Sr in non-Eudicots were significantly less than in Eudicots and there were significant effects on Sr concentrations in the dataset down the phylogenetic hierarchy to the family level. Of the orders in the dataset the Cucurbitales, Lamiales, Saxifragales and Ranunculales had particularly high Sr concentrations and the Liliales, Poales, Myrtales and Fabales particularly low Sr concentrations. Mean relative Sr concentrations in 60 plant species correlated with those reported elsewhere for Ca in the same species, and the frequency distribution and some phylogenetic effects on Sr concentration in plants were similar to those reported for Ca.
    [Show full text]