Design and Synthesis of Novel Classes of Hdacs and Kmts Inhibitors

Total Page:16

File Type:pdf, Size:1020Kb

Design and Synthesis of Novel Classes of Hdacs and Kmts Inhibitors University of East Anglia School of Pharmacy Design and synthesis of novel classes of HDACs and KMTs inhibitors by Remy Thomas Narozny Supervisor: Prof. A. Ganesan Second Supervisor: Prof. Mark Searcey Thesis for the degree of Doctor of Philosophy November 2018 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived therefrom must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. “Your genetics is not your destiny.” George McDonald Church Abstract For long, scientists thought that our body was driven only by our genetic code that we inherited at birth. However, this determinism was shattered entirely and proven as false in the second half of the 21st century with the discovery of epigenetics. Instead, cells turn genes on and off using reversible chemical marks. With the tremendous progression of epigenetic science, it is now believed that we have a certain power over the expression of our genetic traits. Over the years, these epigenetic modifications were found to be at the core of how diseases alter healthy cells, and environmental factors and lifestyle were identified as top influencers. Epigenetic dysregulation has been observed in every major domain of medicine, with a reported implication in cancer development, neurodegenerative pathologies, diabetes, infectious disease and even obesity. Substantially, an epigenetic component is expected to be involved in every human disease. Hence, the modulation of these epigenetics mechanisms has emerged as a therapeutic strategy. Histone deacetylases (HDAC) are silencing epigenetic markers involved in the mediation of the acetylation system. Aberrant HDAC activities have been associated with the development of a broad range of pathologies, and HDAC inhibition is highly regarded as a potential therapeutic target. This approach became successful with the approval by the FDA of several epidrugs. However, they present undesired side effects. Lack of selectivity was identified as a principal suspect and, therefore, the development of novel compounds that would target more selectively the epigenetics enzymes represent a major axis of research for future pharmacological applications. Accordingly, this work focus on designing new classes of HDAC inhibitors. A variety of structures, build around the use of amino acids, were explored and potential inhibitors were produced with different cores. These series were then evaluated in enzymatic inhibition assays on HDAC and in cell growth inhibition assays on leukaemia cell lines. Additionally, we were also involved in the international consortium A-ParaDDisE that aimed to develop epigenetic modulators as drug candidates against the main parasitic diseases: malaria, schistosomiasis, leishmaniasis and Chagas disease. This collaboration resulted in the identification of critical targets for the different parasites and the development of testing methods to move compounds toward clinical development. The antischistosomal effect of some of our inhibitors was, thus, evaluated. Finally, a side project was carried at the University of Salerno in Italy in a short-term scientific mission that aimed to develop a new class of SETD8 methyltransferase inhibitors. 1 Acknowledgements I must first acknowledge my supervisor Prof. Ganesan who offered me this fantastic opportunity to develop a research project. Thanks, Prof. Ganesan for the stimulating discussions, suggestions and guidance during this PhD work and for the numerous opportunities to attend conferences that highly contributed to my development as a researcher. I especially thank you for the support, over these four years, not only on the project but also on the pursuit of my career. I also thank my second supervisor Prof. Mark Searcey for his support during this project and his help in grant applications. I want to thank Prof. Gianluca Sbardella, from the University of Salerno in Italy, for hosting a research visit for three months. I would also like to thank the member of his group for their warm welcome and their help during this mission and in particular Dr Ciro Milite for his support on this part of my PhD work. Sincere thanks also to Prof. Manfred Jung (University of Freiburg, Germany), Prof. Laurent Bischoff (University of Rouen Normandy, France), Prof. Wolfgang Sippl (Institute of Pharmacy at the Martin-Luther University of Halle-Wittenberg, Germany) and Dr Maria Teresa Borrello (INSERM U1068 Cellular Stress Group, Cancer Research Center of Marseille, France) who contributed to this thesis by operating the biology testing and the molecular docking. I thank the University of East Anglia and the A-ParaDDisE consortium for funding this research project. I would also like to thank the COST action Epichembio for financially supporting my short-term scientific mission at the University of Salerno in Italy. In addition, I express my gratitude to the previous and current members of Prof. Ganesan research group and particularly Teresa Borrello, Carys Thomas, Adam Lee, Mohammed Aldholmi and Philip Schuler for the friendly working environment, the