Characterizing the Roles of Exit Tunnel Residues in Ligand Binding
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis. -
Ovulation-Selective Genes: the Generation and Characterization of an Ovulatory-Selective Cdna Library
531 Ovulation-selective genes: the generation and characterization of an ovulatory-selective cDNA library A Hourvitz1,2*, E Gershon2*, J D Hennebold1, S Elizur2, E Maman2, C Brendle1, E Y Adashi1 and N Dekel2 1Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA 2Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (Requests for offprints should be addressed to N Dekel; Email: [email protected]) *(A Hourvitz and E Gershon contributed equally to this paper) (J D Hennebold is now at Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA) Abstract Ovulation-selective/specific genes, that is, genes prefer- (FAE-1) homolog, found to be localized to the inner entially or exclusively expressed during the ovulatory periantral granulosa and to the cumulus granulosa cells of process, have been the subject of growing interest. We antral follicles. The FAE-1 gene is a -ketoacyl-CoA report herein studies on the use of suppression subtractive synthase belonging to the fatty acid elongase (ELO) hybridization (SSH) to construct a ‘forward’ ovulation- family, which catalyzes the initial step of very long-chain selective/specific cDNA library. In toto, 485 clones were fatty acid synthesis. All in all, the present study accom- sequenced and analyzed for homology to known genes plished systematic identification of those hormonally with the basic local alignment tool (BLAST). Of those, regulated genes that are expressed in the ovary in an 252 were determined to be nonredundant. -
Mapping Influenza-Induced Posttranslational Modifications On
viruses Article Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells Svetlana Rezinciuc 1, Zhixin Tian 2, Si Wu 2, Shawna Hengel 2, Ljiljana Pasa-Tolic 2 and Heather S. Smallwood 1,3,* 1 Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; [email protected] 2 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; [email protected] (Z.T.); [email protected] (S.W.); [email protected] (S.H.); [email protected] (L.P.-T.) 3 Children’s Foundation Research Institute, Memphis, TN 38105, USA * Correspondence: [email protected]; Tel.: +1-(901)-448–3068 Academic Editor: Italo Tempera Received: 10 October 2020; Accepted: 2 December 2020; Published: 8 December 2020 Abstract: T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection. -
HDAC7 Sikens the Heart
The black sheep of class IIa: HDAC7 SIKens the heart Joshua G. Travers, … , Tianjing Hu, Timothy A. McKinsey J Clin Invest. 2020;130(6):2811-2813. https://doi.org/10.1172/JCI137074. Commentary Class IIa histone deacetylases (HDACs) repress cardiomyocyte hypertrophy through association with the prohypertrophic transcription factor (TF) myocyte enhancer factor-2 (MEF2). The four class IIa HDACs — HDAC4, -5, -7, and -9 — are subject to signal-dependent phosphorylation by members of the Ca2+/calmodulin-dependent protein kinase (CaMK) group. In response to stress, HDAC4, HDAC5, and HDAC9 undergo phosphorylation-induced nuclear export in cardiomyocytes, freeing MEF2 to stimulate progrowth genes; it was generally assumed that HDAC7 is also antihypertrophic. However, in this issue of the JCI, Hsu and colleagues demonstrate that, in sharp contrast to the other class IIa HDACs, HDAC7 is constitutively localized to the cardiomyocyte cytoplasm, where it promotes cardiac hypertrophy. Phosphorylation of HDAC7 by the CaMK group member salt-inducible kinase 1 (SIK1) stabilized the deacetylase, leading to increased expression of c-Myc, which in turn stimulated a pathological gene program. These unexpected findings highlight the SIK1/HDAC7 signaling axis as a promising target for the treatment of cardiac hypertrophy and heart failure. Find the latest version: https://jci.me/137074/pdf The Journal of Clinical Investigation COMMENTARY The black sheep of class IIa: HDAC7 SIKens the heart Joshua G. Travers, Tianjing Hu, and Timothy A. McKinsey Division of Cardiology, Department of Medicine, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA. repress gene expression, block cardiac hypertrophy by associating with the myo- Class IIa histone deacetylases (HDACs) repress cardiomyocyte hypertrophy cyte enhancer factor-2 (MEF2) transcrip- through association with the prohypertrophic transcription factor (TF) tion factor (TF) (11). -
CD40 Signaling Synergizes with TLR-2 in the BCR Independent Activation of Resting B Cells
CD40 Signaling Synergizes with TLR-2 in the BCR Independent Activation of Resting B Cells Shweta Jain, Sathi Babu Chodisetti, Javed N. Agrewala* Immunology Laboratory, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India Abstract Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB) cells, by involving TLR-2 and CD40 - molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID), signifying class switch recombination (CSR). Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response. Citation: Jain S, Chodisetti SB, Agrewala JN (2011) CD40 Signaling Synergizes with TLR-2 in the BCR Independent Activation of Resting B Cells. PLoS ONE 6(6): e20651. doi:10.1371/journal.pone.0020651 Editor: Leonardo A. Sechi, Universita di Sassari, Italy Received April 14, 2011; Accepted May 6, 2011; Published June 2, 2011 Copyright: ß 2011 Jain et al. -
