35 Disorders of Purine and Pyrimidine Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

35 Disorders of Purine and Pyrimidine Metabolism 35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP). From IMP, adeno- vided by food intake or the catabolic pathway, and sine monophosphate (AMP) and guanosine mono- reconverts them into, respectively, GMP, IMP and phosphate (GMP) are formed. Further metabolism AMP. Salvage of the purine nucleosides, adenosine (not illustrated) leads to their di- and triphosphates, and guanosine, and their deoxy counterparts, cata- to their corresponding deoxyribonucleotides, and lyzed by kinases, also occurs. to RNA and DNA. VIII . Fig. 35.1. Pathways of purine metabolism. AICAR, aminoimi- 3, AICAR transformylase; 4, IMP cyclohydrolase (3 and 4 form dazolecarboxamide ribotide; AMP, adenosine monophosphate; ATIC); 5, adenylosuccinate synthetase; 6, AMP deaminase; FAICAR, formylaminoimidazolecarboxamide ribotide; GMP, gua- 7, 5c-nucleotidase(s), 8, adenosine deaminase; 9, purine nucleo- nosine monophosphate; IMP, inosine monophosphate; P, phos- side phosphorylase; 10, hypoxanthine-guanine phosphoribosyl- phate; PRPP, phosphoribosyl pyrophosphate, S-Ado, succinylade- transferase; 11, adenine phosphoribosyltransferase; 12, adeno- nosine; SAICAR, succinylaminoimidazolecarboxamide ribotide; sine kinase; 13, guanosine kinase; 14, xanthine oxidase (dehydro- S-AMP, adenylosuccinate, XMP, xanthosine monophosphate. genase). Enzyme defects are indicated by solid bars across the 1, PRPP synthetase; 2, adenylosuccinase (adenylosuccinate lyase); arrows 435 35 35.1 · Inborn Errors of Purine Metabolism the first intermediate of the de novo synthesis of purine Inborn errors exist of the biosynthetic, catabolic, and nucleotides (not shown in full detail in . Fig. 35.1), which salvage pathways of purine and pyrimidine metabo- leads to the formation of inosine monosphosphate (IMP), lism, which are depicted in . Fig. 35.1 and 35.3, respec- from which the other purine compounds are derived. PRPP tively. The major presenting signs and laboratory find- synthetase is highly regulated. Various genetic regulatory ings in these inborn errors are listed in . Table 35.1. and catalytic defects [1, 2] lead to superactivity, resulting in increased generation of PRPP. Because PRPP amidotrans- ferase, the rate-limiting enzyme of the de novo pathway, is physiologically not saturated by PRPP, the synthesis of 35.1 Inborn Errors of Purine purine nucleotides increases, and hence the production of Metabolism uric acid. PRPP synthetase superactivity is one of the few known examples of an hereditary anomaly of an enzyme Inborn errors of purine metabolism comprise errors of: which enhances its activity. The mechanism of the neuro- 4 purine nucleotide synthesis: phosphoribosylpyrophos- logical symptoms is unresolved. phate (PRPP) synthetase superactivity, adenylosuc- cinase (ADSL) deficiency, AICA-ribosiduria caused by Genetics ATIC deficiency; The various forms of PRPP synthetase superactivity are 4 purine catabolism: the deficiencies of muscle AMP inherited as X-linked traits. In the families in which the deaminase (AMP-DA, also termed myoadenylate de- anomaly is associated with sensorineural deafness, hetero- aminase), adenosine deaminase (ADA), purine nuc- zygous females have also been found with gout and/or leoside phosphorylase (PNP) and xanthine oxidase; hearing impairment [2]. Studies of the gene in six families 4 purine salvage: the deficiencies of hypoxanthine-gua- revealed a different single base change in each of them [3]. nine phosphoribosyltransferase (HGPRT) and adenine phosphoribosyltransferase (APRT). The deficiency of Diagnostic Tests deoxyguanosine kinase causes mitochondrial DNA Diagnosis requires extensive kinetic