enriching conversation, and the support over these four years. Many thanks as well the undergraduate student who contributed to this project: Alex Chan, Angus Yuen, Faustin Falissard, Karolina Sliwa and Ludmilla Sturm. I am incredibly grateful to my colleagues and friends Mahmoud, Quim, Sara and Hui for their support and all the great deal of time spent together. Thanks, Andrew and Ryan, for your help in the lab, the great football games and the shared drinks. Thank you, Elise, for the cheerful atmosphere and enthusiasm you created in the office, and for being a fantastic geeky friend who always shares my over-excitement for movies, series, comics and more importantly cakes. Thanks to the 2015 survivors group Serena, Valeria, Noe and Liao for our dinners and talks. Thanks, Sarah for all the good moments (although I lost auditory acuity). Thank you Mar and Gerard for the cuckoo times, barbecue, Christmas dinner and all the laughs. Silvia, Foodie, thanks for your 2 support, our discussions, our laughs and your trust. I’m sure you will be there soon. Finally, thank you Lucka for our long runs and endless debate about life, dreams, science, Mars; thanks for the gif talks, the cinematic exchanges, the crazy snaps and your support. With a special mention to my flat 5 family: Bianca, Martina, Bela, Rodrigo, Carter and Pedro. It was fantastic to join your flat when I arrived in Norwich, and I genuinely enjoyed our time there. What a cracking place to live! I hope we will meet again. Enfin, je dédie cette thèse à ma famille, sans qui rien n’aurait été possible. Même si vous ne compreniez pas toujours ce que je voulais faire ni où j’allais, merci de m’avoir toujours soutenu malgré tous les déménagements, les expatriations, et les longues absences. Je n’aurais jamais accompli ce rêve sans vous. 3 Contents Abstract ................................................................................................................................... 1 Acknowledgements .................................................................................................................. 2 List of Figures .......................................................................................................................... 7 List of Scheme ........................................................................................................................10 List of Tables ..........................................................................................................................13 Abbreviations..........................................................................................................................15 Chapter 1. Introduction ...........................................................................................................23 1. Epigenetics .....................................................................................................................23 2. Chromatin .......................................................................................................................24 3. Epigenetic modulators: DNA methylation and histone post-translation modifications ......26 3.1 DNA methylation ......................................................................................................27 3.2 Histone post-translational modifications ....................................................................28 Chapter 2. HDACs and SETD8 inhibitors: overview and perspective. ......................................39 1. SETD8 inhibition ............................................................................................................39 1.1 Introduction ..............................................................................................................39 1.2 Therapeutics applications ..........................................................................................39 1.3 SETD8 inhibitors ......................................................................................................43 1.4 Summary ..................................................................................................................59 2. HDAC inhibition .............................................................................................................59 2.1 Introduction ..............................................................................................................59
Recommended publications
  • Mapping Influenza-Induced Posttranslational Modifications On
    viruses Article Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells Svetlana Rezinciuc 1, Zhixin Tian 2, Si Wu 2, Shawna Hengel 2, Ljiljana Pasa-Tolic 2 and Heather S. Smallwood 1,3,* 1 Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; [email protected] 2 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; [email protected] (Z.T.); [email protected] (S.W.); [email protected] (S.H.); [email protected] (L.P.-T.) 3 Children’s Foundation Research Institute, Memphis, TN 38105, USA * Correspondence: [email protected]; Tel.: +1-(901)-448–3068 Academic Editor: Italo Tempera Received: 10 October 2020; Accepted: 2 December 2020; Published: 8 December 2020 Abstract: T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection.
