Histone Deacetylase 3 As a Novel Therapeutic Target in Multiple Myeloma

Total Page:16

File Type:pdf, Size:1020Kb

Histone Deacetylase 3 As a Novel Therapeutic Target in Multiple Myeloma Leukemia (2014) 28, 680–689 & 2014 Macmillan Publishers Limited All rights reserved 0887-6924/14 www.nature.com/leu ORIGINAL ARTICLE Histone deacetylase 3 as a novel therapeutic target in multiple myeloma J Minami1,4, R Suzuki1,4, R Mazitschek2, G Gorgun1, B Ghosh2,3, D Cirstea1,YHu1, N Mimura1, H Ohguchi1, F Cottini1, J Jakubikova1, NC Munshi1, SJ Haggarty3, PG Richardson1, T Hideshima1 and KC Anderson1 Histone deacetylases (HDACs) represent novel molecular targets for the treatment of various types of cancers, including multiple myeloma (MM). Many HDAC inhibitors have already shown remarkable antitumor activities in the preclinical setting; however, their clinical utility is limited because of unfavorable toxicities associated with their broad range HDAC inhibitory effects. Isoform- selective HDAC inhibition may allow for MM cytotoxicity without attendant side effects. In this study, we demonstrated that HDAC3 knockdown and a small-molecule HDAC3 inhibitor BG45 trigger significant MM cell growth inhibition via apoptosis, evidenced by caspase and poly (ADP-ribose) polymerase cleavage. Importantly, HDAC3 inhibition downregulates phosphorylation (tyrosine 705 and serine 727) of signal transducers and activators of transcription 3 (STAT3). Neither interleukin-6 nor bone marrow stromal cells overcome this inhibitory effect of HDAC3 inhibition on phospho-STAT3 and MM cell growth. Moreover, HDAC3 inhibition also triggers hyperacetylation of STAT3, suggesting crosstalk signaling between phosphorylation and acetylation of STAT3. Importantly, inhibition of HDAC3, but not HDAC1 or 2, significantly enhances bortezomib-induced cytotoxicity. Finally, we confirm that BG45 alone and in combination with bortezomib trigger significant tumor growth inhibition in vivo in a murine xenograft model of human MM. Our results indicate that HDAC3 represents a promising therapeutic target, and validate a prototype novel HDAC3 inhibitor BG45 in MM. Leukemia (2014) 28, 680–689; doi:10.1038/leu.2013.231 Keywords: multiple myeloma; histone deacetylase 3; STAT3; bortezomib INTRODUCTION The natural product romidepsin is a cyclic tetrapeptide with HDAC A major challenge for molecular targeted therapy in multiple inhibitory activity primarily towards class-I HDACs. Other myeloma (MM) is its genetic complexity and molecular hetero- HDACi based on aminobenzamide biasing elements, such as geneity. Gene transcription within the tumor cell and its mocetinostat (MGCD103) and entinostat (MS275), are highly microenvironment can also be altered by epigenetic modulation specific for HDAC1, 2 and 3. Importantly, clinical trials with non- (i.e., acetylation and methylation) in histones, and inhibition of selective HDACi such as vorinostat combined with bortezomib histone deacetylases (HDACs) has therefore emerged as a novel have shown efficacy in MM, but have attendant fatigue, diarrhea targeted treatment strategy in MM and other cancers.1 HDACs are and thrombocytopenia.5 divided into four classes: class-I (HDAC1, 2, 3 and 8), class-IIa Our preclinical studies characterizing the biologic impact of (HDAC4, 5, 7 and 9), class-IIb (HDAC6 and 10), class-III (SIRT1–7) isoform-selective HDAC6 inhibition in MM, using HDAC6 knock- and class-IV (HDAC11). These classes differ in their subcellular down and HDAC6-selective inhibitor tubacin,6 showed that localization (class-I HDACs are nuclear and class-II enzymes combined HDAC6 and proteasome inhibition triggered dual cytoplasmic), and their intracellular targets. Moreover, recent blockade of