studies of the enzyme, depletion (7 also Chap. 15). which are performed on erythrocytes and cultured fibro- blasts in a few laboratories in the world. The disorder should With the exception of muscle AMP-DA deficiency, all these be differentiated from partial HGPRT deficiency, which enzyme defects are very rare. gives similar clinical signs. Treatment and Prognosis 35.1.1 Phosphoribosyl Pyrophosphate Patients should be treated with allopurinol, which inhibits Synthetase Superactivity xanthine oxidase, the last enzyme of purine catabolism (. Fig. 35.1). This results in a decrease of the production of Clinical Presentation uric acid and in its replacement by hypoxanthine, which is The disorder is mostly manifested by the appearance, about 10-fold more soluble, and xanthine, which is slightly in young adult males, of gouty arthritis and/or uric acid more soluble than uric acid. Initial dosage of allopurinol is lithiasis, potentially leading to renal insufficiency [1, 2]. 10–20 mg/kg per day in children and 2–10 mg/kg per day Uricemia can be very high, reaching 10–15 mg/dl (0.60– in adults. It should be adjusted to the minimum required to 0.90 mmol/l) [normal adult values: 2.9–5.5 mg/dl (0.17– maintain normal uric acid levels in plasma, and reduced 0.32 mmol/l)]. The urinary excretion of uric acid is also in subjects with renal insufficiency. In rare patients with a increased, reaching up to 2400 mg (14 mmol)/24 h, or considerable increase in de novo synthesis, xanthine calculi 2.5 mmol/mmol creatinine [normal adult values: 500– can be formed during allopurinol therapy [4]. Consequently, 800 mg (3-4.7 mmol)/24 h, or 02–0.3 mmol/mmol creati- additional measures to prevent cristallization are recom- nine]. mended. These include a low purine diet (free of organ A few patients have been reported in which clinical meats, fishes such as anchovy, herring, mackerel, salmon, signs of uric acid overproduction already appeared in in- sardines and tuna, dried beans and peas), high fluid intake fancy and were accompanied by neurologic abnormalities, and, since uric acid and xanthine are more soluble at alka- mainly sensorineural deafness, particularly for high tones, line than at acid pH, administration of sodium bicarbonate, but also hypotonia, locomotor delay, ataxia and autistic potassium citrate or citrate mixtures to bring urinary pH to features [2]. 6.0-6.5. Adequate control of the uricemia prevents gouty arthritis and urate nephropathy, but does not correct the Metabolic Derangement neurological symptoms. The enzyme forms phosphoribosyl pyrophosphate (PRPP) from ribose-5-phosphate and ATP (. Fig. 35.1). PRPP is 436 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism . Table 35.1. Main presenting clinical signs and laboratory data in inborn errors of purine and pyrimidine metabolism Clinical signs Diagnostic possibilities Clinical signs Diagnostic possibilities Arthritis PRPP synthetase superactivity Muscle cramps Muscle AMP deaminase deficiency HGPRT deficiency (partial) Muscle wasting Adenylosuccinase deficiency Ataxia PNP deficiency Psychomotor delay PRPP synthetase superactivity HGPRT deficiency (complete) Adenylosuccinase deficiency Cytosolic 5’-nucleotidase superactivity AICA-ribosiduria (ATIC deficiency) Autistic features PRPP synthetase superactivity Combined xanthine and sulfite oxidase Adenylosuccinase deficiency deficiency Dihydropyrimidine dehydrogenase HGPRT deficiency (complete) deficiency UMP synthase deficiency Cytosolic 5’-nucleotidase superactivity Dihydropyrimidine dehydrogenase Congenital blindness AICA-ribosiduria (ATIC deficiency) deficiency Convulsions Adenylosuccinase deficiency Dihydropyrimidinase deficiency Combined xanthine and sulfite Ureidopropionase deficiency oxidase deficiency Cytosolic 5’-nucleotidase superactivity Dihydropyrimidine dehydrogenase Recurrent infections ADA deficiency deficiency PNP deficiency Dihydropyrimidinase deficiency Cytosolic 5’-nucleotidase superactivity Cytosolic 5’-nucleotidase superactivity Renal insufficiency PRPP synthetase superactivity Deafness