    [Show full text]
  • Combined Treatment with Epigenetic, Differentiating, and Chemotherapeutic
    Author Manuscript Published OnlineFirst on January 19, 2016; DOI: 10.1158/0008-5472.CAN-15-1619 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Combined treatment with epigenetic, differentiating, and chemotherapeutic agents cooperatively targets tumor-initiating cells in triple negative breast cancer. Vanessa F. Merino1,7, Nguyen Nguyen1,7, Kideok Jin1, Helen Sadik1, Soonweng Cho1, Preethi Korangath1, Liangfeng Han1, Yolanda M. N. Foster1, Xian C. Zhou1, Zhe Zhang1, Roisin M. Connolly1, Vered Stearns1, Syed Z. Ali2, Christina Adams2, Qian Chen3, Duojia Pan3, David L. Huso4, Peter Ordentlich5, Angela Brodie6, Saraswati Sukumar1*. 1Department of Oncology, 2Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, 3Department of Molecular Biology and Genetics, 4Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA, 5Syndax Pharmaceuticals, Department of Translational Medicine, Waltham, MA, USA, 6Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA. 7These authors contributed equally. *Correspondence: Saraswati Sukumar, PhD, 1650 Orleans Street, Baltimore, MD, 21231, Ph. 410-614-2479, [email protected] and Vanessa F. Merino, PhD, 1650 Orleans Street, Baltimore, MD, 21231, Ph. 410-614-4075, [email protected]. Key words: Breast, cancer, entinostat, RAR-beta, epigenetic Grant Support: This work was funded by the DOD BCRP Center of Excellence Grant W81XWH-04-1-0595 to S.S, and DOD BCRP, W81XWH-09-1-0499 to V.M. Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2016 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 19, 2016; DOI: 10.1158/0008-5472.CAN-15-1619 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • HDAC7 Sikens the Heart
    The black sheep of class IIa: HDAC7 SIKens the heart Joshua G. Travers, … , Tianjing Hu, Timothy A. McKinsey J Clin Invest. 2020;130(6):2811-2813. https://doi.org/10.1172/JCI137074. Commentary Class IIa histone deacetylases (HDACs) repress cardiomyocyte hypertrophy through association with the prohypertrophic transcription factor (TF) myocyte enhancer factor-2 (MEF2). The four class IIa HDACs — HDAC4, -5, -7, and -9 — are subject to signal-dependent phosphorylation by members of the Ca2+/calmodulin-dependent protein kinase (CaMK) group. In response to stress, HDAC4, HDAC5, and HDAC9 undergo phosphorylation-induced nuclear export in cardiomyocytes, freeing MEF2 to stimulate progrowth genes; it was generally assumed that HDAC7 is also antihypertrophic. However, in this issue of the JCI, Hsu and colleagues demonstrate that, in sharp contrast to the other class IIa HDACs, HDAC7 is constitutively localized to the cardiomyocyte cytoplasm, where it promotes cardiac hypertrophy. Phosphorylation of HDAC7 by the CaMK group member salt-inducible kinase 1 (SIK1) stabilized the deacetylase, leading to increased expression of c-Myc, which in turn stimulated a pathological gene program. These unexpected findings highlight the SIK1/HDAC7 signaling axis as a promising target for the treatment of cardiac hypertrophy and heart failure. Find the latest version: https://jci.me/137074/pdf The Journal of Clinical Investigation COMMENTARY The black sheep of class IIa: HDAC7 SIKens the heart Joshua G. Travers, Tianjing Hu, and Timothy A. McKinsey Division of Cardiology, Department of Medicine, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA. repress gene expression, block cardiac hypertrophy by associating with the myo- Class IIa histone deacetylases (HDACs) repress cardiomyocyte hypertrophy cyte enhancer factor-2 (MEF2) transcrip- through association with the prohypertrophic transcription factor (TF) tion factor (TF) (11).
    [Show full text]
  • Thiadiazole Derivatives As Anticancer Agents
    Pharmacological Reports (2020) 72:1079–1100 https://doi.org/10.1007/s43440-020-00154-7 REVIEW Thiadiazole derivatives as anticancer agents Monika Szeliga1 Received: 15 June 2020 / Revised: 13 August 2020 / Accepted: 20 August 2020 / Published online: 3 September 2020 © The Author(s) 2020 Abstract In spite of substantial progress made toward understanding cancer pathogenesis, this disease remains one of the leading causes of mortality. Thus, there is an urgent need to develop novel, more efective anticancer therapeutics. Thiadiazole ring is a versatile scafold widely studied in medicinal chemistry. Mesoionic character of this ring allows thiadiazole-containing compounds to cross cellular membrane and interact strongly with biological targets. Consequently, these compounds exert a broad spectrum of biological activities. This review presents the current state of knowledge on thiadiazole derivatives that demonstrate in vitro and/or in vivo efcacy across the cancer models with an emphasis on targets of action. The infuence of the substituent on the compounds’ activity is depicted. Furthermore, the results from clinical trials assessing thiadiazole- containing drugs in cancer patients are summarized. Keywords Thiadiazole derivatives · Cancer · Anticancer therapy · Clinical trials Introduction antiparasitic, anti-infammatory and anticancer activities [2]. Due to the mesoionic nature, thiadiazoles are able to According to the most recent data provided by the Interna- cross the cellular membranes. Their relatively good lipo- tional Agency for Research on Cancer (IARC), 18.1 mil- solubility is most likely attributed to the presence of the sul- lion new cases and 9.6 million cancer deaths were regis- phur atom [3]. The thiadiazole-containing drugs, including tered worldwide in 2018 [1].