aggresomal and proteasomal degradation of studies have identified non-histone targets of HDACs in cancer protein, massive accumulation of ubiquitinated protein and cells associated with various functions including gene expression, synergistic MM cell death. On the basis of these studies, a DNA replication and repair, cell cycle progression, cytoskeletal potent and selective HDAC6 inhibitor ACY-1215 (ref. 7) was reorganization and protein chaperone activity. developed, which is now demonstrating promise and tolerability Several HDAC inhibitors (HDACi) are currently in clinical in phase I/II clinical trials in MM.8 In this study, we similarly development in MM,2 and both vorinostat (SAHA) and determine whether isoform inhibition of class-I HDAC mediates romidepsin (FK228 or FR901228) have already received approval cytotoxicity, without attendant toxicity to normal cells. We define by the Food and Drug Administration for the treatment of the role of HDAC3-selective inhibition in MM cell growth and cutaneous T-cell lymphoma.3 Vorinostat is a hydroxamic acid- survival using both lentiviral HDAC3 knockdown and a novel based HDACi that, like other inhibitors of this class including small-molecule HDAC3-selective inhibitor BG45. Within class-I panobinostat (LBH589) and belinostat (PXD101), are generally HDACs, our results show that HDAC3 represents a promising non-selective with activity against class-I, -II and -IV HDACs.4 therapeutic target in MM, and that combined HDAC3 and 1Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; 2Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA and 3Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. Correspondence: Dr KC Anderson, Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute-Harvard Medical School, 450 Brookline Avenue, Mayer 557, Boston, MA 02215, USA. E-mail: [email protected] 4These authors contributed equally to this work. Received 3 April 2013; revised 22 July 2013; accepted 25 July 2013; accepted article preview online 5 August 2013; advance online publication, 6 September 2013 HDAC3 is a novel target in myeloma J Minami et al 681 proteasome inhibition mediates synergistic cytotoxicity. Our of transcription 3 (STAT3), -phospho-STAT3 (p-STAT3) (tyrosine 705), -p- studies provide the preclinical rationale for derived clinical trials STAT3 (serine 727), -p21, -Janus kinase 2 (JAK2), -acetylated-lysine and using HDAC3-selective inhibitors to both enhance MM cytotoxicity antiphosphorylated-tyrosine antibodies (Abs; Cell Signaling Technology, and improve tolerability. Beverly, MA, USA). For immunoprecipitation, MM cells were lysed with Nonidet P-40 buffer (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% Nonidet P-40, 5 mM ethylenediaminetetraacetic acid, 5 mM NaF, 2 mM Na3VO4,1mM MATERIALS AND METHODS phenylmethylsulfonyl fluoride, 5 mg/ml leupeptin and 5 mg/ml aprotinin). Reagents Whole-cell lysates were incubated with anti-STAT3, -JAK2 and -green Non-selective HDACi LBH589 (panobinostat) and MS275 (entinostat), as fluorescent protein Abs for 2 h at 4 1C, and then incubated with Protein A/G well as HDAC6-selective inhibitor tubastatin-A were purchased from PLUS-Agarose (Santa Cruz Biotechnology, Dallas, TX, USA) overnight at Selleck Chemicals (Houston, TX, USA). Bortezomib was also obtained from 4 1C. Anti-green fluorescent protein Ab served as a control. Immune Selleck Chemicals. BG45 (N-(2-aminophenyl)pyrazine-2-carboxamide) and complexes were analyzed by immunoblotting with anti-STAT3, -JAK2, - Merck60 (4-acetamido-N-(2-amino-5-(thiophen-2-yl)phenyl)benzamide) acetylated-lysine and -phosphorylated-tyrosine Abs. (PMID: 18182289) were synthesized in-house (Massachusetts General Hospital, Cambridge, MA, USA). Human