Recommended publications
  • Annotation-1 Annotation-1
    Annotation-1 Baseline Resuscitation Normal Saline Resuscitation PFP Shock Annotation-1 Aminoacids Arginine and proline metabolism Carnitine and fatty acid metabolsim Glutamate metabolism Glycerophospholipid biosynthesis Glycolysis and sugars GSH homeostasis GSH homeostasis/Glyoxlate Hexosamine Indole and Tryptophan Nucleotides Other Panthothenate metabolism Pentose Phosphate Pathway Serine biosynthesis and one-carbon metabolism Signaling Sulfur metabolism TCA cycle urea cycle relative row min row max Baseline_14 Baseline_16 Baseline_13 Baseline_15 Baseline_22 Baseline_2 Baseline_12 Baseline_3 Baseline_4 Baseline_9 Baseline_7 Baseline_8 Shock_13 Shock_12 Shock_15 Shock_22 Shock_14 Shock_16 Shock_2 Shock_3 Shock_7 Shock_4 Shock_8 Shock_9 Res_NS_14 Res_NS_13 Res_NS_16 Res_NS_12 Res_NS_22 Res_NS_15 Res_PFP_2 Res_PFP_3 Res_PFP_7 Res_PFP_4 Res_PFP_8 Res_PFP_9 Annotation-1 Annotation-1 Annotation Annotation-1 L-Arginine Aminoacids L-Isoleucine Aminoacids Leucine Aminoacids L-Cysteine Aminoacids L-Alanine Aminoacids L-Aspartate Aminoacids L-Glutamate Aminoacids L-Glutamine Aminoacids L-Histidine Aminoacids L-Lysine Aminoacids L-Methionine Aminoacids L-Tyrosine Aminoacids L-Asparagine Aminoacids L-Threonine Aminoacids L-Cystine Aminoacids L-Serine Aminoacids L-Proline Aminoacids L-Valine Aminoacids L-Tryptophan Aminoacids Glycine Aminoacids L-Kynurenine Aminoacids L-Phenylalanine Aminoacids CMP Nucleotides 6-Hydroxynicotinate Nucleotides 5-6-Dihydrouracil Nucleotides AMP Nucleotides dAMP Nucleotides GMP Nucleotides Guanine Nucleotides 2-5-Dihydroxypyridine
    [Show full text]
  • United States Patent 19 11 Patent Number: 5,780,253 Subramanian Et Al
    III USOO5780253A United States Patent 19 11 Patent Number: 5,780,253 Subramanian et al. (45) Date of Patent: Jul. 14, 1998 54 SCREENING METHOD FOR DETECTION OF 4.433.999 2/1984 Hyzak ....................................... 71.03 HERBCDES 4.6–552 2/1987 Anoti et al. if O3. 4,802,912 2/1989 Baker ........................................ 7/103 Inventors: Wenkiteswaran Subramanian Danville: Anne G. Toschi. Burlingame. OTHERTHER PPUBLICATION CATIONS both of Calif. Heim et al. Pesticide Biochem & Physiol; vol. 53, pp. 138-145 (1995). 73) Assignee: Sandoz Ltd., Basel. Switzerland Hatch. MD.: Phytochem. vol. 6... pp. 115 to 119, (1967). Haworth et al. J. Agric. Food Chem, vol. 38, pp. 1271-1273. 21 Appl. No.:752.990 1990. Nishimura et al: Phytochem: vol. 34, pp. 613-615. (1993). 22 Filed: Nov. 21, 1996 Primary Examiner-Louise N. Leary Related U.S. Application Data Attorney, Agent, or Firm-Lynn Marcus-Wyner: Michael P. Morris 63 Continuation of Ser. No. 434.826, May 4, 1995, abandoned. 6 57 ABSTRACT 51 Int. Cl. ............................... C12Q 1/48: C12Q 1/32: C12Q 1/37; C12O 1/00 This invention relates to novel screening methods for iden 52 U.S. Cl. ................................. 435/15:435/18: 435/26: tifying compounds that specifically inhibit a biosynthetic 435/23: 435/4, 536/23.6:536/23.2:536/24.3 pathway in plants. Enzymes which are specifically affected 536/26.11:536/26.12:536/26.13 by the novel screening method include plant purine biosyn 58 Field of Search .................................. 435/15, 8, 26, thetic pathway enzymes and particularly the enzymes 435/23 4: 536/23.6, 23.2, 24.3, 26.1, involved in the conversion of inosine monophosphate to 26.12, 26.13 adenosine monophosphate and inosine monophosphate to guanosine monophosphate.