    [Show full text]
  • Nitric Oxide Mediated Redox Regulation of Protein Homeostasis T Irmgard Tegeder
    Cellular Signalling 53 (2019) 348–356 Contents lists available at ScienceDirect Cellular Signalling journal homepage: www.elsevier.com/locate/cellsig Nitric oxide mediated redox regulation of protein homeostasis T Irmgard Tegeder Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany ARTICLE INFO ABSTRACT Keywords: Nitric oxide is a versatile diffusible signaling molecule, whose biosynthesis by three NO synthases (NOS) is tightly regulated Nitric oxide at transcriptional and posttranslational levels, availability of co-factors, and calcium binding. Above normal levels of NO Chaperone have beneficial protective effects for example in the cardiovascular system, but also contribute to the pathophysiology inthe Ubiquitin context of inflammatory diseases, and to aging and neurodegeneration in the nervous system. The effect specificity relieson Aging the functional and spatial specificity of the NOS isoenzymes, and on the duality of two major signaling mechanisms (i) Proteostasis activation of soluble guanylycylase (sGC)-dependent cGMP production and (ii) direct S-nitrosylation of redox sensitive cy- Nitrosylation steines of susceptible proteins. The present review summarizes the functional implications of S-nitrosylation in the context of proteostasis, and focuses on two NO target proteins, heat shock cognate of 70 kDa (Hsc70/HSPA8) and the ubiquitin 2 ligase (UBE2D), because both are modified on functionally critical cysteines and are key regulators of chaperone mediated and assisted autophagy and proteasomal protein degradation. SNO modifications of these candidates are associated with protein accumulations and adoption of a senescent phenotype of neuronal cells suggesting that S-nitrosylations of protein homeo- static machineries contribute to aging phenomena. 1. Introduction PKG1, [15] leading to smooth muscle relaxation via regulation of intracellular calcium stores [16] and actin-myosin dynamics.
    [Show full text]
  • An Overview of the Role of Hdacs in Cancer Immunotherapy
    International Journal of Molecular Sciences Review Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy Debarati Banik, Sara Moufarrij and Alejandro Villagra * Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, 800 22nd St NW, Suite 8880, Washington, DC 20052, USA; [email protected] (D.B.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +(202)-994-9547 Received: 22 March 2019; Accepted: 28 April 2019; Published: 7 May 2019 Abstract: Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Vorinostat—An Overview Aditya Kumar Bubna
    E-IJD RESIDENTS' PAGE Vorinostat—An Overview Aditya Kumar Bubna Abstract From the Consultant Vorinostat is a new drug used in the management of cutaneous T cell lymphoma when the Dermatologist, Kedar Hospital, disease persists, gets worse or comes back during or after treatment with other medicines. It is Chennai, Tamil Nadu, India an efficacious and well tolerated drug and has been considered a novel drug in the treatment of this condition. Currently apart from cutaneous T cell lymphoma the role of Vorinostat for Address for correspondence: other types of cancers is being investigated both as mono-therapy and combination therapy. Dr. Aditya Kumar Bubna, Kedar Hospital, Mugalivakkam Key Words: Cutaneous T cell lymphoma, histone deacytelase inhibitor, Vorinostat Main Road, Porur, Chennai - 600 125, Tamil Nadu, India. E-mail: [email protected] What was known? • Vorinostat is a histone deacetylase inhibitor. • It is an FDA approved drug for the treatment of cutaneous T cell lymphoma. Introduction of Vorinostat is approximately 9. Vorinostat is slightly Vorinostat is a histone deacetylase (HDAC) inhibitor, soluble in water, alcohol, isopropanol and acetone and is structurally belonging to the hydroxymate group. Other completely soluble in dimethyl sulfoxide. drugs in this group include Givinostat, Abexinostat, Mechanism of action Panobinostat, Belinostat and Trichostatin A. These Vorinostat is a broad inhibitor of HDAC activity and inhibits are an emergency class of drugs with potential anti- class I and class II HDAC enzymes.[2,3] However, Vorinostat neoplastic activity. These drugs were developed with the does not inhibit HDACs belonging to class III. Based on realization that apart from genetic mutation, alteration crystallographic studies, it has been seen that Vorinostat of HDAC enzymes affected the phenotypic and genotypic binds to the zinc atom of the catalytic site of the HDAC expression in cells, which in turn lead to disturbed enzyme with the phenyl ring of Vorinostat projecting out of homeostasis and neoplastic growth.
