Entinostat) Restores Expression of Silenced Leukemia-Associated Transcription Factors Nur77 and Nor1 and of Key Pro-Apoptotic Proteins in AML

Total Page:16

File Type:pdf, Size:1020Kb

Entinostat) Restores Expression of Silenced Leukemia-Associated Transcription Factors Nur77 and Nor1 and of Key Pro-Apoptotic Proteins in AML Leukemia (2013) 27, 1358–1368 & 2013 Macmillan Publishers Limited All rights reserved 0887-6924/13 www.nature.com/leu ORIGINAL ARTICLE HDAC inhibition by SNDX-275 (Entinostat) restores expression of silenced leukemia-associated transcription factors Nur77 and Nor1 and of key pro-apoptotic proteins in AML L Zhou1, VR Ruvolo1, T McQueen1, W Chen1, IJ Samudio1, O Conneely2, M Konopleva1 and M Andreeff1 Nur77 and Nor1 are highly conserved orphan nuclear receptors. We have recently reported that nur77 À / À nor1 À / À mice rapidly develop acute myeloid leukemia (AML) and that Nur77 and Nor1 transcripts were universally downregulated in human AML blasts. These findings indicate that Nur77 and Nor1 function as leukemia suppressors. We further demonstrated silencing of Nur77 and Nor1 in leukemia stem cells (LSCs). We here report that inhibition of histone deacetylase (HDAC) using the specific class I HDAC inhibitor SNDX-275 restored the expression of Nur77/Nor1 and induced expression of activator protein 1 transcription factors c-Jun and JunB, and of death receptor TRAIL, in AML cells and in CD34 þ /38 À AML LSCs. Importantly, SNDX-275 induced extensive apoptosis in AML cells, which could be suppressed by silencing nur77 and nor1. In addition, pro-apoptotic proteins Bim and Noxa were transcriptionally upregulated by SNDX-275 in AML cells and in LSCs. Our present work is the first report of a novel mechanism of HDAC inhibitor-induced apoptosis in AML that involves restoration of the silenced nuclear receptors Nur77 and Nor1, activation of activator protein 1 transcription factors, a death receptor and pro-apoptotic proteins. Leukemia (2013) 27, 1358–1368; doi:10.1038/leu.2012.366 Keywords: SNDX-275; Nur77/Nor1; apoptosis; AML INTRODUCTION This finding suggests that silencing of Nur77 and Nor1 is a critical Acute myeloid leukemia (AML) arises from the clonal expansion of step in the pathogenesis of AML. Nur77 and Nor1 share 90% aberrant myeloid progenitor cells; their increased proliferation and homology in the DNA-binding domain and they can both bind as failure to differentiate results in an accumulation of myeloblasts. monomers to a consensus NGFI-B response element sequence, or Only one-third of younger adult patients diagnosed with AML can as homodimers to Nur-responsive element,14,15 hence sharing a set be cured, whereas older patients experience even lower survival of common target genes. Nur77 has been shown to regulate the rates.1 Although many preclinical and clinical studies have sought induction of Fas-L, TRAIL and pro-opiomelanocortin in lymphocytes to elucidate the biological and molecular basis of AML, the or endocrine cells;16,17 however, the common targets of Nur77 and mechanism of AML pathogenesis remains undefined in the Nor1 are not well characterized. Molecular analysis of nur77 À / À / majority of cases. Recently, we reported that mice deficient in nor1 À / À mice revealed that the absence of both nur77 and nor1 Nur77 and Nor1 develop AML-like disease and that reduced gene was associated with downregulation of the activator protein 1 dosage of Nur77 and Nor1 leads to mixed myelodysplastic/ transcription factors c-Jun and JunB and downregulation of the myeloproliferative neoplasms with progression to AML in rare extrinsic apoptosis inducers TRAIL and Fas-L in myeloid leukemia cases.2,3 Orphan nuclear receptors Nur77 (also termed NR4A1, TR3 cells.2 or NGFI-B) and Nor1 (also termed NR4A3 or MINOR) are highly Epigenetic modifications have been shown to have critical roles conserved members of the nuclear receptor family. As transcription in regulating gene expression.18 Human tumor cells, including factors, they are involved in various physiological and cellular leukemia cells, exhibit a global loss of monoacetylation of histone functions, including apoptosis, mitosis, inflammation and H4, and