Expansion of Divergent SEA Domains in Cell Surface Proteins and Nucleoporin 54

Total Page:16

File Type:pdf, Size:1020Kb

Expansion of Divergent SEA Domains in Cell Surface Proteins and Nucleoporin 54 FOR THE RECORD Expansion of divergent SEA domains in cell surface proteins and nucleoporin 54 Jimin Pei1* and Nick V. Grishin1,2 1Howard Hughes Medical Institute 2Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA Received 8 October 2016; Accepted 29 November 2016 DOI: 10.1002/pro.3096 Published online 15 December 2016 proteinscience.org Abstract: SEA (sea urchin sperm protein, enterokinase, agrin) domains, many of which possess autoproteolysis activity, have been found in a number of cell surface and secreted proteins. Despite high sequence divergence, SEA domains were also proposed to be present in dystroglycan based on a conserved autoproteolysis motif and receptor-type protein phosphatase IA-2 based on structural similarity. The presence of a SEA domain adjacent to the transmembrane segment appears to be a recurring theme in quite a number of type I transmembrane proteins on the cell surface, such as MUC1, dystroglycan, IA-2, and Notch receptors. By comparative sequence and structural analyses, we identified dystroglycan-like proteins with SEA domains in Capsaspora owc- zarzaki of the Filasterea group, one of the closest single-cell relatives of metazoans. We also detected novel and divergent SEA domains in a variety of cell surface proteins such as EpCAM, a/ e-sarcoglycan, PTPRR, collectrin/Tmem27, amnionless, CD34, KIAA0319, fibrocystin-like protein, and a number of cadherins. While these proteins are mostly from metazoans or their single cell rel- atives such as choanoflagellates and Filasterea, fibrocystin-like proteins with SEA domains were found in several other eukaryotic lineages including green algae, Alveolata, Euglenozoa, and Hap- tophyta, suggesting an ancient evolutionary origin. In addition, the intracellular protein Nucleoporin 54 (Nup54) acquired a divergent SEA domain in choanoflagellates and metazoans. Keywords: SEA domain; autoproteolysis; cell surface proteins; dystroglycan; cadherin; Nup54 Introduction urchin sperm protein 63 kDa, enterokinase (also The SEA domain was originally detected in a num- called enteropeptidase), agrin, perlecan, and several 1 ber of cell surface and secreted proteins such as sea membrane-associated mucins. It was proposed to have functions related to sugar moieties since it Additional Supporting Information may be found in the online often resides in heavily glycosylated multi-domain 1 version of this article. proteins. Both agrin and perlecan are large proteo- Conflict of Interest: None declared glycans responsible for interactions with numerous extracellular matrix and cell surface proteins.2 SEA Grant sponsor: National Institutes of Health; Grant number: GM094575; Grant sponsor: Welch Foundation; Grant number: domains are also present in two interphotoreceptor I-1505. matrix proteoglycans (IMPG1 and IMPG2). Muta- *Correspondence to: Jimin Pei, Howard Hughes Medical Insti- tions located in the SEA domains of IMPG1 and tute, University of Texas Southwestern Medical Center at Dallas, IMPG2 have been associated with genetic disorders Dallas, TX 75390. E-mail: [email protected] of vitelliform macular dystrophies3 and autosomal- Published by Wiley-Blackwell. VC 2016 The Protein Society PROTEIN SCIENCE 2017 VOL 26:617—630 617 recessive retinitis pigmentosa,4 respectively. SEA- limited sequence similarity to previously identified domain-containing mucins, such as MUC1 (Mucin-1) SEA domains such as those in MUC1 and agrin. and MUC16 (Mucin-16), have extensive O-linked Presence of an extracellular SEA domain in the glycosylation in their characteristic serine and membrane-proximal stem region appears to be a threonine-rich regions and have been linked to vari- recurring theme found in type I transmembrane pro- ous cancers.5,6 In addition to their roles in protection teins dystroglycan and MUC1 as well as some type and lubrication of the epithelial surfaces of the II transmembrane serine proteases such as enteroki- internal ducts, some of these mucins such as MUC1 nase, matriptase and matriptase-2. Such a theme is are involved in cell signaling