List of Genes Deregulated in HDAC1 KO Vs WT

Total Page:16

File Type:pdf, Size:1020Kb

List of Genes Deregulated in HDAC1 KO Vs WT Yamaguchi_Suppl. Table 1 List of genes deregulated in HDAC1 KO vs WT Probe Set name fold change 1423327_at RIKEN cDNA 4930517K11 gene 201,6 1426231_at vitrin 33,4 1416368_at glutathione S-transferase, alpha 4 23,2 1435436_at Transcribed locus 20,1 1456379_x_at delta/notch-like EGF-related receptor 15,2 1418175_at vitamin D receptor 14,7 1455642_a_at tetraspanin 17 14,1 1436448_a_at prostaglandin-endoperoxide synthase 1 13,7 1423414_at prostaglandin-endoperoxide synthase 1 12,3 1416710_at transmembrane protein 35 11,8 1454780_at UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-like 4 10,9 1439231_at gb:BG228852 /DB_XREF=gi:12716356 /DB_XREF=ux62e05.x1 /CLONE=IMAGE:3514856 /FEA=EST /CNT=9 /TID=Mm.133155.1 /TIER=Stack10,3 /STK=8 /UG=Mm.133155 /UG_TITLE=ESTs 1416072_at CD34 antigen 10,2 1433529_at RIKEN cDNA E430002G05 gene 9,2 1416203_at aquaporin 1 8,6 1418949_at growth differentiation factor 15 8,3 1435955_at sialic acid binding Ig-like lectin 10 8,2 1416326_at cysteine-rich protein 1 (intestinal) 8,2 1448700_at G0/G1 switch gene 2 8,1 1416271_at PERP, TP53 apoptosis effector 8,0 1418176_at vitamin D receptor 7,8 1439789_at gb:BQ177189 /DB_XREF=gi:20352681 /DB_XREF=UI-M-DJ2-bwa-j-16-0-UI.s1 /CLONE=UI-M-DJ2-bwa-j-16-0-UI /FEA=EST /CNT=16 /TID=7,4 Mm.34073.1 /TIER=ConsEnd /STK=6 /UG=Mm.34073 /UG_TITLE=ESTs 1423627_at NAD(P)H dehydrogenase, quinone 1 7,3 1442174_at tetraspanin 18 7,3 1435945_a_at potassium intermediate/small conductance calcium-activated channel, subfamily N, member 4 6,9 1439362_at Transcribed locus 6,7 1448754_at retinol binding protein 1, cellular 6,5 1418496_at forkhead box A1 6,5 1418086_at protein phosphatase 1, regulatory (inhibitor) subunit 14A 6,5 1439794_at Netrin 4 (Ntn4), mRNA 6,5 1441885_s_at Transcribed locus 6,4 1421571_a_at lymphocyte antigen 6 complex, locus C 6,3 1417933_at insulin-like growth factor binding protein 6 6,3 1458396_at Structure specific recognition protein 1 (Ssrp1), mRNA 6,3 1438672_at Parvin, beta (Parvb), mRNA 6,3 1429905_at RIKEN cDNA 3110009O07 gene 6,3 1423671_at delta/notch-like EGF-related receptor 6,2 1460667_at cDNA sequence U90926 6,2 1421228_at chemokine (C-C motif) ligand 7 6,0 1444139_at DNA-damage-inducible transcript 4-like 6,0 1428891_at RIKEN cDNA 9130213B05 gene 6,0 1416302_at early B-cell factor 1 5,9 1424826_s_at metastasis suppressor 1 5,7 1416301_a_at early B-cell factor 1 5,7 1424733_at purinergic receptor P2Y, G-protein coupled, 14 5,6 1439332_at DNA-damage-inducible transcript 4-like 5,6 1448293_at early B-cell factor 1 5,6 1455869_at Calcium/calmodulin-dependent protein kinase II, beta (Camk2b), mRNA 5,6 1424214_at RIKEN cDNA 9130213B05 gene 5,2 1451751_at DNA-damage-inducible transcript 4-like 5,1 1435796_at RIKEN cDNA 4933413A10 gene 5,1 1437453_s_at proprotein convertase subtilisin/kexin type 9 5,0 1417936_at chemokine (C-C motif) ligand 9 5,0 1430762_at RIKEN cDNA 4833427G06 gene 5,0 1450783_at interferon-induced protein with tetratricopeptide repeats 1 4,9 1422606_at C1q and tumor necrosis factor related protein 3 4,7 1419324_at LIM homeobox protein 9 4,6 1431213_a_at RIKEN cDNA 1300007C21 gene, similar to Retrovirus-related POL polyprotein (Endonuclease), similar to Retrovirus-related Pol polyprotein4,6 (Endonuclease) 1435275_at cytochrome c oxidase subunit VIb polypeptide 2 4,6 1447845_s_at vanin 1 4,5 1435830_a_at RIKEN cDNA 5430435G22 gene 4,4 1419132_at toll-like receptor 2 4,4 1444723_at RIKEN cDNA 