Thiadiazole Derivatives As Anticancer Agents
Pharmacological Reports (2020) 72:1079–1100 https://doi.org/10.1007/s43440-020-00154-7 REVIEW Thiadiazole derivatives as anticancer agents Monika Szeliga1 Received: 15 June 2020 / Revised: 13 August 2020 / Accepted: 20 August 2020 / Published online: 3 September 2020 © The Author(s) 2020 Abstract In spite of substantial progress made toward understanding cancer pathogenesis, this disease remains one of the leading causes of mortality. Thus, there is an urgent need to develop novel, more efective anticancer therapeutics. Thiadiazole ring is a versatile scafold widely studied in medicinal chemistry. Mesoionic character of this ring allows thiadiazole-containing compounds to cross cellular membrane and interact strongly with biological targets. Consequently, these compounds exert a broad spectrum of biological activities. This review presents the current state of knowledge on thiadiazole derivatives that demonstrate in vitro and/or in vivo efcacy across the cancer models with an emphasis on targets of action. The infuence of the substituent on the compounds’ activity is depicted. Furthermore, the results from clinical trials assessing thiadiazole- containing drugs in cancer patients are summarized. Keywords Thiadiazole derivatives · Cancer · Anticancer therapy · Clinical trials Introduction antiparasitic, anti-infammatory and anticancer activities [2]. Due to the mesoionic nature, thiadiazoles are able to According to the most recent data provided by the Interna- cross the cellular membranes. Their relatively good lipo- tional Agency for Research on Cancer (IARC), 18.1 mil- solubility is most likely attributed to the presence of the sul- lion new cases and 9.6 million cancer deaths were regis- phur atom [3]. The thiadiazole-containing drugs, including tered worldwide in 2018 [1]. -
Nitric Oxide Mediated Redox Regulation of Protein Homeostasis T Irmgard Tegeder
Cellular Signalling 53 (2019) 348–356 Contents lists available at ScienceDirect Cellular Signalling journal homepage: www.elsevier.com/locate/cellsig Nitric oxide mediated redox regulation of protein homeostasis T Irmgard Tegeder Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany ARTICLE INFO ABSTRACT Keywords: Nitric oxide is a versatile diffusible signaling molecule, whose biosynthesis by three NO synthases (NOS) is tightly regulated Nitric oxide at transcriptional and posttranslational levels, availability of co-factors, and calcium binding. Above normal levels of NO Chaperone have beneficial protective effects for example in the cardiovascular system, but also contribute to the pathophysiology inthe Ubiquitin context of inflammatory diseases, and to aging and neurodegeneration in the nervous system. The effect specificity relieson Aging the functional and spatial specificity of the NOS isoenzymes, and on the duality of two major signaling mechanisms (i) Proteostasis activation of soluble guanylycylase (sGC)-dependent cGMP production and (ii) direct S-nitrosylation of redox sensitive cy- Nitrosylation steines of susceptible proteins. The present review summarizes the functional implications of S-nitrosylation in the context of proteostasis, and focuses on two NO target proteins, heat shock cognate of 70 kDa (Hsc70/HSPA8) and the ubiquitin 2 ligase (UBE2D), because both are modified on functionally critical cysteines and are key regulators of chaperone mediated and assisted autophagy and proteasomal protein degradation. SNO modifications of these candidates are associated with protein accumulations and adoption of a senescent phenotype of neuronal cells suggesting that S-nitrosylations of protein homeo- static machineries contribute to aging phenomena. 1. Introduction PKG1, [15] leading to smooth muscle relaxation via regulation of intracellular calcium stores [16] and actin-myosin dynamics. -
Downloaded 10/5/2021 9:43:05 AM
Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Aromatic side-chain flips orchestrate the conformational sampling of functional loops in Cite this: Chem. Sci.,2021,12,9318 † All publication charges for this article human histone deacetylase 8 have been paid for by the Royal Society a a bcd of Chemistry Vaibhav Kumar Shukla, ‡ Lucas Siemons, ‡ Francesco L. Gervasio and D. Flemming Hansen *a Human histone deacetylase 8 (HDAC8) is a key hydrolase in gene regulation and an important drug-target. High-resolution structures of HDAC8 in complex with substrates or inhibitors are available, which have provided insights into the bound state of HDAC8 and its function. Here, using long all-atom unbiased molecular dynamics simulations and Markov state modelling, we show a strong correlation between the conformation of aromatic side chains near the active site and opening and closing of the surrounding functional loops of HDAC8. We also investigated two mutants known to