    [Show full text]
  • Purine Metabolism in Cultured Endothelial Cells
    PURINE METABOLISM IN MAN-III Biochemical, Immunological, and Cancer Research Edited by Aurelio Rapado Fundacion Jimenez Diaz Madrid, Spain R.W.E. Watts M.R.C. Clinical Research Centre Harrow, England and Chris H.M.M. De Bruyn Department of Human Genetics University of Nijmegen Faculty of Medicine Nijmegen, The Netherlands PLENUM PRESS · NEW YORK AND LONDON Contents of Part Β I. PURINE METABOLISM PATHWAYS AND REGULATION A. De Novo Synthesis; Precursors and Regulation De Novo Purine Synthesis in Cultured Human Fibroblasts 1 R.B. Gordon, L. Thompson, L.A. Johnson, and B.T. Emmerson Comparative Metabolism of a New Antileishmanial Agent, Allopurinol Riboside, in the Parasite and the Host Cell 7 D. J. Nelson, S.W. LaFon, G.B. Elion, J.J. Marr, and R.L. Berens Purine Metabolism in Rat Skeletal Muscle 13 E. R. Tully and T.G. Sheehan Alterations in Purine Metabolism in Cultured Fibroblasts with HGPRT Deficiency and with PRPPP Synthetase Superactivity 19 E. Zoref-Shani and 0. Sperling Purine Metabolism in Cultured Endothelial Cells 25 S. Nees, A.L. Gerbes, B. Willershausen-Zönnchen, and E. Gerlach Determinants of 5-Phosphoribosyl-l-Pyrophosphate (PRPP) Synthesis in Human Fibroblasts 31 K.0, Raivio, Ch. Lazar, H. Krumholz, and M.A. Becker Xanthine Oxidoreductase Inhibition by NADH as a Regulatory Factor of Purine Metabolism 35 M.M. Jezewska and Z.W. Kaminski vii viii CONTENTS OF PART Β Β. Nucleotide Metabolism Human Placental Adenosine Kinase: Purification and Characterization 41 CM. Andres, T.D. Palella, and I.H. Fox Long-Term Effects of Ribose on Adenine Nucleotide Metabolism in Isoproterenol-Stimulated Hearts .