aberrant histone acetyltransferase (HAT) and/or histone differentiation.4–7 Induction and activation of Nur77 and/or Nor1 deacetylase (HDAC) activity has been shown to be associated with have central roles in negative selection of T lymphocytes, cancer development19–22 and hematological malignancies.23–27 macrophage activation-induced cell death and apoptosis induced HDAC inhibitors display selective antitumor activity by inducing by antineoplastic agents in various cancer cells.5,8–11 Consistent apoptosis, growth arrest and differentiation and induce the with the parallel functions of these transcription factors, mice expression of cell-cycle inhibitors p21, p19 and p57 and of the deficient in either nur77 or nor1 display relatively subtle pro-apoptotic gene TRAIL in leukemia cells.28–31 Notably, two abnormalities,12,13 whereas mice deficient in both genes develop HDAC inhibitors, vorinostat (suberoylanilide hydroxamic acid) and rapidly lethal and transplantable AML.2 Importantly, the expression romidepsin (Istodax) have been approved by the Food and Drug of Nur77 and Nor1 transcripts was profoundly decreased in Administration for clinical treatment of cutaneous T-cell leukemic blasts from all AML patients studied, compared with the lymphoma, and HDAC inhibitors valproic acid, suberoylanilide levels in normal bone marrow cells, regardless of cytogenetics.2 hydroxamic acid and MGCD0103 have shown clinical efficacy 1Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA and 2Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. Correspondence: Dr M Andreeff, Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA. E-mail: [email protected] Received 14 April 2011; revised 2 November 2012; accepted 6 November 2012; accepted article preview online 18 December 2012; advance online publication, 5 February 2013 HDAC inhibitor SNDX-275 induces apoptosis in AML L Zhou et al 1359 in ongoing AML trials.28,32–34 We hypothesized that histone surviving cells ¼ viable cell number in treated sample  100/viable cell acetylation has a role in gene silencing of Nur77/Nor1 and number in control sample. % specific apoptosis ¼ ((% annexin V þ in HDAC inhibitor SNDX-275 was used in our study. SNDX-275 treated sample) À (% annexin V þ in control sample)  100)Ä(100 À (% þ 37 (Entinostat), a synthetic benzamide derivative, selectively inhibits annexin V in control sample)). The number of surviving LSCs from the activities of class I HDACs (HDAC1, 2 and 3),35 has shown primary patient samples was determined using a method described previously.36 % surviving cells ¼ viable CD34 þ /38 À cell number in impressive efficacy in vitro and in vivo against a variety of tumors þ À 35 treated sample  100/viable CD34 /38 cell number in control sample. and is currently in phase I/II clinical trials. CD34 þ /38 À , CD34 þ /38 þ and CD33 þ /34 À cell populations were isolated In this study, we demonstrate that Nur77 and Nor1 are from primary AML samples as previously described.36 profoundly silenced not only in bulk leukemia cells but also in leukemia stem cells (LSCs). This silencing was largely reversed by the HDAC inhibitor SNDX-275 alone or in combination with Gene-expression assay another Nur77/Nor1 inducer ionomycin. The restoration of Nur77/ Total RNA was extracted with Trizol (Invitrogen, Carlsbad, CA, USA) Nor1 by SNDX-275 was accompanied by upregulation of c-Jun, following the manufacturer’s instructions. A total of 500 ng of cDNA was used for each real-time PCR reaction. All Taqman assays for measuring JunB, TRAIL, Bim and Noxa in AML cells and LSCs. This resulted in gene expression were purchased from Applied Biosystems (Foster City, CA, extensive apoptosis of bulk AML and LSCs. USA), and the real-time PCR was conducted and analyzed with the 7900HT Fast Real-Time PCR System (Applied Biosystems). The abundance of each transcript relative to that of Abl1 was calculated as follows: Copies per 100 MATERIALS AND METHODS Abl1 ¼ 100  2 exp [ À DCt], where DCt is the mean Ct of the transcript of Chemicals and cell cultures interest less than the mean Ct of the transcript for Abl1. SNDX-275 (Entinostat) was kindly provided by Dr. Peter Ordentlich (Syndax