United States Patent 19 11 Patent Number: 5,780,253 Subramanian Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent 19 11 Patent Number: 5,780,253 Subramanian Et Al III USOO5780253A United States Patent 19 11 Patent Number: 5,780,253 Subramanian et al. (45) Date of Patent: Jul. 14, 1998 54 SCREENING METHOD FOR DETECTION OF 4.433.999 2/1984 Hyzak ....................................... 71.03 HERBCDES 4.6–552 2/1987 Anoti et al. if O3. 4,802,912 2/1989 Baker ........................................ 7/103 Inventors: Wenkiteswaran Subramanian Danville: Anne G. Toschi. Burlingame. OTHERTHER PPUBLICATION CATIONS both of Calif. Heim et al. Pesticide Biochem & Physiol; vol. 53, pp. 138-145 (1995). 73) Assignee: Sandoz Ltd., Basel. Switzerland Hatch. MD.: Phytochem. vol. 6... pp. 115 to 119, (1967). Haworth et al. J. Agric. Food Chem, vol. 38, pp. 1271-1273. 21 Appl. No.:752.990 1990. Nishimura et al: Phytochem: vol. 34, pp. 613-615. (1993). 22 Filed: Nov. 21, 1996 Primary Examiner-Louise N. Leary Related U.S. Application Data Attorney, Agent, or Firm-Lynn Marcus-Wyner: Michael P. Morris 63 Continuation of Ser. No. 434.826, May 4, 1995, abandoned. 6 57 ABSTRACT 51 Int. Cl. ............................... C12Q 1/48: C12Q 1/32: C12Q 1/37; C12O 1/00 This invention relates to novel screening methods for iden 52 U.S. Cl. ................................. 435/15:435/18: 435/26: tifying compounds that specifically inhibit a biosynthetic 435/23: 435/4, 536/23.6:536/23.2:536/24.3 pathway in plants. Enzymes which are specifically affected 536/26.11:536/26.12:536/26.13 by the novel screening method include plant purine biosyn 58 Field of Search .................................. 435/15, 8, 26, thetic pathway enzymes and particularly the enzymes 435/23 4: 536/23.6, 23.2, 24.3, 26.1, involved in the conversion of inosine monophosphate to 26.12, 26.13 adenosine monophosphate and inosine monophosphate to guanosine monophosphate. Further the invention relates to 56) References Cited compositions and method of use comprising herbicidally U.S. PATENT DOCUMENTS effective amounts of the identified compounds. 4,400.529 8/1983 Chin .......................................... 7/103 18 Claims, 5 Drawing Sheets OPOC OCC v'sC GAR Ny CAIR ... ." N's M THF- GAF transformylase H.N. R-5-P ROQse-5-P - ATP + asp T SACAiR synthetase RP PP kinase -N ADP + P, AMP a s & FGAR or N HOOCs-cooh ofoo R-5-P N N o24. N HC – OHOP-O. ATP+Gin-i-HC FGAff N ) SACAIR PRPP ADP-Glu-P- Synthetase " Asp y Gin + HO anidophospho- N Fumarate - Adenyicsuccinate lyase Giu + PP, - ribosyl transferase r FGAM in 1N s N CPCCvoy NH F-5-P /-Ny AICAR , A HN - TP- AiR synthetase R5-P HC O- ADP P, - N-FTHF 3-5'-Phosphoroosylamine AICAR transformylase AP-gly N.y Sator,s. iridazole- THF - GAR synthetase Ribotice (AIR 9 ADP + P,- R-5-p HM N t -NH. | y FACAR f - e- N CPOC , CC AIF cartoxylase o2 N. R-5-P -, a? HOOC N - IMP cyclohydrolase -, CAIR H.O HO C- - ^ N GAR * R-5-p N y MP s'ss ----- A-5-P U.S. Patent Jul. 14, 1998 Sheet of 5 5,780,253 OPOC GAR A \ OH HO OH NO-FIHF RibOSe-5-P GAR transformylase THF 2 AiP N RP PP kinase 1 N AMP FGAR O of N R-5-P ATP+Gln-HO FGAM Synthetase PRP ADP+Glu-P, Gin -- H2O amidophospho Glu + PP, ribosyltransferase Y O.POCP NH AP AIR Synthetase HO OH B-5'-Phosphoribosylamine ADP + P. ATP+gly 5-aminoimidazole GAR synthetase Ribotide (AIR) ADP- P. HN NH ol. AIR Carboxylase OPOC N HO OH GAR FIG. 1A U.S. Patent Jul. 14, 1998 Sheet 2 of 5 5,780.253 HOOC N y CAR /NN HN R-5-P ATP + asp N SACAIR synthetase ADP + P. HOOC-rucooh N O N ) SACAR HN N R-5-P Fumarate Adenylosuccinate lyase O HN*" Ny ACAR H2N A 5-P No-FTHF AICAR transformylase THF O HN Ny FAICAR orn H2O IMP cyclohydrolase O N N tryS-SN ne FIG. 1C R-5-P U.S. Patent Jul. 14, 1998 Sheet 3 of 5 5,780.253 isRib-5-P e NA ) + H2O IMP Dehyd- NADH + H" rogenase Rib-5-P AdenvloSuCCinate MP Adenylo GLN + ATP + H2O succinate GMP synthase Fu - lyase GLU + AMP + PP, NH2 O AMP FIG. 2 U.S. Patent Jul. 14, 1998 Sheet 4 of 5 5,780.253 Control "... (-) - (-)- Probe Compound *() () ()(3)(3) (3) 5ul 1041 25 Lal 50Lil 100Lll 150L Columns l 2 3 4. 5 6 FIG. 3 U.S. Patent Jul. 14, 1998 Sheet S Of S 5,780.253 FIG. 4 5 780. 