recombinant interleukin (IL)-6 Transfection of short hairpin RNA was purchased from R & D Systems (Minneapolis, MN, USA). HDAC1, HDAC2 and HDAC3 pLKO.1 short hairpin RNA (shRNA) vectors were obtained from the RNA Interference Screening Facility at the Cells Dana-Farber Cancer Institute. Recombinant lentivirus was produced and RPMI8226 and U266 human MM cell lines, as well as human embryonic infection of MM cells was performed as described previously.11 kidney 293T cells, were obtained from American Type Culture Collection (ATCC, Manassas, VA, USA). MM.1S cells were kindly provided by Synthesis of a small-molecule HDAC3 inhibitor BG45 Dr Steven Rosen (Northwestern University, Chicago, IL, USA). Interleukin (IL)-6-dependent INA-6 cell line was obtained from Dr Renate Burger The procedure to generate BG45 is demonstrated in Supplementary (University of Kiel, Kiel, Germany). Melphalan- (LR5) and doxorubicin- Figure S2A. resistant (RPMI-DOX40) cells were kindly provided by Dr William Dalton (Lee Moffitt Cancer Center, Tampa, FL, USA). OPM1 and OPM2 cells were Synthesis of tert-butyl (2-aminophenyl)carbamate (2) obtained from Dr Edward Thompson (University of Texas Medical Branch, To a stirring solution of benzene-1,2-diamine (1.0 g, 9.247 mmol) and Galveston, TX, USA). MM cell lines were maintained in RPMI 1640 medium 4-dimethylminopyridine (50 mg) in tetrahydrofuran (20 ml), a solution of (Sigma-Aldrich, St Louis, MO, USA) supplemented with 10% fetal bovine di-tert-butyl dicarbonate (1.009 g, 4.6236 mmol) in dichloromethane (20 ml) serum, 2 mML-glutamine (Invitrogen, Carlsbad, CA, USA), 100 U/ml was added dropwise at room temperature. The reaction mixture was penicillin and 100 U/ml streptomycin (Invitrogen). The 293T cells were evaporated in a rotary evaporator and purified by column chromatography maintained in Dulbecco’s modified Eagle’s medium (Sigma-Aldrich) using hexane and ethylacetate solvent mixture (80:20) to obtain the supplemented with 10% fetal bovine serum, 100 U/ml penicillin and desired mono-Boc protected compound 2 (0.380 g, 20% yield). 100 mg/ml streptomycin (Invitrogen).
Recommended publications
  • Ovulation-Selective Genes: the Generation and Characterization of an Ovulatory-Selective Cdna Library
    531 Ovulation-selective genes: the generation and characterization of an ovulatory-selective cDNA library A Hourvitz1,2*, E Gershon2*, J D Hennebold1, S Elizur2, E Maman2, C Brendle1, E Y Adashi1 and N Dekel2 1Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA 2Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (Requests for offprints should be addressed to N Dekel; Email: [email protected]) *(A Hourvitz and E Gershon contributed equally to this paper) (J D Hennebold is now at Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA) Abstract Ovulation-selective/specific genes, that is, genes prefer- (FAE-1) homolog, found to be localized to the inner entially or exclusively expressed during the ovulatory periantral granulosa and to the cumulus granulosa cells of process, have been the subject of growing interest. We antral follicles. The FAE-1 gene is a -ketoacyl-CoA report herein studies on the use of suppression subtractive synthase belonging to the fatty acid elongase (ELO) hybridization (SSH) to construct a ‘forward’ ovulation- family, which catalyzes the initial step of very long-chain selective/specific cDNA library. In toto, 485 clones were fatty acid synthesis. All in all, the present study accom- sequenced and analyzed for homology to known genes plished systematic identification of those hormonally with the basic local alignment tool (BLAST). Of those, regulated genes that are expressed in the ovary in an 252 were determined to be nonredundant.