allosterically downregulate the enzymatic activity of HDAC8. Based on experimental data, we hypothesise that I19S-HDAC8 is unable to Received 6th April 2021 Creative Commons Attribution 3.0 Unported Licence. release the product, whereas both product release and substrate binding are impaired in the S39E- Accepted 27th May 2021 HDAC8 mutant. The presented results deliver detailed insights into the functional dynamics of HDAC8 DOI: 10.1039/d1sc01929e and provide a mechanism for the substantial downregulation caused by allosteric mutations, including rsc.li/chemical-science a disease causing one. Introduction II (HDAC-4, -5, -6, -7, -9, and HDAC10), and class III (SIRT1-7) have sequence similarity to yeast Rpd3, Hda1, and Sir2, Acetylation of lysine side chains occurs as a co-translation or respectively, whereas class IV (HDAC11) shares sequence simi- 2 This article is licensed under a post-translational modication of proteins and was rst iden- larity with both class I and II proteins. -
An Overview of the Role of Hdacs in Cancer Immunotherapy
International Journal of Molecular Sciences Review Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy Debarati Banik, Sara Moufarrij and Alejandro Villagra * Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, 800 22nd St NW, Suite 8880, Washington, DC 20052, USA; [email protected] (D.B.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +(202)-994-9547 Received: 22 March 2019; Accepted: 28 April 2019; Published: 7 May 2019 Abstract: Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration. -
Table 2. Significant
Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S. -
Supporting Online Material
1 2 3 4 5 6 7 Supplementary Information for 8 9 Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic 10 retinopathy 11 12 *Samuel A. Mills, *Andrew I. Jobling, *Michael A. Dixon, Bang V. Bui, Kirstan A. Vessey, Joanna A. Phipps, 13 Ursula Greferath, Gene Venables, Vickie H.Y. Wong, Connie H.Y. Wong, Zheng He, Flora Hui, James C. 14 Young, Josh Tonc, Elena Ivanova, Botir T. Sagdullaev, Erica L. Fletcher 15 * Joint first authors 16 17 Corresponding author: 18 Prof. Erica L. Fletcher. Department of Anatomy & Neuroscience. The University of Melbourne, Grattan St, 19 Parkville 3010, Victoria, Australia. 20 Email: [email protected] ; Tel: +61-3-8344-3218; Fax: +61-3-9347-5219 21 22 This PDF file includes: 23 24 Supplementary text 25 Figures S1 to S10 26 Tables S1 to S7 27 Legends for Movies S1 to S2 28 SI References 29 30 Other supplementary materials for this manuscript include the following: 31 32 Movies S1 to S2 33 34 35 36 1 1 Supplementary Information Text 2 Materials and Methods 3 Microglial process movement on retinal vessels 4 Dark agouti rats were anaesthetized, injected intraperitoneally with rhodamine B (Sigma-Aldrich) to label blood 5 vessels and retinal explants established as described in the main text. Retinal microglia were labelled with Iba-1 6 and imaging performed on an inverted confocal microscope (Leica SP5). Baseline images were taken for 10 7 minutes, followed by the addition of PBS (10 minutes) and then either fractalkine or fractalkine + candesartan 8 (10 minutes) using concentrations outlined in the main text. -
Anticancer Effects of NSC‑631570 (Ukrain) in Head and Neck Cancer Cells: in Vitro Analysis of Growth, Invasion, Angiogenesis and Gene Expression
282 ONCOLOGY REPORTS 43: 282-295, 2020 Anticancer effects of NSC‑631570 (Ukrain) in head and neck cancer cells: In vitro analysis of growth, invasion, angiogenesis and gene expression RUTH HERRMANN1, JOSEPH SKAF2, JEANETTE ROLLER1, CHRISTINE POLEDNIK1, ULRIKE HOLZGRABE2 and MARIANNE SCHMIDT1 1Department of Otorhinolaryngology, University of Würzburg, D-97080 Würzburg; 2Institute of Pharmacy and Food Chemistry, University of Würzburg, D-97074 Würzburg, Germany Received September 17, 2018; Accepted September 30, 2019 DOI: 10.3892/or.2019.7416 Abstract. NSC-631570 (Ukrain) is an aqueous extract of laminin). Microarray analysis revealed the downregulation of Chelidonium majus, a herbaceous perennial plant, one of two genes encoding key regulators, including EGFR, AKT2, JAK1, species in the genus Chelidonium, which has been demonstrated STAT3 and ß-catenin (CTNNB1), all of which are involved in to selectively kill tumor cells without affecting non-malignant cell proliferation, migration, angiogenesis, apoptosis as well as cells. In the present study, the components of NSC-631570 the radiation- and chemo-resistance of HNSCC. The strongest were examined by combined liquid chromatography/mass upregulation occurred for cytochrome P450 1A1 (CYP1A1) spectroscopy (LC-MS) and the effects of NSC-631570 on and 1B1 (CYP1B1), involved in the metabolism of xenobiotics. HNSCC cell lines, as well as primary cells, were analyzed Upregulation of CYP1A1 was at least partially caused by chel- with respect to growth, apoptosis, invasion, angiogenesis erythrine and allocryptopine, as shown by RT-qPCR in two and gene expression. LC-MS identified chelerythrine and HNSCC cell lines. In addition, NSC-631570 showed a high allocryptopine as the major alkaloids of the extract.