that is regulated by also employed in another cell surface protein, the multiple events of proteolysis.7 The SEA-domain- receptor-type protein tyrosine phosphatase IA-2.24,25 containing enterokinase is a type II single-pass IA-2 is a type I transmembrane protein with a transmembrane protein (N-terminus located in cyto- ferredoxin-like extracellular domain adjacent to the sol). It initiates intestinal digestion by proteolytical- transmembrane segment. This ferredoxin-like 8 ly activating trypsin. Besides enterokinase, SEA domain was proposed to be a divergent SEA domain domains were found in a number of other type II based on 3-dimenional structural similarities and transmembrane serine proteases, including matrip- profile-based sequence similarity searches.24 More- 9 tase and matriptase-2. Matriptase, overexpressed over, Notch receptors possess an extracellular juxta- in numerous cancer cell lines, performs proteolysis membrane domain (the heterodimeric (HD) domain) on various cell surface proteins such as protease- of the ferredoxin fold with noticeable structural sim- activated receptor 2 (PAR-2) and the zymogen of the ilarity to mucin SEA domains and the IA-2 SEA 10 urokinase-type plasminogen activator. Matriptase- domains.26,27 Like signaling mucins,7 the HD 2 regulates iron homeostasis by proteolytic process- domains of Notch receptors are regulated by proteol- ing of hemojuvelin, the co-receptor of bone morpho- ysis events. The S1 furin cleavage site of the Notch 11 genetic protein. SEA domains were also observed HD domains is located in the same region as the in two adhesion-type G-protein coupled receptors autoproteolysis site of MUC1 SEA domain.26 Simi- 12,13 (GPR110 and GPR116) and the uromodulin like larities in structures and active site locations sug- 14 1 protein. gest that the Notch HD domain is evolutionarily The SEA domain in the type I single-pass trans- related to SEA domains. membrane protein MUC1 (C-terminus located in cyto- Divergent SEA domains in dystroglycan, IA-2, 15 sol) was found to undergo autoproteolysis, creating and Notch receptors suggest that SEA domain detec- two noncovalently bound a-subunit and b-subunit. tion can be a challenging task. Here, we rely on com- Structural studies of MUC1 SEA domain revealed parative sequence and structural analyses to find new that it adopts a ferredoxin-like fold, and the cleavage SEA domains and study their phylogenetic distribu- site is located in the middle of the b-hairpin of the sec- tions. New SEA domains are proposed to be present in 16 ond and third b-strands. The serine hydroxyl in the a number of cell surface proteins such as PTPRR, GS/// consensus motif (/: a hydrophobic residue) is EpCAM, collectrin/Tmem27, Amnionless, CD34, responsible for the autoproteolysis that occurs at the KIAA0319, fibrocystin-like protein, and several cad- glycine-serine peptide bond. SEA domains with this herins. SEA domains predate the last common motif also undergo proteolytic processing between the ancestor of metazoans, as they were discovered in conserved glycine and serine in other proteins such as dystroglycan-like proteins in Capsaspora owczarzaki MUC3 and MUC12,17 enterokinase,18 matriptase,19 (with conserved autoproteolysis motif) and fibrocystin- and the G-protein coupled receptor Ig-Hepta (the like proteins beyond Holozoa. The functional regula- mouse ortholog of the human protein GPR116),20 pre- tion of SEA domain proteolysis could affect a much sumably with the same autoproteolysis mechanism. broader range of cell surface proteins than previously However, this autoproteolysis motif is not conserved recognized. Interestingly, a new SEA domain was in all SEA domains. MUC16, for example, has multi- also found inside the cell in nucleoporin 54 (Nup54) ple SEA domains, and none of them possesses this in metazoans and choanoflagellates. motif.21 A few divergent copies of SEA domains have Results and Discussion been discovered by careful sequence and structure comparisons. One example is the SEA domains in Sequence similarity searches of canonical SEA the extracellular matrix receptor dystroglycan.22,23 domains Like MUC1, dystroglycan was processed into the Transitive PSI-BLAST28 searches (see Materials and ligand-binding