    [Show full text]
  • Histone Deacetylase Inhibitors: an Attractive Therapeutic Strategy Against Breast Cancer
    ANTICANCER RESEARCH 37 : 35-46 (2017) doi:10.21873/anticanres.11286 Review Histone Deacetylase Inhibitors: An Attractive Therapeutic Strategy Against Breast Cancer CHRISTOS DAMASKOS 1,2* , SERENA VALSAMI 3* , MICHAEL KONTOS 4* , ELEFTHERIOS SPARTALIS 2, THEODOROS KALAMPOKAS 5, EMMANOUIL KALAMPOKAS 6, ANTONIOS ATHANASIOU 4, DEMETRIOS MORIS 7, AFRODITE DASKALOPOULOU 2,8 , SPYRIDON DAVAKIS 4, GERASIMOS TSOUROUFLIS 1, KONSTANTINOS KONTZOGLOU 1, DESPINA PERREA 2, NIKOLAOS NIKITEAS 2 and DIMITRIOS DIMITROULIS 1 1Second Department of Propedeutic Surgery, 4First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; 2N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece; 3Blood Transfusion Department, Aretaieion Hospital, Medical School, National and Kapodistrian Athens University, Athens, Greece; 5Assisted Conception Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; 6Gynaecological Oncology Department, University of Aberdeen, Aberdeen, U.K.; 7Lerner Research Institute, Cleveland Clinic, Cleveland, OH, U.S.A; 8School of Biology, National and Kapodistrian University of Athens, Athens, Greece Abstract. With a lifetime risk estimated to be one in eight in anticipate further clinical benefits of this new class of drugs, industrialized countries, breast cancer is the most frequent
    [Show full text]
  • An Overview of the Role of Hdacs in Cancer Immunotherapy
    International Journal of Molecular Sciences Review Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy Debarati Banik, Sara Moufarrij and Alejandro Villagra * Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, 800 22nd St NW, Suite 8880, Washington, DC 20052, USA; [email protected] (D.B.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +(202)-994-9547 Received: 22 March 2019; Accepted: 28 April 2019; Published: 7 May 2019 Abstract: Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration.
    [Show full text]
  • Comparative Effect of Various HDAC-Inhibitors In-Vitro on T- Cell Lymphoma Cell Lines Alone and in Combination with Conventional Anti-Cancer Drugs
    Comparative effect of Various HDAC-inhibitors in-vitro on T- Cell Lymphoma cell lines alone and in combination with conventional anti-cancer drugs Arshad H. Banday Mentor:Dr. Francisco Hernandez-Illizaliturri Introduction. T-cell lymphomas are an uncommon and heterogeneous group of non-Hodgkin lymphomas. Historically therapies for these diseases have been borrowed from treatments for other lymphomas. More recently, efforts have be made to identify novel agents for their activity specifically in T-cell lymphomas. A primary example of new agents with specific activity in T-cell lymphomas is the novel class of drug, histone deacetylase inhibitors Vorinostat and romidepsin are currently approved and are in clinical use for the treatment of cutaneous T-cell lymphomas. Intro….. Histones are core structural components of chromatin; DNA is wound around histones, and histones further associate to become and form chromatin. Histone deacetylation inhibitors (HDAC) inhibitors induce accumulation of acetylated histones which leads to relaxation of chromatin structure and promotes access to transcriptional machinery and RNA polymerase HDACi also modify other cancer related proteins. Chromatin Structure Regulates Transcriptional Activity Histone Deacetylase Inhibitors (HDAC Inhibitors) • Cause increased histone acetylation resulting in.. • Uncoiling of chromatin and transcriptional activation of tumor suppressor genes leading to cell cycle arrest and/or apoptosis Currently only Vorinostat is licensed for use in cutaneous T cell lymphoma (CTCL) Genetic
    [Show full text]
  • Determining HDAC8 Substrate Specificity by Noah Ariel Wolfson A