253 1 1. SCREENING METHOD FOR DETECTION OF FIG. 2 depicts the pathway for the conversion of IMP to HERBICDES AMP and GMP. FIG. 3 illustrates schematically the lethal concentration This is a CONTINUATION of application Ser. No. step of the claimed assay procedure. Row A is the control 08/434.826. filed on May 4, 1995 now abandoned. 5 and does not contain a probe compound. Row B contains 6 concentrations or doses of an aqueous solution of the probe BACKGROUND OF THE INVENTION compound (5, 10, 25, 50. 100 and 150 ul). In this figure the In recent years, a number of herbicides have been found lethal concentration is 50 ul. to inhibit enzymes in specific biosynthetic pathways, for FIG. 4 illustrates schematically the reversal step of the example glyphosate inhibits enzymes in the aromatic amino O claimed assay procedure. acid pathway and imidazolinones and sulfonylureas inhibit enzymes in the branched amino acid pathway. Rapid screen DETALED DESCRIPTION OF THE ing methods have been devised to identify potential herbi INVENTION cidal compounds which target specific enzymes or metabolic To assist in interpreting the means and scope of the pathways. Since typically a test or probe compound is 15 present invention, the following terms and abbreviations are determined to be herbicidal by spraying the compound on a intended to have the meaning described herein: whole plant or plant part or applying the compound to the ADSS=adenylosuccinate synthetase. soil prior to seedling emergence, with chemical effect deter AMP=adenosine monophosphate mined at a specific time interval after chemical application, ADP-adenosine diphosphate the screening methods utilizing the inhibition of enzymes in 20 AICAR=5-aminoimidazole-4-carboxamide ribotide a metabolic pathway provide an efficient and rapid method AICARP=5-aminoimidazole-4-carboxamide ribotide 5' for assessing the herbicidal properties of probe compounds. phosphate We have discovered that the herbicidal activity of the AIR-aminoimidazole-4-carboxamide-1-b-D-ribofuranosyl known compound hydantocidin and at least some of its 5-monophosphate derivatives is a result of their inhibition of AMP biosynthesis 25 AS=adenylosuccinate in the plant purine biosynthetic pathway. We have further ASL=adenylosuccinate lyase discovered a rapid means for screening potential herbicidal ATP-adenosine triphosphate compounds acting on the enzymes in the plant purine GAR=glycinamide ribotide biosynthetic pathway. GA:glycinamide 30 GDP=guanosine diphosphate SUMMARY OF THE INVENTION GMP=guanosine monophosphate This invention relates to novel screening methods for GTP-guanosine triphosphate identifying compounds that specifically inhibit a metabolic IMP-inosine monophosphate target site or pathway in plants. Enzymes which are specifi XMP-xanthosine monophosphate 35 NAP-H=5'-Phospho-N-acetyl-hydantocidin also known as cally targeted by the novel screening method include plant N-acetylphosphohydantocidin purine biosynthetic pathway enzymes and particularly PRPP-phosphoribosyl pyrophosphate enzymes that inhibit AMP and GMP biosynthesis. R5P-ribose-5-phosphate Therefore, one of the main objectives of the invention was The term "IMP biosynthesis” means the conversion of to develop a screening assay for identifying inhibitory RSP into IMP. “AMP biosynthesis” means the conversion of compounds of the plant purine biosynthetic pathway that IMP into AMP. Specifically the term "AMP biosynthetic could potentially act as herbicides. inhibitory effective amount" means an amount of a probe Accordingly, the present invention comprises a method of compound which causes a significant decrease in the ability identifying potential inhibitors of the plant purine biosyn of ADSS or ASL to convert the substrate. IMP into product. thetic pathway which are potential herbicides comprising 45 AMP in the presence of GTP and aspartate as measured by testing a probe compound, in a lethal concentration and quantified enzymatic activity as generally known to those reversal assay. This two-step procedure includes determin skilled in the art. ing the lethal concentration of the probe compound and "GMP biosynthesis" means the conversion