a-subunit and the membrane-bound methods) starting from the SEA domain of MUC1 b-subunit. Secondary structure and tertiary struc- (NCBI GenBank accession: P15941.3, residues 1041- ture predictions coupled with the conservation of the 1143) detected more than ten thousand proteins con- autoproteolysis motif suggest that dystroglycan pos- taining SEA domains in the non-redundant protein sesses a divergent SEA domain,23 which exhibits database. They include all founding members of the 618 PROTEINSCIENCE.ORG Expansion of Divergent SEA Domains SEA domains1 as well as numerous other SEA- edge b-strands. These b-bulges create the /xx/ domain-containing proteins. We name this large set hydrophobic pattern (double underlined blue letters of SEA domains related to MUC1 SEA domain as in Fig. 1), with the two hydrophobic residues (/) “canonical SEA domains” to distinguish them from contributing to the core of the structure. MUC1 SEA the more divergent SEA domains that cannot be domain and Muc16 SEA domain have the /xx/x/ linked by PSI-BLAST, such as those in dystrogly- and /x/xx/ patterns in the second core b-strands can23 and receptor-type protein tyrosine phospha- respectively
Recommended publications
  • Antigen-Specific Memory CD4 T Cells Coordinated Changes in DNA
    Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology The Journal of Immunology published online 18 March 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/03/17/jimmun ol.1202267 Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto, Katsumi Ogoshi, Atsushi Sasaki, Jun Abe, Wei Qu, Yoichiro Nakatani, Budrul Ahsan, Kenshiro Oshima, Francis H. W. Shand, Akio Ametani, Yutaka Suzuki, Shuichi Kaneko, Takashi Wada, Masahira Hattori, Sumio Sugano, Shinichi Morishita and Kouji Matsushima J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Freely available online through http://www.jimmunol.org/content/suppl/2013/03/18/jimmunol.120226 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. Published March 18, 2013, doi:10.4049/jimmunol.1202267 The Journal of Immunology Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto,*,†,‡ Katsumi Ogoshi,* Atsushi Sasaki,† Jun Abe,* Wei Qu,† Yoichiro Nakatani,† Budrul Ahsan,x Kenshiro Oshima,† Francis H.
    [Show full text]
  • Views of Distant-Acting G, Gudbjartsson DF, Magnusson KP, Andersen K, Levey AI, Backman Enhancers
    BASIC RESEARCH www.jasn.org A 4.1-Mb Congenic Region of Rf-4 Contributes to Glomerular Permeability † ‡ † Caitlin C. O’Meara,* Michelle M. Lutz, Allison B. Sarkis,* Haiyan Xu,* Rajendra K. Kothinti,§ † † | Matthew Hoffman,* Carol Moreno,* Niloofar M. Tabatabai,§ Jozef Lazar,* † Richard J. Roman,¶ and Howard J. Jacob* ** *Human and Molecular Genetics Center and Departments of †Physiology, ‡Anesthesiology, §Medicine, |Dermatology, and **Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin; and ¶Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi ABSTRACT The combined transfer of two renal function quantitative trait loci (QTLs), Rf-1 (rat chromosome 1) and Rf-4 (rat chromosome 14), from the Fawn-hooded hypertensive rat onto the August Copenhagen Irish genetic background significantly increases proteinuria and demonstrates an interaction between these QTLs. Because the original Rf-4 congenic region is 61.9 Mbp, it is necessary to reduce this interval to feasibly search for variants responsible for renal susceptibility in this region. Here, we generated a minimal con- genic line (Rf-1a+4_a) to identify a 4.1-Mb region of the Rf-4 QTL that significantly contributes to the severity of proteinuria in the Fawn-hooded hypertensive rat. Rf-1a+4_a animals have an increased glo- merular permeability to albumin without significant changes in BP, indicating that at least one genetic element in this refined region directly affects renal function. Sequence analysis revealed no variants pre- dicted to damage protein function, implying that regulatory elements are responsible for the Rf-4 phe- notype. Multiple human studies, including recent genome-wide association studies, link the homologous human region with susceptibility to renal disease, suggesting that this congenic line is an important model for studying pathways that contribute to the progression of kidney disease.