6530418L21 gene 4,4 1449408_at junction adhesion molecule 2 4,4 1417185_at lymphocyte antigen 6 complex, locus A 4,4 1429359_s_at RNA binding protein gene with multiple splicing 4,3 1460555_at RIKEN cDNA 6330500D04 gene 4,3 1428767_at gasdermin domain containing 1 4,3 1457644_s_at chemokine (C-X-C motif) ligand 1 4,3 1448898_at chemokine (C-C motif) ligand 9 4,3 1456878_at expressed sequence AI646023 4,2 1426981_at proprotein convertase subtilisin/kexin type 6 4,2 1435990_at a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 2 4,1 1442257_at 12 days embryo female mullerian duct includes surrounding region cDNA, RIKEN full-length enriched library, clone:6820438B06 product:unclassifiable,4,1 full insert sequence 1424334_at tetraspanin 17 4,0 1449559_at homeo box, msh-like 2 3,9 1419209_at chemokine (C-X-C motif) ligand 1 3,8 1450482_a_at paired-like homeodomain transcription factor 2 3,8 1425652_s_at RNA binding protein gene with multiple splicing 3,8 1416295_a_at interleukin 2 receptor, gamma chain 3,7 1456210_at RIKEN cDNA 5430407P10 gene 3,7 1450626_at mannosidase, beta A, lysosomal 3,7 1432826_a_at CD80 antigen 3,7 1424797_a_at paired-like homeodomain transcription factor 2 3,7 1451236_at RAS-like, estrogen-regulated, growth-inhibitor 3,7 1434036_at metastasis suppressor 1 3,6 1417311_at cysteine rich protein 2 3,6 1451344_at cDNA sequence BC025600 3,6 1450761_s_at regulating synaptic membrane exocytosis 2 3,6 1436544_at ATPase, Class V, type 10D 3,6 1416411_at glutathione S-transferase, mu 2 3,6 1452388_at heat shock protein 1A 3,6 1424987_at RIKEN cDNA 5430435G22 gene 3,6 1436515_at RIKEN cDNA E030004N02 gene 3,5 1455304_at DNA segment, Chr 9, ERATO Doi 414, expressed 3,5 1421217_a_at lectin, galactose binding, soluble 9 3,5 1448272_at B-cell translocation gene 2, anti-proliferative 3,5 1450004_at thymic stromal lymphopoietin 3,5 1443612_at Transcribed locus 3,5 1434450_s_at adrenergic receptor kinase, beta 2 3,5 1458882_at serine (or cysteine) peptdiase inhibitor, clade B, member 8 3,5 1422033_a_at ciliary neurotrophic factor 3,4 1432517_a_at nicotinamide N-methyltransferase 3,4 1447329_at gb:AI506532 /DB_XREF=gi:4404383 /DB_XREF=vn38f09.x1 /CLONE=IMAGE:1023497 /FEA=EST /CNT=2 /TID=Mm.139387.1 /TIER=ConsEnd3,4 /STK=2 /UG=Mm.139387 /UG_TITLE=ESTs, Weakly similar to GNMSLL retrovirus-rel ... 1424890_at basonuclin 1 3,4 1437095_at tetraspanin 18 3,4 1451687_a_at transcription factor 2 3,4 1418890_a_at RAB3D, member RAS oncogene family 3,4 1435943_at dipeptidase 1 (renal) 3,4 1418486_at vanin 1 3,4 1421041_s_at glutathione S-transferase, alpha 1 (Ya), glutathione S-transferase, alpha 2 (Yc2) 3,4 1417995_at protein tyrosine phosphatase, non-receptor type 22 (lymphoid) 3,3 1451601_a_at cDNA sequence BC011467 3,3 1449022_at nestin 3,3 1417358_s_at sorbin and SH3 domain containing 1 3,3 1427126_at heat shock protein 1A 3,2 1441165_s_at calsyntenin 2 3,2 1434279_at gb:BI076485 /DB_XREF=gi:14515142 /DB_XREF=G0109C05-3 /CLONE=G0109C05 /FEA=EST /CNT=386 /TID=Mm.30502.2 /TIER=Stack3,2 /STK=48 /UG=Mm.30502 /LL=13803 /UG_GENE=Enc1 /UG_TITLE=ectodermal-neural cortex 1 1418713_at pterin 4 alpha carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor 1 alpha (TCF1) 1 3,2 1418979_at RIKEN cDNA 9030611N15 gene 3,2 1422155_at histone 2, H3c2 3,2 1426858_at inhibin beta-B 3,2 1429053_at RIKEN cDNA 1110012J17 gene 3,1 1425093_at purinergic receptor P2X, ligand-gated ion channel, 3 3,1 1436470_at regulating synaptic membrane exocytosis 2 3,1 1423693_at elastase 1, pancreatic 3,1 1438989_s_at RIKEN cDNA B130021B11 gene 3,0 1460242_at