Pharmaceuticals, Inc., Waltham, MA, USA). Trichostatin A, suberoylanilide hydroxamic acid, depsipeptide (FK228) and ionomycin were purchased Western blotting 6 from Sigma-Aldrich (St Louis, MO, USA), Aton Pharma (Lawrenceville, NY, Lysates of 1  10 cells were loaded onto a 10 or 12% SDS-PAGE gel USA) and Fujisawa Pharmaceutical Co. Ltd (Osaka, Japan), respectively. (Bio-Rad, Hercules, CA, USA) and proteins were transferred to Hybond-P AML cell lines HL-60, MOLM13, OCI-AML3 and OCI-AML2 were purchased membranes (Amersham Pharmacia Biotech, Piscataway, NJ, USA), followed from ATCC (Manassas, VA, USA). Bone marrow or peripheral blood samples by immunoblotting. Signals were detected using a PhosphorImager (Storm were obtained consecutively for in vitro studies from patients diagnosed 860, version 4.0; Molecular Dynamics, Sunnyvale, CA, USA). The following with AML during routine diagnostic workup under informed consent in antibodies were used: mouse monoclonal histone3 (Upstate, Billerica, MA, accordance with regulations and protocols approved by the Institutional USA), rabbit polyclonal histone4 (Upstate), rabbit polyclonal acetyl- Review Board Committee of the University of Texas M. D. Anderson Cancer histone3 (Upstate), rabbit polyclonal acetyl-histone4 (Upstate), rabbit Center. Primary AML samples were harvested
Recommended publications
  • Histone Deacetylase Inhibitors: an Attractive Therapeutic Strategy Against Breast Cancer
    ANTICANCER RESEARCH 37 : 35-46 (2017) doi:10.21873/anticanres.11286 Review Histone Deacetylase Inhibitors: An Attractive Therapeutic Strategy Against Breast Cancer CHRISTOS DAMASKOS 1,2* , SERENA VALSAMI 3* , MICHAEL KONTOS 4* , ELEFTHERIOS SPARTALIS 2, THEODOROS KALAMPOKAS 5, EMMANOUIL KALAMPOKAS 6, ANTONIOS ATHANASIOU 4, DEMETRIOS MORIS 7, AFRODITE DASKALOPOULOU 2,8 , SPYRIDON DAVAKIS 4, GERASIMOS TSOUROUFLIS 1, KONSTANTINOS KONTZOGLOU 1, DESPINA PERREA 2, NIKOLAOS NIKITEAS 2 and DIMITRIOS DIMITROULIS 1 1Second Department of Propedeutic Surgery, 4First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; 2N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece; 3Blood Transfusion Department, Aretaieion Hospital, Medical School, National and Kapodistrian Athens University, Athens, Greece; 5Assisted Conception Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; 6Gynaecological Oncology Department, University of Aberdeen, Aberdeen, U.K.; 7Lerner Research Institute, Cleveland Clinic, Cleveland, OH, U.S.A; 8School of Biology, National and Kapodistrian University of Athens, Athens, Greece Abstract. With a lifetime risk estimated to be one in eight in anticipate further clinical benefits of this new class of drugs, industrialized countries, breast cancer is the most frequent
    [Show full text]
  • Comparative Effect of Various HDAC-Inhibitors In-Vitro on T- Cell Lymphoma Cell Lines Alone and in Combination with Conventional Anti-Cancer Drugs
    Comparative effect of Various HDAC-inhibitors in-vitro on T- Cell Lymphoma cell lines alone and in combination with conventional anti-cancer drugs Arshad H. Banday Mentor:Dr. Francisco Hernandez-Illizaliturri Introduction. T-cell lymphomas are an uncommon and heterogeneous group of non-Hodgkin lymphomas. Historically therapies for these diseases have been borrowed from treatments for other lymphomas. More recently, efforts have be made to identify novel agents for their activity specifically in T-cell lymphomas. A primary example of new agents with specific activity in T-cell lymphomas is the novel class of drug, histone deacetylase inhibitors Vorinostat and romidepsin are currently approved and are in clinical use for the treatment of cutaneous T-cell lymphomas. Intro….. Histones are core structural components of chromatin; DNA is wound around histones, and histones further associate to become and form chromatin. Histone deacetylation inhibitors (HDAC) inhibitors induce accumulation of acetylated histones which leads to relaxation of chromatin structure and promotes access to transcriptional machinery and RNA polymerase HDACi also modify other cancer related proteins. Chromatin Structure Regulates Transcriptional Activity Histone Deacetylase Inhibitors (HDAC Inhibitors) • Cause increased histone acetylation resulting in.. • Uncoiling of chromatin and transcriptional activation of tumor suppressor genes leading to cell cycle arrest and/or apoptosis Currently only Vorinostat is licensed for use in cutaneous T cell lymphoma (CTCL) Genetic