    [Show full text]
  • Supplementary Data Table 1. Genes Upregulated in N-Myc-Overexpressing Mouse Mac1+/Gr1+ BM Cells
    Supplementary Data Table 1. Genes upregulated in N-Myc-overexpressing mouse Mac1+/Gr1+ BM cells Probeset C-myc / N-myc / N-myc / C- Gene Title Representative 430v2 Vector Fold Vector Fold myc Fold Public ID Change Change Change 1435368_a_at 2.3 4.6 2.1 poly (ADP-ribose) polymerase family, member 1 BB767586 1455648_at 1.3 3.0 2.1 similar to reduced expression 2 /// similar to reduced expression 2 BG244780 1438973_x_at 2.5 9.8 4.0 gap junction membrane channel protein alpha 1 BB043407 1419915_at 2.0 3.0 2.1 DNA segment, Chr 10, ERATO Doi 438, expressed AW538011 1454842_a_at 1.6 4.0 2.3 UDP-GalNAc:betaGlcNAc beta 1,3-galactosaminyltransferase, AI853240 polypeptide 2 1436704_x_at 2.1 9.2 3.2 methylenetetrahydrofolate dehydrogenase (NADP+ dependent), AV215673 methenyltetrahydrofolate cyclohydrolase, formyltetrahydrofolate synthase 1423142_a_at 2.0 2.5 2.1 GTP binding protein 4 AI987834 1420043_s_at 2.5 5.7 2.8 THO complex 1 AW107924 1439444_x_at 1.5 4.3 2.5 transmembrane emp24-like trafficking protein 10 (yeast) /// similar to AV213456 transmembrane trafficking protein 1438610_a_at 1.9 4.9 2.3 Crystallin, zeta BB793369 1434291_a_at 2.5 4.3 2.8 small EDRK-rich factor 1 AA709993 1422716_a_at 2.8 6.5 2.6 acid phosphatase 1, soluble AW554436 1447895_x_at -1.3 2.3 2.6 PAN3 polyA specific ribonuclease subunit homolog (S. cerevisiae) AV368189 1434097_at 1.5 3.2 2.5 Transcribed locus BM218328 1420982_at 1.1 3.5 2.6 RNA-binding region (RNP1, RRM) containing 2 NM_133242 1433853_at 2.6 7.5 2.6 mindbomb homolog 1 (Drosophila) BG063791 1419824_a_at 1.6 4.0 2.1 RIKEN cDNA A230062G08 gene AI875121 1453797_at 7.5 14.9 2.1 phosphatase, orphan 2 AK010147 1440803_x_at 2.3 4.0 2.3 tachykinin receptor 3 BB498416 1455737_at -2.0 1.1 2.8 RIKEN cDNA C030002B11 gene AU040848 1450954_at -1.5 2.8 4.6 YME1-like 1 (S.
