Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy

Total Page:16

File Type:pdf, Size:1020Kb

Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy cancers Review Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy Mohammed I. Y. Elmallah 1,2,* and Olivier Micheau 1,* 1 INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France 2 Chemistry Department, Faculty of Science, Helwan University, Ain Helwan 11795 Cairo, Egypt * Correspondence: [email protected] (M.I.Y.E.); [email protected] (O.M.) Received: 23 May 2019; Accepted: 18 June 2019; Published: 19 June 2019 Abstract: One of the main characteristics of carcinogenesis relies on genetic alterations in DNA and epigenetic changes in histone and non-histone proteins. At the chromatin level, gene expression is tightly controlled by DNA methyl transferases, histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyl-binding proteins. In particular, the expression level and function of several tumor suppressor genes, or oncogenes such as c-Myc, p53 or TRAIL, have been found to be regulated by acetylation. For example, HATs are a group of enzymes, which are responsible for the acetylation of histone proteins, resulting in chromatin relaxation and transcriptional activation, whereas HDACs by deacetylating histones lead to chromatin compaction and the subsequent transcriptional repression of tumor suppressor genes. Direct acetylation of suppressor genes or oncogenes can affect their stability or function. Histone deacetylase inhibitors (HDACi) have thus been developed as a promising therapeutic target in oncology. While these inhibitors display anticancer properties in preclinical models, and despite the fact that some of them have been approved by the FDA, HDACi still have limited therapeutic efficacy in clinical terms. Nonetheless, combined with a wide range of structurally and functionally diverse chemical compounds or immune therapies, HDACi have been reported to work in synergy to induce tumor regression. In this review, the role of HDACs in cancer etiology and recent advances in the development of HDACi will be presented and put into perspective as potential drugs synergizing with TRAIL’s pro-apoptotic potential. Keywords: histone deacetylase (HDAC); histone deacetylase inhibitors (HDACIs); chromatin remodeling; cancer; tumor necrosis factor (TNF); TRAIL; methylation; silencing 1. Introduction Cancer is considered as the leading cause of death worldwide. It has been reported to occur as a result of epigenetic modifications, including amplifications, translocations, deletions, and point mutations [1,2]. These epigenetic modifications are linked to abnormal cellular transformation, characterized, among other things, by uncontrolled proliferation and resistance to cell death, forming a lump or what is called a tumor. In addition, DNA methylation and the post-translational modification of proteins such as histones, including acetylation and methylation, are also believed to play a central role in tumorigenesis by modifying the structure of chromatin and the subsequent negative regulation of tumor suppressor genes or oncogenes without any change in the DNA sequence [3]. The main function of histones is the packaging of genomic DNA inside the nucleus. Histone proteins are rich with positively charged amino acids, lysine and arginine, which makes their overall structure positive. In this context, histones can interact with the negatively charged phosphate group of DNA. These proteins are composed of several types of histone including H1, H2A, H2B, H3, and H4. H2A, H2B, H3, and H4 represent the main histone core, while H1 is known as a linker histone [4]. The core multimeric protein is an octamer molecule, mainly consisting of two copies of each histone type (2H2A, 2H2B, 2H3, Cancers 2019, 11, 850; doi:10.3390/cancers11060850 www.mdpi.com/journal/cancers Cancers 2019, 11, x 2 of 31 Cancers 2019, 11, 850 2 of 29 [4]. The core multimeric protein is an octamer molecule, mainly consisting of two copies of each histone type (2H2A, 2H2B, 2H3, and 2H4) forming a globular structure called the nucleosome (Figure and1a). 2H4) Each forming nucleosome a globular is wrapped structure by approx. called the 146 nucleosome bp of DNA and (Figure separated1a). Each by 50 nucleosome base pair (bp) is wrapped linker byDNA. approx. The 146 N-terminal bp of DNA domain and separated of histones by 50 possesses base pair (bp)an unstructured linker DNA. part The N-terminalthat has also domain been of histonessuggested possesses to be involved an unstructured in the epigenetic part that hasmodifi alsocation been of suggested chromatin. to Considering be involved inthe the process epigenetic by modificationwhich histone of chromatin. proteins are Considering post-translationally the process modified, by which histonechromatin proteins adopts are various post-translationally structural modified,conformations chromatin that regulate adopts various both the structural repression conformations and activation thatof gene regulate transcription both the (Figure repression 1b and and activation[5]). of gene transcription (Figure1b and [5]). FigureFigure 1. 1.Illustration Illustration of of histone histone core core composition composition and and impact impact of of chromatin chromatin relaxation relaxation or or compaction compaction by histoneby histone acetyltransferases acetyltransferases (HAT) (HAT) or histone or histon deacetylasese deacetylases (HDAC) (HDAC) on gene on expressiongene expression (a) Histone (a) Histone protein consistsprotein of consists five main of five types main H1, types H2A, H1, H2B, H2A, H3, H2B, and H3, H4. and Two H4. copies Two copies of each of histoneeach histone type type (2H2A, (2H2A, 2H2B, 2H3,2H2B, and 2H3, 2H4) and constitute 2H4) constitute the octamer the octamer histone corehistone (nucleosome), core (nucleosome), wrapped wrapped by approx. by approx. 