    [Show full text]
  • Hr23b Expression Is a Potential Predictive Biomarker for HDAC Inhibitor Treatment in Mesenchymal Tumours and Is Associated with Response to Vorinostat
    The Journal of Pathology: Clinical Research J Path: Clin Res April 2016; 2: 59–71 Original Article Published online 23 December 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cjp2.35 HR23b expression is a potential predictive biomarker for HDAC inhibitor treatment in mesenchymal tumours and is associated with response to vorinostat Michaela Angelika Ihle,1 Sabine Merkelbach-Bruse,1 Wolfgang Hartmann,1,2 Sebastian Bauer,3 Nancy Ratner,4 Hiroshi Sonobe,5 Jun Nishio,6 Olle Larsson,7 Pierre A˚ man,8 Florence Pedeutour,9 Takahiro Taguchi,10 Eva Wardelmann,1,2 Reinhard Buettner1 and Hans-Ulrich Schildhaus1,11* 1 Institute of Pathology, University Hospital Cologne, Cologne, Germany 2 Gerhard Domagk Institute of Pathology, University Hospital M€unster, M€unster, Germany 3 Sarcoma Center, West German Cancer Center, University of Essen, Essen, Germany 4 US Department of Pediatrics, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, USA 5 Department of Laboratory Medicine, Chugoku Central Hospital, Fukuyama, Hiroshima, Japan 6 Faculty of Medicine, Department of Orthopaedic Surgery, Fukuoka University, Fukuoka, Japan 7 Department of Oncology and Pathology, The Karolinska Institute, Stockholm, Sweden 8 Sahlgrenska Cancer Centre, University of Gothenburg, Gothenburg, Sweden 9 Faculty of Medicine, Laboratory of Genetics of Solid Tumours, Institute for Research on Cancer and Aging, Nice, France 10 Division of Human Health & Medical Science, Graduate School of Kuroshio Science, Kochi University Nankoku, Kochi, Japan 11 Institute of Pathology, University Hospital G€ottingen, G€ottingen, Germany *Correspondence to: Hans-Ulrich Schildhaus,Institute of Pathology,University Hospital G€ottingen,Robert-Koch-Strasse40,D-37075G€ottingen, Germany.e-mail: [email protected] Abstract Histone deacetylases (HDAC) are key players in epigenetic regulation of gene expression and HDAC inhibitor (HDACi) treatment seems to be a promising anticancer therapy in many human tumours, including soft tissue sar- comas.
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Entinostat Augments NK Cell Functions Via Epigenetic Upregulation of IFIT1-STING-STAT4 Pathway
    www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 20), pp: 1799-1815 Research Paper Entinostat augments NK cell functions via epigenetic upregulation of IFIT1-STING-STAT4 pathway John M. Idso1, Shunhua Lao1, Nathan J. Schloemer1,2, Jeffrey Knipstein2, Robert Burns3, Monica S. Thakar1,2,* and Subramaniam Malarkannan1,2,4,5,* 1Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA 2Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA 3Bioinformatics Core, Blood Research Institute, Versiti, Milwaukee, WI, USA 4Divson of Hematology-Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA 5Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA *Co-senior authors Correspondence to: Monica S. Thakar, email: [email protected] Subramaniam Malarkannan, email: [email protected] Keywords: NK cells; histone deacetylase inhibitor; Ewing sarcoma; rhabdomyosarcoma; immunotherapy Received: September 10, 2019 Accepted: March 03, 2020 Published: May 19, 2020 Copyright: Idso et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Histone deacetylase inhibitors (HDACi) are an emerging cancer therapy; however, their effect on natural killer (NK) cell-mediated anti-tumor responses remain unknown. Here, we evaluated the impact of a benzamide HDACi, entinostat, on human primary NK cells as well as tumor cell lines. Entinostat significantly upregulated the expression of NKG2D, an essential NK cell activating receptor. Independently, entinostat augmented the expression of ULBP1, HLA, and MICA/B on both rhabdomyosarcoma and Ewing sarcoma cell lines.