decay accelerating factor 1 3,0 1437385_at collagen and calcium binding EGF domains 1 3,0 1435750_at GTP cyclohydrolase I feedback regulator 3,0 1441971_at Transcribed locus 3,0 1422340_a_at actin, gamma 2, smooth muscle, enteric 3,0 1452318_a_at heat shock protein 1A 3,0 1443749_x_at solute carrier family 1 (glial high affinity glutamate transporter), member 3 3,0 1423606_at periostin, osteoblast specific factor 3,0 1427127_x_at heat shock protein 1A 3,0 1437161_x_at RNA binding protein gene with multiple splicing 2,9 1422567_at niban protein 2,9 1450512_at netrin 4 2,9 1418749_at cDNA sequence BC00398 2,9 1417963_at phospholipid transfer protein 2,9 1427735_a_at actin, alpha 1, skeletal muscle 2,9 1455404_at junctophilin 2 2,9 1428067_at RAS-like, family 12 2,9 1419458_at Rho-guanine nucleotide exchange factor 2,9 1418726_a_at troponin T2, cardiac 2,9 1417732_at annexin A8 2,9 1436990_s_at Nur77 downstream gene 2 2,9 1452366_at RIKEN cDNA 4732435N03 gene 2,9 1425357_a_at gremlin 1 2,9 1426340_at solute carrier family 1 (glial high affinity glutamate transporter), member 3 2,9 1440975_at RIKEN cDNA 1810057P16 gene 2,9 1456643_at RIKEN cDNA 9230114K14 gene 2,9 1429184_at GTPase, very large interferon inducible 1 2,8 1419674_a_at dipeptidase 1 (renal) 2,8 1418237_s_at procollagen, type XVIII, alpha 1 2,8 1452031_at solute carrier family 1 (glial high affinity glutamate transporter), member 3 2,8 1437558_at RIKEN cDNA B130021B11 gene 2,8 1426071_at TGF-beta1-induced anti-apoptotic factor 2 2,8 1419435_at aldehyde oxidase 1 2,8 1415855_at kit ligand 2,8 1424638_at cyclin-dependent kinase inhibitor 1A (P21) 2,8 1448788_at Cd200 antigen 2,8 1422444_at integrin alpha 6 2,8 1419739_at tropomyosin 2, beta 2,8 1426341_at solute carrier family 1 (glial high affinity glutamate transporter), member 3 2,8 1443870_at ATP-binding cassette, sub-family C (CFTR/MRP), member 4 2,8 1434939_at forkhead box F1a 2,7 1436999_at expressed sequence AL024069 2,7 1440085_at ectodysplasin A2 isoform receptor 2,7 1422445_at integrin alpha 6 2,7 1429767_at RIKEN cDNA 2810013P06 gene 2,7 1434728_at gb:BM220576 /DB_XREF=gi:17780712 /DB_XREF=C0942G02-3 /CLONE=C0942G02 /FEA=EST /CNT=29 /TID=Mm.32184.1 /TIER=Stack2,7 /STK=26 /UG=Mm.32184 /UG_TITLE=ESTs 1435349_at neuropilin 2 2,7 1457058_at a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 2 2,7 1421965_s_at Notch gene homolog 3 (Drosophila) 2,7 1419457_at Rho-guanine nucleotide exchange
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • Mapping Influenza-Induced Posttranslational Modifications On
    viruses Article Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells Svetlana Rezinciuc 1, Zhixin Tian 2, Si Wu 2, Shawna Hengel 2, Ljiljana Pasa-Tolic 2 and Heather S. Smallwood 1,3,* 1 Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; [email protected] 2 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; [email protected] (Z.T.); [email protected] (S.W.); [email protected] (S.H.); [email protected] (L.P.-T.) 3 Children’s Foundation Research Institute, Memphis, TN 38105, USA * Correspondence: [email protected]; Tel.: +1-(901)-448–3068 Academic Editor: Italo Tempera Received: 10 October 2020; Accepted: 2 December 2020; Published: 8 December 2020 Abstract: T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Enzymatic Encoding Methods for Efficient Synthesis Of
    (19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN,
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • 35 Disorders of Purine and Pyrimidine Metabolism
    35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP).