146 bp 146 of DNA.bp H1of is DNA. known H1 as is linker known histone as linker that ishistone associated that is to associated linker DNA to betweenlinker DNA each between nucleosome. each nucleosome. (b) Epigenetic modification(b) Epigenetic of histone modification proteins of by histone HDAC /proteinsHAT. HAT by stimulatesHDAC/HAT. transcriptional HAT stimulates activation transcriptional of the tumor suppressoractivation genes of the via tumor acetylation suppressor of N-genes"-lysine via acetylation residues of of histone N-ε-lysine results residues in more of histone relaxed results chromatin, in whichmore facilitates relaxed chromatin, the accessibility which offacilitates target gene the promoteraccessibility to of transcription target gene factors.promoter Conversely, to transcription HDAC inducesfactors. transcriptional Conversely, repressionHDAC induces of tumor transcriptio suppressornal genesrepression by deacetylating of tumor suppressor N-"-lysine genes residues by of histonedeacetylating in which N- theε-lysine chromatin residues adopts of compactedhistone in which structure the conformation,chromatin adopts thus compacted hiding the targetstructure gene promoterconformation, from the thus transcription hiding the target factors. gene promoter from the transcription factors. AcetylationAcetylation/deacetylation/deacetylation ofof thethe N-N-"ε-lysine-lysine residues of of histones histones is is regulated regulated by by a agroup group of of acetylatingacetylating and and deacetylating deacetylating enzymes. enzymes. HistoneHistone acet acetyltransferasesyltransferases (HATs) (HATs) transfer transfer an an acetyl acetyl group group fromfrom an an acetyl-coA acetyl-coA molecule molecule toto the N- N-ε"-lysine-lysine residues residues of of histone, histone, resulting resulting in the in theneutralization neutralization of its positive charge and in the activation of gene transcription. In contrast, histone deacetylases of its positive charge and in the activation of gene transcription. In contrast, histone deacetylases (HDACs) remove the acetyl group from the N-ε-lysine residues of histone providing a tight (HDACs) remove the acetyl group from the N-"-lysine residues of histone providing a tight interaction interaction between DNA and histone protein (Figure 1b). In this case, the chromatin exhibits more between DNA and histone protein (Figure1b). In this case, the chromatin exhibits more compacted compacted conformation [6]. Excessive histone deacetylation induced by HDAC can have a conformation [6]. Excessive histone deacetylation induced by HDAC can have a significant impact significant impact on the pathology of cancer via the silencing of tumor suppressor genes, including onp53. the pathologyFor instance, of the cancer more via the the chromatin silencing is conden of tumorsed, suppressor the fewer promoters genes, including of these p53.target For genes instance, are theaccessible more the to chromatin transcription is condensed, factors, whereas the fewer when promoters cells exhibit of these higher target HAT genes activity, are accessiblechromatin to transcriptionrelaxation is factors, associated whereas with when an increased cells exhibit transcri higherptional HAT activation activity, of chromatin tumor suppressor relaxation genes is associated [7,8]. withGiven an increased that dysregulation transcriptional of HDAC activation and/or of HAT tumor func suppressortion has genesbeen associated [7,8]. Given to thatcancer dysregulation etiology, of HDAC and/or HAT function has been associated to cancer etiology, intensive research is being conducted worldwide to develop HDAC inhibitors. In this review the role of HDAC and epigenetic Cancers 2019, 11, 850 3 of 29 Cancers 2019,
Recommended publications
  • The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc Oncogenesis
    The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis By Yuting Sun This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of New South Wales Children’s Cancer Institute Australia for Medical Research School of Women’s and Children’s Health, Faculty of Medicine University of New South Wales Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Sun First name: Yuting Other name/s: Abbreviation for degree as given in the University calendar: PhD School : School of·Women's and Children's Health Faculty: Faculty of Medicine Title: The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis. Abstract 350 words maximum: (PLEASE TYPE) N-Myc Induces neuroblastoma by regulating the expression of target genes and proteins, and N-Myc protein is degraded by Fbxw7 and NEDD4 and stabilized by Aurora A. The class lla histone deacetylase HDAC5 suppresses gene transcription, and blocks myoblast and leukaemia cell differentiation. While histone H3 lysine 4 (H3K4) trimethylation at target gene promoters is a pre-requisite for Myc· induced transcriptional activation, WDRS, as a histone H3K4 methyltransferase presenter, is required for H3K4 methylation and transcriptional activation mediated by a histone H3K4 methyltransferase complex. Here, I investigated the roles of HDAC5 and WDR5 in N-Myc overexpressing neuroblastoma. I have found that N-Myc upregulates HDAC5 protein expression, and that HDAC5 represses NEDD4 gene expression, increases Aurora A gene expression and consequently upregulates N-Myc protein expression in neuroblastoma cells.