    [Show full text]
  • Drug Screening Approach Combines Epigenetic Sensitization With
    Facciotto et al. Clinical Epigenetics (2019) 11:192 https://doi.org/10.1186/s13148-019-0781-3 METHODOLOGY Open Access Drug screening approach combines epigenetic sensitization with immunochemotherapy in cancer Chiara Facciotto1†, Julia Casado1†, Laura Turunen2, Suvi-Katri Leivonen3,4, Manuela Tumiati1, Ville Rantanen1, Liisa Kauppi1, Rainer Lehtonen1, Sirpa Leppä3,4, Krister Wennerberg2 and Sampsa Hautaniemi1* Abstract Background: The epigenome plays a key role in cancer heterogeneity and drug resistance. Hence, a number of epigenetic inhibitors have been developed and tested in cancers. The major focus of most studies so far has been on the cytotoxic effect of these compounds, and only few have investigated the ability to revert the resistant phenotype in cancer cells. Hence, there is a need for a systematic methodology to unravel the mechanisms behind epigenetic sensitization. Results: We have developed a high-throughput protocol to screen non-simultaneous drug combinations, and used it to investigate the reprogramming potential of epigenetic inhibitors. We demonstrated the effectiveness of our protocol by screening 60 epigenetic compounds on diffuse large B-cell lymphoma (DLBCL) cells. We identified several histone deacetylase (HDAC) and histone methyltransferase (HMT) inhibitors that acted synergistically with doxorubicin and rituximab. These two classes of epigenetic inhibitors achieved sensitization by disrupting DNA repair, cell cycle, and apoptotic signaling. The data used to perform these analyses are easily browsable through our Results Explorer. Additionally, we showed that these inhibitors achieve sensitization at lower doses than those required to induce cytotoxicity. Conclusions: Our drug screening approach provides a systematic framework to test non-simultaneous drug combinations. This methodology identified HDAC and HMT inhibitors as successful sensitizing compounds in treatment-resistant DLBCL.
    [Show full text]
  • Histone Deacetylase 3 As a Novel Therapeutic Target in Multiple Myeloma
    Leukemia (2014) 28, 680–689 & 2014 Macmillan Publishers Limited All rights reserved 0887-6924/14 www.nature.com/leu ORIGINAL ARTICLE Histone deacetylase 3 as a novel therapeutic target in multiple myeloma J Minami1,4, R Suzuki1,4, R Mazitschek2, G Gorgun1, B Ghosh2,3, D Cirstea1,YHu1, N Mimura1, H Ohguchi1, F Cottini1, J Jakubikova1, NC Munshi1, SJ Haggarty3, PG Richardson1, T Hideshima1 and KC Anderson1 Histone deacetylases (HDACs) represent novel molecular targets for the treatment of various types of cancers, including multiple myeloma (MM). Many HDAC inhibitors have already shown remarkable antitumor activities in the preclinical setting; however, their clinical utility is limited because of unfavorable toxicities associated with their broad range HDAC inhibitory effects. Isoform- selective HDAC inhibition may allow for MM cytotoxicity without attendant side effects. In this study, we demonstrated that HDAC3 knockdown and a small-molecule HDAC3 inhibitor BG45 trigger significant MM cell growth inhibition via apoptosis, evidenced by caspase and poly (ADP-ribose) polymerase cleavage. Importantly, HDAC3 inhibition downregulates phosphorylation (tyrosine 705 and serine 727) of signal transducers and activators of transcription 3 (STAT3). Neither interleukin-6 nor bone marrow stromal cells overcome this inhibitory effect of HDAC3 inhibition on phospho-STAT3 and MM cell growth. Moreover, HDAC3 inhibition also triggers hyperacetylation of STAT3, suggesting crosstalk signaling between phosphorylation and acetylation of STAT3. Importantly, inhibition of HDAC3, but not HDAC1 or 2, significantly enhances bortezomib-induced cytotoxicity. Finally, we confirm that BG45 alone and in combination with bortezomib trigger significant tumor growth inhibition in vivo in a murine xenograft model of human MM.