    [Show full text]
  • The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc Oncogenesis
    The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis By Yuting Sun This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of New South Wales Children’s Cancer Institute Australia for Medical Research School of Women’s and Children’s Health, Faculty of Medicine University of New South Wales Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Sun First name: Yuting Other name/s: Abbreviation for degree as given in the University calendar: PhD School : School of·Women's and Children's Health Faculty: Faculty of Medicine Title: The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis. Abstract 350 words maximum: (PLEASE TYPE) N-Myc Induces neuroblastoma by regulating the expression of target genes and proteins, and N-Myc protein is degraded by Fbxw7 and NEDD4 and stabilized by Aurora A. The class lla histone deacetylase HDAC5 suppresses gene transcription, and blocks myoblast and leukaemia cell differentiation. While histone H3 lysine 4 (H3K4) trimethylation at target gene promoters is a pre-requisite for Myc· induced transcriptional activation, WDRS, as a histone H3K4 methyltransferase presenter, is required for H3K4 methylation and transcriptional activation mediated by a histone H3K4 methyltransferase complex. Here, I investigated the roles of HDAC5 and WDR5 in N-Myc overexpressing neuroblastoma. I have found that N-Myc upregulates HDAC5 protein expression, and that HDAC5 represses NEDD4 gene expression, increases Aurora A gene expression and consequently upregulates N-Myc protein expression in neuroblastoma cells.
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000238675-HmpCyc: Bacillus smithii 7_3_47FAA Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Metabolism of Purines and Pyrimidines in Health and Disease
    39th Meeting of the Polish Biochemical Society Gdañsk 16–20 September 2003 SESSION 6 Metabolism of purines and pyrimidines in health and disease Organized by A. C. Sk³adanowski, A. Guranowski 182 Session 6. Metabolism of purines and pyrimidines in health and disease 2003 323 Lecture The role of DNA methylation in cytotoxicity mechanism of adenosine analogues in treatment of leukemia Krystyna Fabianowska-Majewska Zak³ad Chemii Medycznej IFiB, Uniwersytet Medyczny, ul. Mazowiecka 6/8, 92 215 £ódŸ Changes in DNA methylation have been recognized tory effects of cladribine and fludarabine on DNA as one of the most common molecular alterations in hu- methylation, after 48 hr growth of K562 cells with the man neoplastic diseases and hypermethylation of drugs, are non-random and affect mainly CpG rich is- gene-promoter regions is one of the most frequent lands or CCGG sequences but do not affect sepa- mechanisms of the loss of gene functions. For this rea- rately-located CpG sequences. The analysis showed son, DNA methylation may be a tool for detection of that cladribine (0.1 mM) reduced the methylated early cell transformations as well as predisposition to cytosines in CpG islands and CCGG sequences to a sim- metastasis process. Moreover, DNA methylation seems ilar degree. The inhibition of cytosine methylation by to be a promissing target for new preventive and thera- fludarabine (3 mM) was observed mainly in CCGG se- peutic strategies. quences, sensitive to HpaII, but the decline in the meth- Our studies on DNA methylation and cytotoxicity ylated cytosine, located in CpG island was 2-fold lower mechanism of antileukemic drugs, cladribine and than that with cladribine.
    [Show full text]
  • Emerging Roles for Multifunctional Ion Channel Auxiliary Subunits in Cancer T ⁎ Alexander S
    Cell Calcium 80 (2019) 125–140 Contents lists available at ScienceDirect Cell Calcium journal homepage: www.elsevier.com/locate/ceca Emerging roles for multifunctional ion channel auxiliary subunits in cancer T ⁎ Alexander S. Hawortha,b, William J. Brackenburya,b, a Department of Biology, University of York, Heslington, York, YO10 5DD, UK b York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK ARTICLE INFO ABSTRACT Keywords: Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been Auxiliary subunit shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are Cancer typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Calcium channel Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further Chloride channel expanding the repertoire of cellular processes governed by ion channel complexes to processes such as trans- Potassium channel cellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it Sodium channel is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will − focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+,K+,Na+ and Cl channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregu- lated (e.g. Cavβ,Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1,Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets.
    [Show full text]
  • Determining HDAC8 Substrate Specificity by Noah Ariel Wolfson A
    Determining HDAC8 substrate specificity by Noah Ariel Wolfson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2014 Doctoral Committee: Professor Carol A. Fierke, Chair Professor Robert S. Fuller Professor Anna K. Mapp Associate Professor Patrick J. O’Brien Associate Professor Raymond C. Trievel Dedication My thesis is dedicated to all my family, mentors, and friends who made getting to this point possible. ii Table of Contents Dedication ....................................................................................................................................... ii List of Figures .............................................................................................................................. viii List of Tables .................................................................................................................................. x List of Appendices ......................................................................................................................... xi Abstract ......................................................................................................................................... xii Chapter 1 HDAC8 substrates: Histones and beyond ...................................................................... 1 Overview ..................................................................................................................................... 1 HDAC introduction
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]