    Determining HDAC8 substrate specificity by Noah Ariel Wolfson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2014 Doctoral Committee: Professor Carol A. Fierke, Chair Professor Robert S. Fuller Professor Anna K. Mapp Associate Professor Patrick J. O’Brien Associate Professor Raymond C. Trievel Dedication My thesis is dedicated to all my family, mentors, and friends who made getting to this point possible. ii Table of Contents Dedication ....................................................................................................................................... ii List of Figures .............................................................................................................................. viii List of Tables .................................................................................................................................. x List of Appendices ......................................................................................................................... xi Abstract ......................................................................................................................................... xii Chapter 1 HDAC8 substrates: Histones and beyond ...................................................................... 1 Overview ..................................................................................................................................... 1 HDAC introduction
    [Show full text]
  • Hr23b Expression Is a Potential Predictive Biomarker for HDAC Inhibitor Treatment in Mesenchymal Tumours and Is Associated with Response to Vorinostat
    The Journal of Pathology: Clinical Research J Path: Clin Res April 2016; 2: 59–71 Original Article Published online 23 December 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cjp2.35 HR23b expression is a potential predictive biomarker for HDAC inhibitor treatment in mesenchymal tumours and is associated with response to vorinostat Michaela Angelika Ihle,1 Sabine Merkelbach-Bruse,1 Wolfgang Hartmann,1,2 Sebastian Bauer,3 Nancy Ratner,4 Hiroshi Sonobe,5 Jun Nishio,6 Olle Larsson,7 Pierre A˚ man,8 Florence Pedeutour,9 Takahiro Taguchi,10 Eva Wardelmann,1,2 Reinhard Buettner1 and Hans-Ulrich Schildhaus1,11* 1 Institute of Pathology, University Hospital Cologne, Cologne, Germany 2 Gerhard Domagk Institute of Pathology, University Hospital M€unster, M€unster, Germany 3 Sarcoma Center, West German Cancer Center, University of Essen, Essen, Germany 4 US Department of Pediatrics, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, USA 5 Department of Laboratory Medicine, Chugoku Central Hospital, Fukuyama, Hiroshima, Japan 6 Faculty of Medicine, Department of Orthopaedic Surgery, Fukuoka University, Fukuoka, Japan 7 Department of Oncology and Pathology, The Karolinska Institute, Stockholm, Sweden 8 Sahlgrenska Cancer Centre, University of Gothenburg, Gothenburg, Sweden 9 Faculty of Medicine, Laboratory of Genetics of Solid Tumours, Institute for Research on Cancer and Aging, Nice, France 10 Division of Human Health & Medical Science, Graduate School of Kuroshio Science, Kochi University Nankoku, Kochi, Japan 11 Institute of Pathology, University Hospital G€ottingen, G€ottingen, Germany *Correspondence to: Hans-Ulrich Schildhaus,Institute of Pathology,University Hospital G€ottingen,Robert-Koch-Strasse40,D-37075G€ottingen, Germany.e-mail: [email protected] Abstract Histone deacetylases (HDAC) are key players in epigenetic regulation of gene expression and HDAC inhibitor (HDACi) treatment seems to be a promising anticancer therapy in many human tumours, including soft tissue sar- comas.
    [Show full text]
  • Transcriptional Analysis of Sodium Valproate in a Serotonergic Cell Line Reveals Gene Regulation Through Both HDAC Inhibition-Dependent and Independent Mechanisms
    bioRxiv preprint doi: https://doi.org/10.1101/837732; this version posted November 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Transcriptional analysis of sodium valproate in a serotonergic cell line reveals gene regulation through both HDAC inhibition-dependent and independent mechanisms Priyanka Sinha1,2, Simone Cree1,2, Allison L. Miller1,2, John F. Pearson1,2,3, Martin A. Kennedy1,2. 1Gene Structure and Function Laboratory, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand. 2Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand. 3Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand. Correspondence to: Prof. M. A. Kennedy Department of Pathology and Biomedical Science University of Otago, Christchurch Christchurch, New Zealand Email: [email protected] Keywords: RNA-Seq, NanoString, lithium, valproate, HDAC inhibitor, mood stabilizer 1 bioRxiv preprint doi: https://doi.org/10.1101/837732; this version posted November 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Sodium valproate (VPA) is a histone deacetylase (HDAC) inhibitor, widely prescribed in the treatment of bipolar disorder, and yet the precise modes of therapeutic action for this drug are not fully understood.