    [Show full text]
  • Supporting Online Material
    1 2 3 4 5 6 7 Supplementary Information for 8 9 Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic 10 retinopathy 11 12 *Samuel A. Mills, *Andrew I. Jobling, *Michael A. Dixon, Bang V. Bui, Kirstan A. Vessey, Joanna A. Phipps, 13 Ursula Greferath, Gene Venables, Vickie H.Y. Wong, Connie H.Y. Wong, Zheng He, Flora Hui, James C. 14 Young, Josh Tonc, Elena Ivanova, Botir T. Sagdullaev, Erica L. Fletcher 15 * Joint first authors 16 17 Corresponding author: 18 Prof. Erica L. Fletcher. Department of Anatomy & Neuroscience. The University of Melbourne, Grattan St, 19 Parkville 3010, Victoria, Australia. 20 Email: [email protected] ; Tel: +61-3-8344-3218; Fax: +61-3-9347-5219 21 22 This PDF file includes: 23 24 Supplementary text 25 Figures S1 to S10 26 Tables S1 to S7 27 Legends for Movies S1 to S2 28 SI References 29 30 Other supplementary materials for this manuscript include the following: 31 32 Movies S1 to S2 33 34 35 36 1 1 Supplementary Information Text 2 Materials and Methods 3 Microglial process movement on retinal vessels 4 Dark agouti rats were anaesthetized, injected intraperitoneally with rhodamine B (Sigma-Aldrich) to label blood 5 vessels and retinal explants established as described in the main text. Retinal microglia were labelled with Iba-1 6 and imaging performed on an inverted confocal microscope (Leica SP5). Baseline images were taken for 10 7 minutes, followed by the addition of PBS (10 minutes) and then either fractalkine or fractalkine + candesartan 8 (10 minutes) using concentrations outlined in the main text.
    [Show full text]
  • Anticancer Effects of NSC‑631570 (Ukrain) in Head and Neck Cancer Cells: in Vitro Analysis of Growth, Invasion, Angiogenesis and Gene Expression
    282 ONCOLOGY REPORTS 43: 282-295, 2020 Anticancer effects of NSC‑631570 (Ukrain) in head and neck cancer cells: In vitro analysis of growth, invasion, angiogenesis and gene expression RUTH HERRMANN1, JOSEPH SKAF2, JEANETTE ROLLER1, CHRISTINE POLEDNIK1, ULRIKE HOLZGRABE2 and MARIANNE SCHMIDT1 1Department of Otorhinolaryngology, University of Würzburg, D-97080 Würzburg; 2Institute of Pharmacy and Food Chemistry, University of Würzburg, D-97074 Würzburg, Germany Received September 17, 2018; Accepted September 30, 2019 DOI: 10.3892/or.2019.7416 Abstract. NSC-631570 (Ukrain) is an aqueous extract of laminin). Microarray analysis revealed the downregulation of Chelidonium majus, a herbaceous perennial plant, one of two genes encoding key regulators, including EGFR, AKT2, JAK1, species in the genus Chelidonium, which has been demonstrated STAT3 and ß-catenin (CTNNB1), all of which are involved in to selectively kill tumor cells without affecting non-malignant cell proliferation, migration, angiogenesis, apoptosis as well as cells. In the present study, the components of NSC-631570 the radiation- and chemo-resistance of HNSCC. The strongest were examined by combined liquid chromatography/mass upregulation occurred for cytochrome P450 1A1 (CYP1A1) spectroscopy (LC-MS) and the effects of NSC-631570 on and 1B1 (CYP1B1), involved in the metabolism of xenobiotics. HNSCC cell lines, as well as primary cells, were analyzed Upregulation of CYP1A1 was at least partially caused by chel- with respect to growth, apoptosis, invasion, angiogenesis erythrine and allocryptopine, as shown by RT-qPCR in two and gene expression. LC-MS identified chelerythrine and HNSCC cell lines. In addition, NSC-631570 showed a high allocryptopine as the major alkaloids of the extract.