    [Show full text]
  • Common Differentially Expressed Genes and Pathways Correlating Both Coronary Artery Disease and Atrial Fibrillation
    EXCLI Journal 2021;20:126-141– ISSN 1611-2156 Received: December 08, 2020, accepted: January 11, 2021, published: January 18, 2021 Supplementary material to: Original article: COMMON DIFFERENTIALLY EXPRESSED GENES AND PATHWAYS CORRELATING BOTH CORONARY ARTERY DISEASE AND ATRIAL FIBRILLATION Youjing Zheng, Jia-Qiang He* Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA * Corresponding author: Jia-Qiang He, Department of Biomedical Sciences and Pathobiology, Virginia Tech, Phase II, Room 252B, Blacksburg, VA 24061, USA. Tel: 1-540-231-2032. E-mail: [email protected] https://orcid.org/0000-0002-4825-7046 Youjing Zheng https://orcid.org/0000-0002-0640-5960 Jia-Qiang He http://dx.doi.org/10.17179/excli2020-3262 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). Supplemental Table 1: Abbreviations used in the paper Abbreviation Full name ABCA5 ATP binding cassette subfamily A member 5 ABCB6 ATP binding cassette subfamily B member 6 (Langereis blood group) ABCB9 ATP binding cassette subfamily B member 9 ABCC10 ATP binding cassette subfamily C member 10 ABCC13 ATP binding cassette subfamily C member 13 (pseudogene) ABCC5 ATP binding cassette subfamily C member 5 ABCD3 ATP binding cassette subfamily D member 3 ABCE1 ATP binding cassette subfamily E member 1 ABCG1 ATP binding cassette subfamily G member 1 ABCG4 ATP binding cassette subfamily G member 4 ABHD18 Abhydrolase domain
    [Show full text]
  • Supplementary Table 2
    Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942
    [Show full text]
  • Persistent Transcription-Blocking DNA Lesions Trigger Somatic Growth Attenuation Associated with Longevity
    ARTICLES Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevity George A. Garinis1,2, Lieneke M. Uittenboogaard1, Heike Stachelscheid3,4, Maria Fousteri5, Wilfred van Ijcken6, Timo M. Breit7, Harry van Steeg8, Leon H. F. Mullenders5, Gijsbertus T. J. van der Horst1, Jens C. Brüning4,9, Carien M. Niessen3,9,10, Jan H. J. Hoeijmakers1 and Björn Schumacher1,9,11 The accumulation of stochastic DNA damage throughout an organism’s lifespan is thought to contribute to ageing. Conversely, ageing seems to be phenotypically reproducible and regulated through genetic pathways such as the insulin-like growth factor-1 (IGF-1) and growth hormone (GH) receptors, which are central mediators of the somatic growth axis. Here we report that persistent DNA damage in primary cells from mice elicits changes in global gene expression similar to those occurring in various organs of naturally aged animals. We show that, as in ageing animals, the expression of IGF-1 receptor and GH receptor is attenuated, resulting in cellular resistance to IGF-1. This cell-autonomous attenuation is specifically induced by persistent lesions leading to stalling of RNA polymerase II in proliferating, quiescent and terminally differentiated cells; it is exacerbated and prolonged in cells from progeroid mice and confers resistance to oxidative stress. Our findings suggest that the accumulation of DNA damage in transcribed genes in most if not all tissues contributes to the ageing-associated shift from growth to somatic maintenance that triggers stress resistance and is thought to promote longevity. Ageing represents the progressive functional decline that is exempted levels as a result of pituitary dysfunction (Snell and Ames mice) — have an from evolutionary selection because it largely occurs after reproduc- extended lifespan17–20.
    [Show full text]
  • The Genetic Program of Pancreatic Beta-Cell Replication in Vivo
    Page 1 of 65 Diabetes The genetic program of pancreatic beta-cell replication in vivo Agnes Klochendler1, Inbal Caspi2, Noa Corem1, Maya Moran3, Oriel Friedlich1, Sharona Elgavish4, Yuval Nevo4, Aharon Helman1, Benjamin Glaser5, Amir Eden3, Shalev Itzkovitz2, Yuval Dor1,* 1Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. 3Department of Cell and Developmental Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 4Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah, The Institute for Medical Research Israel- Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 5Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel *Correspondence: [email protected] Running title: The genetic program of pancreatic β-cell replication 1 Diabetes Publish Ahead of Print, published online March 18, 2016 Diabetes Page 2 of 65 Abstract The molecular program underlying infrequent replication of pancreatic beta- cells remains largely inaccessible. Using transgenic mice expressing GFP in cycling cells we sorted live, replicating beta-cells and determined their transcriptome. Replicating beta-cells upregulate hundreds of proliferation- related genes, along with many novel putative cell cycle components. Strikingly, genes involved in beta-cell functions, namely glucose sensing and insulin secretion were repressed. Further studies using single molecule RNA in situ hybridization revealed that in fact, replicating beta-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in beta-cell function.