    [Show full text]
  • Metabolism of Nucleotides
    METABOLISM OF NUCLEOTIDES Tomáš Kuˇcera Ústav lékaˇrské chemie a klinické biochemie 2. lékaˇrská fakulta, Univerzita Karlova v Praze 2013 NUKLEOTIDY rocy t e c l e e − − − h O O O N −O P O P O P O O O O O O H H H H OH OH heterocycle = nucleobase the name is historic pyrimidine purine nicotinamide, flavine PYRIMIDINE BASES AND NUCLEOSIDES PURINE BASES AND NUCLEOSIDES SOME LESS USUAL BASES AND NUCLEOSIDES 5-formylcytosine 6-methyladenine 4-methylcytosine FUNCTION OF NUCLEOTIDES precursors of DNA and RNA ATP, GTP, CTP, UTP, dATP, dGTP, dCTP, dTTP components of enzyme cofactors NAD(P), FAD, FMN, CoA [(P)APS – (phospho)adenosylphosphosulphate] macroergic “energy quanta” carriers ATP, GTP activated intermediates in biosyntheses UDP-sugars, CDP-diacylglycerols, S-adenosylmethionine second messengers in signal transduction cAMP, cGMP allosteric regulators ATP, ADP, AMP GAINING NUCLEOTIDES pancreatic (deoxy)ribonucleases and intestinal polynucleotidases: NA ! nucleotides nucleotidase of epithelial cells of the intestine: nucleotides ! nucleosides in the intestinal epithelial cells, nucleosides are used intact hydrolyzed by nucleoside (phosphoryl)ases: nucleoside ! base + pentose(-1-phosphate) + [phosphate] — salvage for the cells own need — transport to the blood about 5 % of digested nucleotides into the blood as bases and nucleosides low dietary uptake ) need of biosynthesis PYRIMIDINE NUCLEOSIDES BIOSYNTHESIS 1 PYRIMIDINE NUCLEOSIDES BIOSYNTHESIS 2 UTP SYNTHESIS nucleosidmonophosphate- UMP + ATP kinase UDP + ADP nucleosiddiphosphate- UDP + ATP
    [Show full text]
  • Metabolism of Purines and Pyrimidines in Health and Disease
    39th Meeting of the Polish Biochemical Society Gdañsk 16–20 September 2003 SESSION 6 Metabolism of purines and pyrimidines in health and disease Organized by A. C. Sk³adanowski, A. Guranowski 182 Session 6. Metabolism of purines and pyrimidines in health and disease 2003 323 Lecture The role of DNA methylation in cytotoxicity mechanism of adenosine analogues in treatment of leukemia Krystyna Fabianowska-Majewska Zak³ad Chemii Medycznej IFiB, Uniwersytet Medyczny, ul. Mazowiecka 6/8, 92 215 £ódŸ Changes in DNA methylation have been recognized tory effects of cladribine and fludarabine on DNA as one of the most common molecular alterations in hu- methylation, after 48 hr growth of K562 cells with the man neoplastic diseases and hypermethylation of drugs, are non-random and affect mainly CpG rich is- gene-promoter regions is one of the most frequent lands or CCGG sequences but do not affect sepa- mechanisms of the loss of gene functions. For this rea- rately-located CpG sequences. The analysis showed son, DNA methylation may be a tool for detection of that cladribine (0.1 mM) reduced the methylated early cell transformations as well as predisposition to cytosines in CpG islands and CCGG sequences to a sim- metastasis process. Moreover, DNA methylation seems ilar degree. The inhibition of cytosine methylation by to be a promissing target for new preventive and thera- fludarabine (3 mM) was observed mainly in CCGG se- peutic strategies. quences, sensitive to HpaII, but the decline in the meth- Our studies on DNA methylation and cytotoxicity ylated cytosine, located in CpG island was 2-fold lower mechanism of antileukemic drugs, cladribine and than that with cladribine.