    [Show full text]
  • Determining HDAC8 Substrate Specificity by Noah Ariel Wolfson A
    Determining HDAC8 substrate specificity by Noah Ariel Wolfson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2014 Doctoral Committee: Professor Carol A. Fierke, Chair Professor Robert S. Fuller Professor Anna K. Mapp Associate Professor Patrick J. O’Brien Associate Professor Raymond C. Trievel Dedication My thesis is dedicated to all my family, mentors, and friends who made getting to this point possible. ii Table of Contents Dedication ....................................................................................................................................... ii List of Figures .............................................................................................................................. viii List of Tables .................................................................................................................................. x List of Appendices ......................................................................................................................... xi Abstract ......................................................................................................................................... xii Chapter 1 HDAC8 substrates: Histones and beyond ...................................................................... 1 Overview ..................................................................................................................................... 1 HDAC introduction
    [Show full text]
  • Hr23b Expression Is a Potential Predictive Biomarker for HDAC Inhibitor Treatment in Mesenchymal Tumours and Is Associated with Response to Vorinostat
    The Journal of Pathology: Clinical Research J Path: Clin Res April 2016; 2: 59–71 Original Article Published online 23 December 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cjp2.35 HR23b expression is a potential predictive biomarker for HDAC inhibitor treatment in mesenchymal tumours and is associated with response to vorinostat Michaela Angelika Ihle,1 Sabine Merkelbach-Bruse,1 Wolfgang Hartmann,1,2 Sebastian Bauer,3 Nancy Ratner,4 Hiroshi Sonobe,5 Jun Nishio,6 Olle Larsson,7 Pierre A˚ man,8 Florence Pedeutour,9 Takahiro Taguchi,10 Eva Wardelmann,1,2 Reinhard Buettner1 and Hans-Ulrich Schildhaus1,11* 1 Institute of Pathology, University Hospital Cologne, Cologne, Germany 2 Gerhard Domagk Institute of Pathology, University Hospital M€unster, M€unster, Germany 3 Sarcoma Center, West German Cancer Center, University of Essen, Essen, Germany 4 US Department of Pediatrics, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, USA 5 Department of Laboratory Medicine, Chugoku Central Hospital, Fukuyama, Hiroshima, Japan 6 Faculty of Medicine, Department of Orthopaedic Surgery, Fukuoka University, Fukuoka, Japan 7 Department of Oncology and Pathology, The Karolinska Institute, Stockholm, Sweden 8 Sahlgrenska Cancer Centre, University of Gothenburg, Gothenburg, Sweden 9 Faculty of Medicine, Laboratory of Genetics of Solid Tumours, Institute for Research on Cancer and Aging, Nice, France 10 Division of Human Health & Medical Science, Graduate School of Kuroshio Science, Kochi University Nankoku, Kochi, Japan 11 Institute of Pathology, University Hospital G€ottingen, G€ottingen, Germany *Correspondence to: Hans-Ulrich Schildhaus,Institute of Pathology,University Hospital G€ottingen,Robert-Koch-Strasse40,D-37075G€ottingen, Germany.e-mail: [email protected] Abstract Histone deacetylases (HDAC) are key players in epigenetic regulation of gene expression and HDAC inhibitor (HDACi) treatment seems to be a promising anticancer therapy in many human tumours, including soft tissue sar- comas.
    [Show full text]