    [Show full text]
  • 9-Marie-Francoise Ritz MS
    Send Orders for Reprints to [email protected] 478 Current Neurovascular Research, 2019, 16, 478-490 RESEARCH ARTICLE Combined Transcriptomic and Proteomic Analyses of Cerebral Frontal Lobe Tissue Identified RNA Metabolism Dysregulation as One Potential Pathogenic Mechanism in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) Marie-Françoise Ritz1,*, Paul Jenoe2, Leo Bonati3, Stefan Engelter3,4, Philippe Lyrer3 and Nils Peters3,4 1Department of Biomedicine, Brain Tumor Biology Laboratory, University of Basel, and University Hospital of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; 2Proteomics Core Facility, Biocenter, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland; 3Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland; 4Neurorehabilitation Unit, University of Basel and University Center for Medicine of Aging, Felix Platter Hospital, Burgfelderstrasse 101, 4055 Basel, Switzerland Abstract: Background: Cerebral small vessel disease (SVD) is an important cause of stroke and vascular cognitive impairment (VCI), leading to subcortical ischemic vascular dementia. As a he- reditary form of SVD with early onset, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) represents a pure form of SVD and may thus serve as a model disease for SVD. To date, underlying molecular mechanisms linking vascular pathol- ogy and subsequent neuronal damage in SVD are incompletely understood. A R T I C L E H I S T O R Y Objective: We performed comparative transcriptional profiling microarray and proteomic analyses Received: October 01, 2019 on post-mortem frontal lobe specimen from 2 CADASIL patients and 5 non neurologically dis- Revised: October 11, 2019 Accepted: October 15, 2019 eased controls in order to identify dysregulated pathways potentially involved in the development DOI: of tissue damage in CADASIL.
    [Show full text]
  • Identification of Genomic Targets of Krüppel-Like Factor 9 in Mouse Hippocampal
    Identification of Genomic Targets of Krüppel-like Factor 9 in Mouse Hippocampal Neurons: Evidence for a role in modulating peripheral circadian clocks by Joseph R. Knoedler A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Neuroscience) in the University of Michigan 2016 Doctoral Committee: Professor Robert J. Denver, Chair Professor Daniel Goldman Professor Diane Robins Professor Audrey Seasholtz Associate Professor Bing Ye ©Joseph R. Knoedler All Rights Reserved 2016 To my parents, who never once questioned my decision to become the other kind of doctor, And to Lucy, who has pushed me to be a better person from day one. ii Acknowledgements I have a huge number of people to thank for having made it to this point, so in no particular order: -I would like to thank my adviser, Dr. Robert J. Denver, for his guidance, encouragement, and patience over the last seven years; his mentorship has been indispensable for my growth as a scientist -I would also like to thank my committee members, Drs. Audrey Seasholtz, Dan Goldman, Diane Robins and Bing Ye, for their constructive feedback and their willingness to meet in a frequently cold, windowless room across campus from where they work -I am hugely indebted to Pia Bagamasbad and Yasuhiro Kyono for teaching me almost everything I know about molecular biology and bioinformatics, and to Arasakumar Subramani for his tireless work during the home stretch to my dissertation -I am grateful for the Neuroscience Program leadership and staff, in particular
    [Show full text]
  • Research Article Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer’S Disease