    [Show full text]
  • Pro-Aging Effects of Xanthine Oxidoreductase Products
    antioxidants Review Pro-Aging Effects of Xanthine Oxidoreductase Products , , Maria Giulia Battelli y , Massimo Bortolotti y , Andrea Bolognesi * z and Letizia Polito * z Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy; [email protected] (M.G.B.); [email protected] (M.B.) * Correspondence: [email protected] (A.B.); [email protected] (L.P.); Tel.: +39-051-20-9-4707 (A.B.); +39-051-20-9-4729 (L.P.) These authors contributed equally. y Co-last authors. z Received: 22 July 2020; Accepted: 4 September 2020; Published: 8 September 2020 Abstract: The senescence process is the result of a series of factors that start from the genetic constitution interacting with epigenetic modifications induced by endogenous and environmental causes and that lead to a progressive deterioration at the cellular and functional levels. One of the main causes of aging is oxidative stress deriving from the imbalance between the production of reactive oxygen (ROS) and nitrogen (RNS) species and their scavenging through antioxidants. Xanthine oxidoreductase (XOR) activities produce uric acid, as well as reactive oxygen and nitrogen species, which all may be relevant to such equilibrium. This review analyzes XOR activity through in vitro experiments, animal studies and clinical reports, which highlight the pro-aging effects of XOR products. However, XOR activity contributes to a regular level of ROS and RNS, which appears essential for the proper functioning of many physiological pathways. This discourages the use of therapies with XOR inhibitors, unless symptomatic hyperuricemia is present.
    [Show full text]
  • Determining HDAC8 Substrate Specificity by Noah Ariel Wolfson A
    Determining HDAC8 substrate specificity by Noah Ariel Wolfson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2014 Doctoral Committee: Professor Carol A. Fierke, Chair Professor Robert S. Fuller Professor Anna K. Mapp Associate Professor Patrick J. O’Brien Associate Professor Raymond C. Trievel Dedication My thesis is dedicated to all my family, mentors, and friends who made getting to this point possible. ii Table of Contents Dedication ....................................................................................................................................... ii List of Figures .............................................................................................................................. viii List of Tables .................................................................................................................................. x List of Appendices ......................................................................................................................... xi Abstract ......................................................................................................................................... xii Chapter 1 HDAC8 substrates: Histones and beyond ...................................................................... 1 Overview ..................................................................................................................................... 1 HDAC introduction
    [Show full text]
  • The Biochemistry of Gout: a USMLE Step 1 Study Aid
    The Biochemistry of Gout: A USMLE Step 1 Study Aid BMS 6204 May 26, 2005 Compiled by: Todd Kerensky Elizabeth Ballard Brendan Prendergast Eric Ritchie 1 Introduction Gout is a systemic disease caused by excess uric acid as the result of deficient purine metabolism. Clinically, gout is marked by peripheral arthritis and painful inflammation in joints resulting from deposition of uric acid in joint synovia as monosodium urate crystals. Although gout is the most common crystal-induced arthritis, a condition known as pseudogout can commonly be mistaken for gout in the clinic. Pseudogout results from deposition of calcium pyrophosphatase (CPP) crystals in synovial spaces, but causes nearly identical clinical presentation. Clinical findings Crystal-induced arthritis such as gout and pseudogout differ from other types of arthritis in their clinical presentations. The primary feature differentiating gout from other types of arthritis is the spontaneity and abruptness of onset of inflammation. Additionally, the inflammation from gout and pseudogout are commonly found in a single joint. Gout and pseudogout typically present with Podagra, a painful inflammation of the metatarsal- phalangeal joint of the great toe. However, gout can also present with spontaneous edema and painful inflammation of any other joint, but most commonly the ankle, wrist, or knee. As an exception, a spontaneous painful inflammation in the glenohumeral joint is usually the result of pseudogout. It is important to recognize the clinical differences between gout, pseudogout and other types of arthritis because the treatments differ markedly (Kaplan 2005). Pathophysiology and Treatment of Gout Although gout affects peripheral joints in clinical presentation, it is important to recognize that it is a systemic disorder caused by either overproduction or underexcretion of uric acid.