    [Show full text]
  • Alterations of Genetic Variants and Transcriptomic Features of Response to Tamoxifen in the Breast Cancer Cell Line
    Alterations of Genetic Variants and Transcriptomic Features of Response to Tamoxifen in the Breast Cancer Cell Line Mahnaz Nezamivand-Chegini Shiraz University Hamed Kharrati-Koopaee Shiraz University https://orcid.org/0000-0003-2345-6919 seyed taghi Heydari ( [email protected] ) Shiraz University of Medical Sciences https://orcid.org/0000-0001-7711-1137 Hasan Giahi Shiraz University Ali Dehshahri Shiraz University of Medical Sciences Mehdi Dianatpour Shiraz University of Medical Sciences Kamran Bagheri Lankarani Shiraz University of Medical Sciences Research Keywords: Tamoxifen, breast cancer, genetic variants, RNA-seq. Posted Date: August 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-783422/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/33 Abstract Background Breast cancer is one of the most important causes of mortality in the world, and Tamoxifen therapy is known as a medication strategy for estrogen receptor-positive breast cancer. In current study, two hypotheses of Tamoxifen consumption in breast cancer cell line (MCF7) were investigated. First, the effect of Tamoxifen on genes expression prole at transcriptome level was evaluated between the control and treated samples. Second, due to the fact that Tamoxifen is known as a mutagenic factor, there may be an association between the alterations of genetic variants and Tamoxifen treatment, which can impact on the drug response. Methods In current study, the whole-transcriptome (RNA-seq) dataset of four investigations (19 samples) were derived from European Bioinformatics Institute (EBI). At transcriptome level, the effect of Tamoxifen was investigated on gene expression prole between control and treatment samples.
    [Show full text]
  • Determining HDAC8 Substrate Specificity by Noah Ariel Wolfson A
    Determining HDAC8 substrate specificity by Noah Ariel Wolfson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2014 Doctoral Committee: Professor Carol A. Fierke, Chair Professor Robert S. Fuller Professor Anna K. Mapp Associate Professor Patrick J. O’Brien Associate Professor Raymond C. Trievel Dedication My thesis is dedicated to all my family, mentors, and friends who made getting to this point possible. ii Table of Contents Dedication ....................................................................................................................................... ii List of Figures .............................................................................................................................. viii List of Tables .................................................................................................................................. x List of Appendices ......................................................................................................................... xi Abstract ......................................................................................................................................... xii Chapter 1 HDAC8 substrates: Histones and beyond ...................................................................... 1 Overview ..................................................................................................................................... 1 HDAC introduction
    [Show full text]
  • Cigarette Smoking-Induced Endothelial Dysfunction: Molecular Mechanisms and Therapeutic Approaches
    Cigarette Smoking-Induced Endothelial Dysfunction: Molecular Mechanisms and Therapeutic Approaches DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Tamer M. Abdelghany Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2013 Dissertation Committee: Dr. Jay L. Zweier, MD, Advisor Dr. Arthur Strauch III, PhD Dr. Amal Amer, MD PhD Copyright by Tamer M. Abdelghany 2013 Abstract Cigarette smoking (CS) remains the single largest preventable cause of death. Worldwide, smoking causes more than five million deaths annually and, according to the current trends, smoking may cause up to 10 million annual deaths by 2030. In the U.S. alone, approximately half a million adults die from smoking-related illnesses each year which represents ~ 19% of all deaths in the U.S., and among them 50,000 are killed due to exposure to secondhand smoke (SHS). Smoking is a major risk factor for cardiovascular disease (CVD). The crucial event of The CVD is the endothelial dysfunction (ED). Despite of the vast number of studies conducted to address this significant health problem, the exact mechanism by which CS induces ED is not fully understood. The ultimate goal of this thesis; therefore, is to study the mechanisms by which CS induces ED, aiming at the development of new therapeutic strategies that can be used in protection and/or reversal of CS-induced ED. In the first part of this study, we developed a well-characterized animal model for chronic secondhand smoke exposure (SHSE) to study the onset and severity of the disease.