    SAGE-Hindawi Access to Research International Journal of Alzheimer’s Disease Volume 2010, Article ID 604792, 56 pages doi:10.4061/2010/604792 Research Article Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer’s Disease Wayne Chadwick, 1 Randall Brenneman,1, 2 Bronwen Martin,3 and Stuart Maudsley1 1 Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA 2 Miller School of Medicine, University of Miami, Miami, FL 33124, USA 3 Metabolism Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA Correspondence should be addressed to Stuart Maudsley, [email protected] Received 17 May 2010; Accepted 27 July 2010 Academic Editor: Gemma Casadesus Copyright © 2010 Wayne Chadwick et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Various animal models of Alzheimer’s disease (AD) have been created to assist our appreciation of AD pathophysiology, as well as aid development of novel therapeutic strategies. Despite the discovery of mutated proteins that predict the development of AD, there are likely to be many other proteins also involved in this disorder. Complex physiological processes are mediated by coherent interactions of clusters of functionally related proteins. Synaptic dysfunction is one of the hallmarks of AD. Synaptic proteins are organized into multiprotein complexes in high-density membrane structures, known as lipid rafts. These microdomains enable coherent clustering of synergistic signaling proteins.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,148,129 B2 Frankel Et Al
    US008148129B2 (12) United States Patent (10) Patent No.: US 8,148,129 B2 Frankel et al. (45) Date of Patent: Apr. 3, 2012 (54) GENERATION OF POTENT DOMINANT 6,824,978 B1 1 1/2004 Cox, III et al. NEGATIVE TRANSCRIPTIONAL 6,933,113 B2 8, 2005 Case et al. 6,979,539 B2 12/2005 Cox, III et al. INHIBITORS 7,013,219 B2 3/2006 Case et al. 7,070,934 B2 7/2006 Cox, III et al. (75) Inventors: Alan Frankel, Mill Valley, CA (US); 7,163,824 B2 1/2007 Cox, III et al. Robert Nakamura, San Francisco, CA 7,220,719 B2 5/2007 Case et al. (US); Chandreyee Das, Brookline, MA 7,235,354 B2 6/2007 Case et al. 7,262,054 B2 8/2007 Jamieson et al. (US); Ivan D’Orso, San Francisco, CA 7,273,923 B2 9/2007 Jamieson et al. (US); Jocelyn Grunwell, San Mateo, 2003, OO82552 A1* 5, 2003 Wolffe et al. ..................... 435/6 CA (US) (73) Assignee: The Regents of the University of OTHER PUBLICATIONS California, Oakland, CA (US) Cramer et al., Coupling of Transcription with Alternative Splicing: RNA Pol II Promoters Modulate SF2. ASF and 9G8 Effects on an (*) Notice: Subject to any disclaimer, the term of this Exonic Splicing Enhancer, Molecular Cell, 1999, 4:251-258.* patent is extended or adjusted under 35 Cama-Carvalho et al., Nucleocytoplasmic shuttling of heterodimeric U.S.C. 154(b) by 806 days. splicing factor U2AF, JBC. Published on Dec. 15, 2000 as Manu script M008759200.* (21) Appl. No.: 11/765,592 Rosonina et al., Gene Expression: The Close Coupling of Transcrip tion and Splicing, Current Biology, vol.
    [Show full text]
  • Induction of Therapeutic Tissue Tolerance Foxp3 Expression Is
    Downloaded from http://www.jimmunol.org/ by guest on October 2, 2021 is online at: average * The Journal of Immunology , 13 of which you can access for free at: 2012; 189:3947-3956; Prepublished online 17 from submission to initial decision 4 weeks from acceptance to publication September 2012; doi: 10.4049/jimmunol.1200449 http://www.jimmunol.org/content/189/8/3947 Foxp3 Expression Is Required for the Induction of Therapeutic Tissue Tolerance Frederico S. Regateiro, Ye Chen, Adrian R. Kendal, Robert Hilbrands, Elizabeth Adams, Stephen P. Cobbold, Jianbo Ma, Kristian G. Andersen, Alexander G. Betz, Mindy Zhang, Shruti Madhiwalla, Bruce Roberts, Herman Waldmann, Kathleen F. Nolan and Duncan Howie J Immunol cites 35 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/09/17/jimmunol.120044 9.DC1 This article http://www.jimmunol.org/content/189/8/3947.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 2, 2021.
    [Show full text]