    [Show full text]
  • Thermostable and Long-Circulating Albumin-Conjugated Arthrobacter Globiformis Urate Oxidase
    pharmaceutics Article Thermostable and Long-Circulating Albumin-Conjugated Arthrobacter globiformis Urate Oxidase Byungseop Yang and Inchan Kwon * School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-62-715-2312 Abstract: Urate oxidase derived from Aspergillus flavus has been investigated as a treatment for tumor lysis syndrome, hyperuricemia, and gout. However, its long-term use is limited owing to potential immunogenicity, low thermostability, and short circulation time in vivo. Recently, urate oxidase isolated from Arthrobacter globiformis (AgUox) has been reported to be thermostable and less immunogenic than the Aspergillus-derived urate oxidase. Conjugation of human serum albumin (HSA) to therapeutic proteins has become a promising strategy to prolong circulation time in vivo. To develop a thermostable and long-circulating urate oxidase, we investigated the site-specific conjugation of HSA to AgUox based on site-specific incorporation of a clickable non-natural amino acid (frTet) and an inverse electron demand Diels–Alder reaction. We selected 14 sites for frTet incorporation using the ROSETTA design, a computational stability prediction program, among which AgUox containing frTet at position 196 (Ag12) exhibited enzymatic activity and thermostability comparable to those of wild-type AgUox. Furthermore, Ag12 exhibited a high HSA conjugation yield without compromising the enzymatic activity, generating well-defined HSA-conjugated AgUox (Ag12-HSA). In mice, the serum half-life of Ag12-HSA was approximately 29 h, which was roughly Citation: Yang, B.; Kwon, I. 17-fold longer than that of wild-type AgUox. Altogether, this novel formulated AgUox may hold Thermostable and Long-Circulating enhanced therapeutic efficacy for several diseases.
    [Show full text]
  • Clinical Symptoms of Defects in Pyrimidine Metabolism
    ClinicalClinical symptomssymptoms ofof DefectsDefects inin pyrimidinepyrimidine metabolismmetabolism Birgit Assmann Department of General Pediatrics Universtiy Children‘s Hospital Düsseldorf, Germany Overview • Biosynthesis: UMP Synthase • Degradation: –– PyrimidinePyrimidine 55‘‘--Nucleotidase(UMPNucleotidase(UMP--Hydrolase)Hydrolase) – [Thymidine-Phosphorylase, mitochondrial] –– DihydropyrimidineDihydropyrimidine DehydrogenaseDehydrogenase –– DihydropyrimidinaseDihydropyrimidinase –– UreidopropionaseUreidopropionase HCO3+gluNH2 carbamoyl-P orotic acid OMP OPRT UMP OD UMPS UMPSUMPS == uridinemonophosphateuridinemonophosphate synthasesynthase Bifunctional enzyme (one gene): a) Orotate phosphoribosyl transferase (OPRT) b) Orotidine decarboxylase (OD) UMPS deficiency • = Hereditary orotic aciduria Hallmarks:Hallmarks: - MegaloblasticMegaloblastic anemiaanemia inin infantsinfants >> IfIf untreateduntreated:: FailureFailure toto thrivethrive PsychomotorPsychomotor retardationretardation • Therapy: uridine (≥100-150 mg/kg/d) Defects of pyrimidine degradation • Pyrimidine 5‘-Nucleotidase deficiency - chronic hemolytic anemia + basophilic stippling of erythrocytes • Thymidine phosphorylase deficiency = MNGIE=Mitoch. NeuroGastroIntestinal Encephalomyopathy Mitochondrial disorder with elevatedelevated urinaryurinary thymidinethymidine excretionexcretion HCO3+gluNH2 carbamoyl-P orotic acid OMP TMP UMP UMPS thymidine cytosolic 5‘- uridine Thym. Nucleotidase phosphor ylase thymine uracil Pyrimidine 5‘-Nucleotidase- SuperactivitySuperactivity • Existence
    [Show full text]
  • Forms of Hypoxanthine Or, Through Interconversions, Guanine Or Adenine