    [Show full text]
  • Antigen-Specific Memory CD4 T Cells Coordinated Changes in DNA
    Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology The Journal of Immunology published online 18 March 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/03/17/jimmun ol.1202267 Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto, Katsumi Ogoshi, Atsushi Sasaki, Jun Abe, Wei Qu, Yoichiro Nakatani, Budrul Ahsan, Kenshiro Oshima, Francis H. W. Shand, Akio Ametani, Yutaka Suzuki, Shuichi Kaneko, Takashi Wada, Masahira Hattori, Sumio Sugano, Shinichi Morishita and Kouji Matsushima J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Freely available online through http://www.jimmunol.org/content/suppl/2013/03/18/jimmunol.120226 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. Published March 18, 2013, doi:10.4049/jimmunol.1202267 The Journal of Immunology Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto,*,†,‡ Katsumi Ogoshi,* Atsushi Sasaki,† Jun Abe,* Wei Qu,† Yoichiro Nakatani,† Budrul Ahsan,x Kenshiro Oshima,† Francis H.
    [Show full text]
  • Human Cumulus Cells in Long-Term in Vitro Culture Reflect Differential
    cells Article Human Cumulus Cells in Long-Term In Vitro Culture Reflect Differential Expression Profile of Genes Responsible for Planned Cell Death and Aging—A Study of New Molecular Markers Bła˙zejChermuła 1, Wiesława Kranc 2 , Karol Jopek 3, Joanna Budna-Tukan 3 , Greg Hutchings 2,4, Claudia Dompe 3,4, Lisa Moncrieff 3,4 , Krzysztof Janowicz 2,4, Małgorzata Józkowiak 5, Michal Jeseta 6 , Jim Petitte 7 , Paul Mozdziak 8 , Leszek Pawelczyk 1, Robert Z. Spaczy ´nski 1 and Bartosz Kempisty 2,3,6,9,* 1 Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; [email protected] (B.C.); [email protected] (L.P.); [email protected] (R.Z.S.) 2 Department of Anatomy, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland; [email protected] (W.K.); [email protected] (G.H.); [email protected] (K.J.) 3 Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland; [email protected] (K.J.); [email protected] (J.B.-T.); [email protected] (C.D.); l.moncrieff[email protected] (L.M.) 4 The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK 5 Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland; [email protected] 6 Department of Obstetrics and Gynecology, University Hospital and
    [Show full text]
  • Hypermethylation of XIAP-Associated Factor 1, a Putative Tumor Suppressor Gene from the 17P13.2 Locus, in Human Gastric Adenocarcinomas1
    [CANCER RESEARCH 63, 7068–7075, November 1, 2003] Advances in Brief Hypermethylation of XIAP-associated Factor 1, a Putative Tumor Suppressor Gene from the 17p13.2 Locus, in Human Gastric Adenocarcinomas1 Do-Sun Byun, Kyucheol Cho, Byung-Kyu Ryu, Min-Goo Lee, Min-Ju Kang, Hak-Ryul Kim, and Sung-Gil Chi2 Department of Pathology, School of Medicine, Kyung Hee University, Seoul 130-701 [D-S. B., K. C., B-K. R., M-G. L., M-J. K., S-G. C.], and Graduate School of Life Science and Biotechnology, Korea University, Seoul 136-701 [D-S. B., H-R. K.], Korea Abstract gested to play a key role in the aberrantly increased cell viability and resistance to the anticancer therapy in human cancers, whereas over- X-linked inhibitor of apoptosis (XIAP) is the most potent member of the expression seems to suppress apoptosis against a large variety of IAP family that exerts antiapoptotic effects by interfering with the activ- ities of caspases. Recently, XIAP-associated factor 1 (XAF1) and two triggers (4, 5). The human IAP family includes cIAP-1, cIAP-2, mitochondrial proteins, Smac/DIABLO and HtrA2, have been identified XIAP, NAIP, survivin, apollon, ILP2, and livin, and several members to negatively regulate the caspase-inhibiting activity of XIAP. To explore of the human IAP family including XIAP, c-IAP-1, and c-IAP-2 have the candidacy of XAF1, Smac/DIABLO, and HtrA2 as a tumor suppressor been shown to be potent inhibitors of caspase-3, -7, and -9 (2, 6, 7). in gastric tumorigenesis, we investigated the expression and mutation Of the eight known human IAP proteins, XIAP is the most potent status of the genes in 123 gastric tissues and 15 cancer cell lines.