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Entinostat Augments NK Cell Functions Via Epigenetic Upregulation of IFIT1-STING-STAT4 Pathway
    www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 20), pp: 1799-1815 Research Paper Entinostat augments NK cell functions via epigenetic upregulation of IFIT1-STING-STAT4 pathway John M. Idso1, Shunhua Lao1, Nathan J. Schloemer1,2, Jeffrey Knipstein2, Robert Burns3, Monica S. Thakar1,2,* and Subramaniam Malarkannan1,2,4,5,* 1Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA 2Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA 3Bioinformatics Core, Blood Research Institute, Versiti, Milwaukee, WI, USA 4Divson of Hematology-Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA 5Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA *Co-senior authors Correspondence to: Monica S. Thakar, email: [email protected] Subramaniam Malarkannan, email: [email protected] Keywords: NK cells; histone deacetylase inhibitor; Ewing sarcoma; rhabdomyosarcoma; immunotherapy Received: September 10, 2019 Accepted: March 03, 2020 Published: May 19, 2020 Copyright: Idso et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Histone deacetylase inhibitors (HDACi) are an emerging cancer therapy; however, their effect on natural killer (NK) cell-mediated anti-tumor responses remain unknown. Here, we evaluated the impact of a benzamide HDACi, entinostat, on human primary NK cells as well as tumor cell lines. Entinostat significantly upregulated the expression of NKG2D, an essential NK cell activating receptor. Independently, entinostat augmented the expression of ULBP1, HLA, and MICA/B on both rhabdomyosarcoma and Ewing sarcoma cell lines.
    [Show full text]
  • Drug Screening Approach Combines Epigenetic Sensitization With
    Facciotto et al. Clinical Epigenetics (2019) 11:192 https://doi.org/10.1186/s13148-019-0781-3 METHODOLOGY Open Access Drug screening approach combines epigenetic sensitization with immunochemotherapy in cancer Chiara Facciotto1†, Julia Casado1†, Laura Turunen2, Suvi-Katri Leivonen3,4, Manuela Tumiati1, Ville Rantanen1, Liisa Kauppi1, Rainer Lehtonen1, Sirpa Leppä3,4, Krister Wennerberg2 and Sampsa Hautaniemi1* Abstract Background: The epigenome plays a key role in cancer heterogeneity and drug resistance. Hence, a number of epigenetic inhibitors have been developed and tested in cancers. The major focus of most studies so far has been on the cytotoxic effect of these compounds, and only few have investigated the ability to revert the resistant phenotype in cancer cells. Hence, there is a need for a systematic methodology to unravel the mechanisms behind epigenetic sensitization. Results: We have developed a high-throughput protocol to screen non-simultaneous drug combinations, and used it to investigate the reprogramming potential of epigenetic inhibitors. We demonstrated the effectiveness of our protocol by screening 60 epigenetic compounds on diffuse large B-cell lymphoma (DLBCL) cells. We identified several histone deacetylase (HDAC) and histone methyltransferase (HMT) inhibitors that acted synergistically with doxorubicin and rituximab. These two classes of epigenetic inhibitors achieved sensitization by disrupting DNA repair, cell cycle, and apoptotic signaling. The data used to perform these analyses are easily browsable through our Results Explorer. Additionally, we showed that these inhibitors achieve sensitization at lower doses than those required to induce cytotoxicity. Conclusions: Our drug screening approach provides a systematic framework to test non-simultaneous drug combinations. This methodology identified HDAC and HMT inhibitors as successful sensitizing compounds in treatment-resistant DLBCL.