    [Show full text]
  • Rxoutlook® 1St Quarter 2019
    ® RxOutlook 1st Quarter 2020 optum.com/optumrx a RxOutlook 1st Quarter 2020 Orphan drugs continue to feature prominently in the drug development pipeline In 1983 the Orphan Drug Act was signed into law. Thirty seven years later, what was initially envisioned as a minor category of drugs has become a major part of the drug development pipeline. The Orphan Drug Act was passed by the United States Congress in 1983 in order to spur drug development for rare conditions with high unmet need. The legislation provided financial incentives to manufacturers if they could demonstrate that the target population for their drug consisted of fewer than 200,000 persons in the United States, or that there was no reasonable expectation that commercial sales would be sufficient to recoup the developmental costs associated with the drug. These “Orphan Drug” approvals have become increasingly common over the last two decades. In 2000, two of the 27 (7%) new drugs approved by the FDA had Orphan Designation, whereas in 2019, 20 of the 48 new drugs (42%) approved by the FDA had Orphan Designation. Since the passage of the Orphan Drug Act, 37 years ago, additional regulations and FDA designations have been implemented in an attempt to further expedite drug development for certain serious and life threatening conditions. Drugs with a Fast Track designation can use Phase 2 clinical trials to support FDA approval. Drugs with Breakthrough Therapy designation can use alternative clinical trial designs instead of the traditional randomized, double-blind, placebo-controlled trial. Additionally, drugs may be approved via the Accelerated Approval pathway using surrogate endpoints in clinical trials rather than clinical outcomes.
    [Show full text]
  • Histone Deacetylase Inhibitors: a Prospect in Drug Discovery Histon Deasetilaz İnhibitörleri: İlaç Keşfinde Bir Aday
    Turk J Pharm Sci 2019;16(1):101-114 DOI: 10.4274/tjps.75047 REVIEW Histone Deacetylase Inhibitors: A Prospect in Drug Discovery Histon Deasetilaz İnhibitörleri: İlaç Keşfinde Bir Aday Rakesh YADAV*, Pooja MISHRA, Divya YADAV Banasthali University, Faculty of Pharmacy, Department of Pharmacy, Banasthali, India ABSTRACT Cancer is a provocative issue across the globe and treatment of uncontrolled cell growth follows a deep investigation in the field of drug discovery. Therefore, there is a crucial requirement for discovering an ingenious medicinally active agent that can amend idle drug targets. Increasing pragmatic evidence implies that histone deacetylases (HDACs) are trapped during cancer progression, which increases deacetylation and triggers changes in malignancy. They provide a ground-breaking scaffold and an attainable key for investigating chemical entity pertinent to HDAC biology as a therapeutic target in the drug discovery context. Due to gene expression, an impending requirement to prudently transfer cytotoxicity to cancerous cells, HDAC inhibitors may be developed as anticancer agents. The present review focuses on the basics of HDAC enzymes, their inhibitors, and therapeutic outcomes. Key words: Histone deacetylase inhibitors, apoptosis, multitherapeutic approach, cancer ÖZ Kanser tedavisi tüm toplum için büyük bir kışkırtıcıdır ve ilaç keşfi alanında bir araştırma hattını izlemektedir. Bu nedenle, işlemeyen ilaç hedeflerini iyileştirme yeterliliğine sahip, tıbbi aktif bir ajan keşfetmek için hayati bir gereklilik vardır. Artan pragmatik kanıtlar, histon deasetilazların (HDAC) kanserin ilerleme aşamasında deasetilasyonu arttırarak ve malignite değişikliklerini tetikleyerek kapana kısıldığını ifade etmektedir. HDAC inhibitörleri, ilaç keşfi bağlamında terapötik bir hedef olarak HDAC biyolojisiyle ilgili kimyasal varlığı araştırmak için, çığır açıcı iskele ve ulaşılabilir bir anahtar sağlarlar.
    [Show full text]
  • Combination of 5-Fluorouracil with Epigenetic Modifiers Induces Radiosensitization, Somatostatin Receptor 2 Expression and Radio
    Journal of Nuclear Medicine, published on February 22, 2019 as doi:10.2967/jnumed.118.224048 Combination of 5-Fluorouracil With Epigenetic Modifiers Induces Radiosensitization, Somatostatin Receptor 2 Expression and Radioligand Binding in Neuroendocrine Tumor Cells in Vitro Xi-Feng Jin1#, Christoph J. Auernhammer1,2*, Harun Ilhan 2,3, Simon Lindner 3, Svenja Nölting1,2, Julian Maurer1, Gerald Spöttl1, Michael Orth4,5,6 1 Department of Internal Medicine 4, University-Hospital Campus Grosshadern, Ludwig-Maximilians University of Munich, Munich, Germany 2 Interdisciplinary Center of Neuroendocrine Tumours of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Marchioninistr, 15, 81377, Munich, Germany. 3 Department of Nuclear Medicine, University-Hospital Campus Grosshadern, Ludwig-Maximilians University of Munich, Munich, Germany 4 Department of Radiation Oncology, University Hospital, LMU Munich, Ludwig-Maximilians University of Munich, Munich, Germany 5German Cancer Consortium (DKTK), Munich, Germany 6German Cancer Research Center (DKFZ), Heidelberg, Germany First author# and Corresponding author*: Xi Feng Jin# and Christoph J. Auernhammer*, Department of Internal Medicine 4, University-Hospital Campus Grosshadern, Ludwig-Maximilians University of Munich, Marchioninistr, 15, 81377, Munich, Germany. E-mails: [email protected] / [email protected] 1 All authors have contributed significantly, and all authors are in agreement with the content of the manuscript. Disclosure statements: CJA has received research contracts from Ipsen, Novartis, and ITM Solucin, lecture honorarium from Ipsen, Novartis, and Falk Foundation, and advisory board honorarium from Novartis. SN has received research contracts from Novartis and lecture fees from Ipsen. No other potential conflicts of interest relevant to this article exist.