    [Show full text]
  • Identification of Genes Involved in Radioresistance of Nasopharyngeal Carcinoma by Integrating Gene Ontology and Protein-Protein Interaction Networks
    INTERNATIONAL JOURNAL OF ONCOLOGY 40: 85-92, 2012 Identification of genes involved in radioresistance of nasopharyngeal carcinoma by integrating gene ontology and protein-protein interaction networks YA GUO1, XIAO-DONG ZHU1, SONG QU1, LING LI1, FANG SU1, YE LI1, SHI-TING HUANG1 and DAN-RONG LI2 1Department of Radiation Oncology, Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region; 2Guang xi Medical Scientific Research Center, Guangxi Medical University, Nanning 530021, P.R. China Received June 15, 2011; Accepted July 29, 2011 DOI: 10.3892/ijo.2011.1172 Abstract. Radioresistance remains one of the important factors become potential biomarkers for predicting NPC response to in relapse and metastasis of nasopharyngeal carcinoma. Thus, it radiotherapy. is imperative to identify genes involved in radioresistance and explore the underlying biological processes in the development Introduction of radioresistance. In this study, we used cDNA microarrays to select differential genes between radioresistant CNE-2R Nasopharyngeal carcinoma (NPC) is a major malignant tumor and parental CNE-2 cell lines. One hundred and eighty-three of the head and neck region and is endemic to Southeast significantly differentially expressed genes (p<0.05) were Asia, especially Guangdong and Guangxi Provinces, and the identified, of which 138 genes were upregulated and 45 genes Mediterranean basin (1,3). Radiotherapy is the major treatment were downregulated in CNE-2R. We further employed publicly modality for nasopharyngeal carcinoma (NPC). However, in available bioinformatics related software, such as GOEAST some cases, it is radioresistant. Although microarray methods and STRING to examine the relationship among differen- have been used to assess genes involved in radioresistance in a tially expressed genes.
    [Show full text]
  • The Role of Post-Translational Acetylation and Deacetylation of Signaling Proteins and Transcription Factors After Cerebral Ischemia: Facts and Hypotheses
    International Journal of Molecular Sciences Review The Role of Post-Translational Acetylation and Deacetylation of Signaling Proteins and Transcription Factors after Cerebral Ischemia: Facts and Hypotheses Svetlana Demyanenko 1,* and Svetlana Sharifulina 1,2 1 Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, 344090 Rostov-on-Don, Russia; [email protected] 2 Neuroscience Center HiLife, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014 Helsinki, Finland * Correspondence: [email protected]; Tel.: +7-918-5092185; Fax: +7-863-2230837 Abstract: Histone deacetylase (HDAC) and histone acetyltransferase (HAT) regulate transcription and the most important functions of cells by acetylating/deacetylating histones and non-histone proteins. These proteins are involved in cell survival and death, replication, DNA repair, the cell cycle, and cell responses to stress and aging. HDAC/HAT balance in cells affects gene expression and cell signaling. There are very few studies on the effects of stroke on non-histone protein acetylation/deacetylation in brain cells. HDAC inhibitors have been shown to be effective in protecting the brain from ischemic damage. However, the role of different HDAC isoforms in the survival and death of brain cells after stroke is still controversial. HAT/HDAC activity depends on the acetylation site and the acetylation/deacetylation of the main proteins (c-Myc, E2F1, p53, Citation: Demyanenko, S.; ERK1/2, Akt) considered in this review, that are involved in the regulation of cell fate decisions. Sharifulina, S. The Role of Post-Translational Acetylation and Our review aims to analyze the possible role of the acetylation/deacetylation of transcription factors Deacetylation of Signaling Proteins and signaling proteins involved in the regulation of survival and death in cerebral ischemia.