    [Show full text]
  • Impact of the Microbial Derived Short Chain Fatty Acid Propionate on Host Susceptibility to Bacterial and Fungal Infections in Vivo
    www.nature.com/scientificreports OPEN Impact of the microbial derived short chain fatty acid propionate on host susceptibility to bacterial and Received: 01 July 2016 Accepted: 02 November 2016 fungal infections in vivo Published: 29 November 2016 Eleonora Ciarlo1,*, Tytti Heinonen1,*, Jacobus Herderschee1, Craig Fenwick2, Matteo Mombelli1, Didier Le Roy1 & Thierry Roger1 Short chain fatty acids (SCFAs) produced by intestinal microbes mediate anti-inflammatory effects, but whether they impact on antimicrobial host defenses remains largely unknown. This is of particular concern in light of the attractiveness of developing SCFA-mediated therapies and considering that SCFAs work as inhibitors of histone deacetylases which are known to interfere with host defenses. Here we show that propionate, one of the main SCFAs, dampens the response of innate immune cells to microbial stimulation, inhibiting cytokine and NO production by mouse or human monocytes/ macrophages, splenocytes, whole blood and, less efficiently, dendritic cells. In proof of concept studies, propionate neither improved nor worsened morbidity and mortality parameters in models of endotoxemia and infections induced by gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae), gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae) and Candida albicans. Moreover, propionate did not impair the efficacy of passive immunization and natural immunization. Therefore, propionate has no significant impact on host susceptibility to infections and the establishment of protective anti-bacterial responses. These data support the safety of propionate- based therapies, either via direct supplementation or via the diet/microbiota, to treat non-infectious inflammation-related disorders, without increasing the risk of infection. Host defenses against infection rely on innate immune cells that sense microbial derived products through pattern recognition receptors (PRRs) such as toll-like receptors (TLRs), c-type lectins, NOD-like receptors, RIG-I-like receptors and cytosolic DNA sensors.
    [Show full text]
  • Entinostat) Restores Expression of Silenced Leukemia-Associated Transcription Factors Nur77 and Nor1 and of Key Pro-Apoptotic Proteins in AML
    Leukemia (2013) 27, 1358–1368 & 2013 Macmillan Publishers Limited All rights reserved 0887-6924/13 www.nature.com/leu ORIGINAL ARTICLE HDAC inhibition by SNDX-275 (Entinostat) restores expression of silenced leukemia-associated transcription factors Nur77 and Nor1 and of key pro-apoptotic proteins in AML L Zhou1, VR Ruvolo1, T McQueen1, W Chen1, IJ Samudio1, O Conneely2, M Konopleva1 and M Andreeff1 Nur77 and Nor1 are highly conserved orphan nuclear receptors. We have recently reported that nur77 À / À nor1 À / À mice rapidly develop acute myeloid leukemia (AML) and that Nur77 and Nor1 transcripts were universally downregulated in human AML blasts. These findings indicate that Nur77 and Nor1 function as leukemia suppressors. We further demonstrated silencing of Nur77 and Nor1 in leukemia stem cells (LSCs). We here report that inhibition of histone deacetylase (HDAC) using the specific class I HDAC inhibitor SNDX-275 restored the expression of Nur77/Nor1 and induced expression of activator protein 1 transcription factors c-Jun and JunB, and of death receptor TRAIL, in AML cells and in CD34 þ /38 À AML LSCs. Importantly, SNDX-275 induced extensive apoptosis in AML cells, which could be suppressed by silencing nur77 and nor1. In addition, pro-apoptotic proteins Bim and Noxa were transcriptionally upregulated by SNDX-275 in AML cells and in LSCs. Our present work is the first report of a novel mechanism of HDAC inhibitor-induced apoptosis in AML that involves restoration of the silenced nuclear receptors Nur77 and Nor1, activation of activator protein 1 transcription factors, a death receptor and pro-apoptotic proteins.
    [Show full text]