    [Show full text]
  • Syndax Pharmaceuticals Announces Issuance of US Patent for Entinostat — Extends Exclusivity to 2029 Supporting Commercialization in Breast and Lung Cancer —
    Syndax Pharmaceuticals Announces Issuance of US Patent for Entinostat — Extends exclusivity to 2029 supporting commercialization in breast and lung cancer — Waltham, Mass. – June 2, 2011 – Syndax Pharmaceuticals, a clinical-stage epigenetics oncology company, today announced allowance by the United States Patent and Trademark Office of Patent Application Serial No. 12/549458 entitled: “ N-(2-AMINOPHENYL)-4[N-(PYRIDINE-3-YL)- METHOXYCARBONYL—AMINOMETHYL]-BENZAMINE (MS-275) POLYMORPH B.” This follows the UK issuance which was granted in October of 2010 adding to the extensive patent estate. The patent covers the novel polymorph form B of the oral histone deacetylase inhibitor, entinostat, being developed by Syndax for combination therapy with aromatase inhibitors for metastatic breast cancer and erlotinib for advanced non-small cell lung cancer. “This U.S. allowance comes at a strategic time for Syndax and the development of entinostat since we now have the results of our randomized Phase 2 placebo-controlled study in metastatic breast cancer in hand and we are advancing entinostat in to Phase 3 studies,” said Joanna Horobin, president and chief executive officer of Syndax. “ We believe entinostat may help address the significant need to improve outcomes for the thousands of women in the United States living with metastatic breast cancer by extending the benefit of hormone therapy and delaying initiation of chemotherapy. With patent life extending through 2029, we are looking forward to maximizing the opportunities to develop entinostat in multiple indications.” About Entinostat Entinostat is an orally bioavailable, highly selective, class I histone deacetylase (HDAC) inhibitor with a long half-life that allows for weekly or every-other-week dosing.
    [Show full text]
  • Precision Medicine in Diffuse Large B-Cell Lymphoma: Hitting the Target Joost S
    EDITORIALS Precision medicine in diffuse large B-cell lymphoma: hitting the target Joost S. Vermaat,1 Steven T. Pals,2 Anas Younes,3 Martin Dreyling,4 Massimo Federico,5 Igor Aurer,6 John Radford,7 and Marie José Kersten,1 on behalf of EHA Lymphoma Group, a Scientific Working Group of the European Hematology Association (www.ehalyg.org) 1Department of Haematology, Academic Medical Center, Amsterdam, The Netherlands; 2Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands; 3Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, USA.; 4Department of Medicine III, LMU University of Munich, Germany; 5Medical Oncology, University of Modena and Reggio Emilia, Italy; 6Division of Hematology, Department of Internal Medicine, University Hospital Center Zagreb and Medical School, University of Zagreb, Croatia; and 7Institute of Cancer Sciences, the University of Manchester, and the Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK. E-mail: [email protected] doi:10.3324/haematol.2015.128371 A short history of precision medicine Lymphomagenesis: is it all about genetics? Precision medicine (PM) is certainly not a novel concept, Lymphoma, like any other type of cancer, is characterized but recent technological improvements have given it a huge by genetic alterations leading to a disturbed balance between boost. Although immunochemotherapy has advanced results proliferation and apoptosis. B lymphocytes are particularly of lymphoma treatment enormously, it remains a toxic thera- prone to DNA damage during the physiological germinal cen- py that does not benefit every patient and may result in seri- ter reaction, as the immunoglobulin genes undergo somatic ous lasting side-effects.
    [Show full text]