    [Show full text]
  • Histone Deacetylase Inhibitors As Anticancer Drugs
    International Journal of Molecular Sciences Review Histone Deacetylase Inhibitors as Anticancer Drugs Tomas Eckschlager 1,*, Johana Plch 1, Marie Stiborova 2 and Jan Hrabeta 1 1 Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84/1, Prague 5 CZ-150 06, Czech Republic; [email protected] (J.P.); [email protected] (J.H.) 2 Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030/8, Prague 2 CZ-128 43, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +42-060-636-4730 Received: 14 May 2017; Accepted: 27 June 2017; Published: 1 July 2017 Abstract: Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed.
    [Show full text]
  • The Camp Inducers Modify N-Acetylaspartate Metabolism in Wistar Rat Brain
    antioxidants Article The cAMP Inducers Modify N-Acetylaspartate Metabolism in Wistar Rat Brain Robert Kowalski 1,† , Piotr Pikul 2, Krzysztof Lewandowski 1,3, Monika Sakowicz-Burkiewicz 4 , Tadeusz Pawełczyk 4 and Marlena Zy´sk 4,*,† 1 University Clinical Center in Gdansk, 80-952 Gdansk, Poland; [email protected] (R.K.); [email protected] (K.L.) 2 Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 80-308 Gdansk, Poland; [email protected] 3 Department of Laboratory Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland 4 Department of Molecular Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; [email protected] (M.S.-B.); [email protected] (T.P.) * Correspondence: [email protected]; Tel.: +48-58-349-27-59 † Authors contribute equally in experiment performance. Abstract: Neuronal N-acetylaspartate production appears in the presence of aspartate N-acetyltransferase (NAT8L) and binds acetyl groups from acetyl-CoA with aspartic acid. Further N-acetylaspartate pathways are still being elucidated, although they seem to involve neuron-glia crosstalk. Together with N-acetylaspartate, NAT8L takes part in oligoglia and astroglia cell maturation, myelin pro- duction, and dopamine-dependent brain signaling. Therefore, understanding N-acetylaspartate metabolism is an emergent task in neurobiology. This project used in in vitro and in vivo approaches in order to establish the impact of maturation factors and glial cells on N-acetylaspartate metabolism. Citation: Kowalski, R.; Pikul, P.; Embryonic rat neural stem cells and primary neurons were maturated with either nerve growth factor, Lewandowski, K.; Sakowicz- trans Burkiewicz, M.; Pawełczyk, T.; Zy´sk, -retinoic acid or activators of cAMP-dependent protein kinase A (dibutyryl-cAMP, forskolin, M.
    [Show full text]
  • Atlas Journal
    Atlas of Genetics and Cytogenetics in Oncology and Haematology Home Genes Leukemias Solid Tumours Cancer-Prone Deep Insight Portal Teaching X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA Atlas Journal Atlas Journal versus Atlas Database: the accumulation of the issues of the Journal constitutes the body of the Database/Text-Book. TABLE OF CONTENTS Volume 12, Number 5, Sep-Oct 2008 Previous Issue / Next Issue Genes XAF1 (XIAP associated factor-1) (17p13.2). Stéphanie Plenchette, Wai Gin Fong, Robert G Korneluk. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (5): 668-673. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/XAF1ID44095ch17p13.html WWP1 (WW domain containing E3 ubiquitin protein ligase 1) (8q21.3). Ceshi Chen. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (5): 674-680. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/WWP1ID42993ch8q21.html TSPAN1 (tetraspanin 1) (1p34.1). David Murray, Peter Doran. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (5): 681-683. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/TSPAN1ID44178ch1p34.html TCL1B (T-cell leukemia/lymphoma 1B) (14q32.13). Herbert Eradat, Michael A Teitell. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (5): 684-686. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/TCL1BID354ch14q32.html PVRL4 (poliovirus receptor-related 4) (1q23.3). Marc Lopez. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (5): 687-690. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/PVRL4ID44141ch1q23.html PTTG1IP (pituitary tumor-transforming 1 interacting protein) (21q22.3). Vicki Smith, Chris McCabe. Atlas Genet Cytogenet Oncol Haematol 2008; 12 (5): 691-694.
    [Show full text]