    826 GENETICS: GOTS AND GOLLUB PROC. N. A. S. Summary.-The ribonucleic acids of isolated thymus nuclei can be separated into two distinct fractions, one of which probably represents ribonucleic acid of the nu- cleolus. Studies of the incorporation of orotic acid-6-C"4 and adenosine-8-C'4 into these RNA fractions in vitro show great differences in their metabolic activity and different susceptibilities to an inhibitor of RNA synthesis, the "nucleolar" RNA being by far the more active. It is a pleasure to acknowledge our indebtedness to Mr. Rudolf Meudt for his careful and expert technical assistance. * This research was supported in part by a grant (RG-4919 M&G) from the United States Public Health Service. I V. G. Allfrey, A. E. Mirsky, and S. Osawa, Nature, 176, 1042, 1955. 2 V. G. Allfrey, A. E. Mirsky, and S. Osawa, J. Gen. Physiol., 40, 451, 1957. 3 R. Logan and J. N. Davidson, Biochim. et Biophys. Acta, 24, 196, 1957. 4 S. Osawa, K. Takata, and Y. Hotta (in press). 6 J. M. Webb, J. Biol. Chem., 221, 635, 1956. 6 M. Bessis, in Traite de cytologie sanguine (Paris: Masson & Cie, 1954), p. 83. J. N. Davidson and R. M. S. Smellie. Biochem. J.. 52, 594, 1952. SEQUENTIAL BLOCKADE IN ADENINE BIOSYNTHESIS BY GENETIC LOSS OF AN APPARENT BIFUNCTIONAL DEACYLASE* By JOSEPH S. GOTS AND EDITH G. GOLLUB DEPARTMENT OF MICROBIOLOGY, SCHOOL OF MEDICINE, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYLVANIA Communicated by D. Wright Wilson, July 3, 1957 Along the biosynthetic pathway to the purines of nucleic acids, inosinic acid occurs as a pivotal point in a bifurcation which leads to adenylic acid along one branch and to guanylic acid along the other: (B) r- Adenylic acid (AMP) (A) Inosinic acid (IMP) (C) L|_ * Guanylic acid (GMP) Bacterial mutations may result in genetic impairments at three locations with respect to the pivotal inosinic acid, thus yielding auxotrophs with three broad classes of nutritional response.
    [Show full text]
  • The Link Between Purine Metabolism and Production of Antibiotics in Streptomyces
    antibiotics Review The Link between Purine Metabolism and Production of Antibiotics in Streptomyces Smitha Sivapragasam and Anne Grove * Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; [email protected] * Correspondence: [email protected] Received: 10 May 2019; Accepted: 3 June 2019; Published: 6 June 2019 Abstract: Stress and starvation causes bacterial cells to activate the stringent response. This results in down-regulation of energy-requiring processes related to growth, as well as an upregulation of genes associated with survival and stress responses. Guanosine tetra- and pentaphosphates (collectively referred to as (p)ppGpp) are critical for this process. In Gram-positive bacteria, a main function of (p)ppGpp is to limit cellular levels of GTP, one consequence of which is reduced transcription of genes that require GTP as the initiating nucleotide, such as rRNA genes. In Streptomycetes, the stringent response is also linked to complex morphological differentiation and to production of secondary metabolites, including antibiotics. These processes are also influenced by the second messenger c-di-GMP. Since GTP is a substrate for both (p)ppGpp and c-di-GMP, a finely tuned regulation of cellular GTP levels is required to ensure adequate synthesis of these guanosine derivatives. Here, we discuss mechanisms that operate to control guanosine metabolism and how they impinge on the production of antibiotics in Streptomyces species. Keywords: c-di-GMP; guanosine and (p)ppGpp; purine salvage; secondary metabolism; Streptomycetes; stringent response 1. Introduction Bacteria experience constant challenges, either in the environment or when infecting a host. They utilize various mechanisms to survive such stresses, which may include changes in temperature, pH, or oxygen content as well as limited access to carbon or nitrogen sources.
    [Show full text]