of IMP into reversion of the inhibition caused by the probe compound at GMP Specifically the term “GMP biosynthetic inhibitory the lethal concentration in the presence of antidote com 50 effective amount” means an amount of a probe compound pounds described hereinbelow. The invention further relates which causes a significant decrease in the ability of IMP specifically to novel compounds which inhibit IMP, AMP dehydrogenase or GMP synthase to convert the substrate, and GMP biosynthesis, and specifically the target enzymes IMP into product, GMP in the presence of ATP and adenylosuccinate synthetase (ADSS), adenylosuccinate glutamine as measured by quantified enzymatic activity as lyase (ASL), IMP dehydrogenase or GMP synthase. 55 generally known to those skilled in the art. Another aspect of the present invention is a method for the A "probe compound" is a compound used in the methods control of undesirable plant growth which comprises apply described herein which potentially inhibits either directly or ing to a locus where control is desired a herbicidally indirectly one or more of the plant purine biosynthetic effective amount of an inhibitory compound identified pathway enzymes. Unless indicated otherwise, the term according to the method disclosed herein. "plant purine biosynthetic pathway enzyme" as used herein According to still another aspect, the invention is a refers to any enzyme which is involved in the purine herbicidal composition comprising an inhibitor compound biosynthetic pathway as depicted in FIGS.
Recommended publications
  • 35 Disorders of Purine and Pyrimidine Metabolism
    35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP).
    [Show full text]
  • Complete Genome of the Cellyloytic Thermophile Acidothermus Cellulolyticus 11B Provides Insights Into Its Ecophysiological and Evloutionary Adaptations
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Complete genome of the cellyloytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evloutionary adaptations Permalink https://escholarship.org/uc/item/5xg662d7 Author Barabote, Ravi D. Publication Date 2009-08-25 eScholarship.org Powered by the California Digital Library University of California Title: Complete genome of the cellyloytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations Author(s): R. Barabote1,†, G. Xie1, D. Leu2, P. Normand3, A. Necsulea4, V. Daubin4, C. Médigue5, W. Adney6, X. Xu2, A. Lapidus7, C. Detter1, P. Pujic3, D. Bruce1, C. Lavire3, J. Challacombe1, T. Brettin1 and Alison M. Berry2. Author Affiliations: 1 DOE Joint Genome Institute, Bioscience Division, Los Alamos National Laboratory, 2 Department of Plant Sciences, University of California, Davis, 3 Centre National de la Recherche Scientifique (CNRS), UMR5557, Écologie Microbienne, Université Lyon I, Villeurbanne, 4 Centre National de la Recherche Scientifique (CNRS), UMR5558, Laboratoire de Biométrie et Biologie Évolutive, Université Lyon I, Villeurbanne, 5 Centre National de la Recherche Scientifique (CNRS), UMR8030 and CEA/DSV/IG/Genoscope, Laboratoire de Génomique Comparative, 6 National Renewable Energy Laboratory 7 DOE Joint Genome Institute Date: 06/10/09 Funding: This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02- 05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. R. D. Barabote Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations.
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • Classical and Rational Approaches to Antifungal Drug Design
    Classical and rational approaches to antifungal drug design Jessica Louise Chitty BSc (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 School of Chemistry and Molecular Biosciences Institute of Molecular Biosciences Abstract The emergence of human immunodeficiency virus (HIV) in the 1980s has led to an increase in infections from previously rare pathogens. Many of these now cause widespread infection among individuals with compromised immune systems, not just limited to AIDS patients but also to those placed on immunosuppressive medication. The encapsulated yeast Cryptococcus neoformans causes widespread disease in the immunocompromised population, particularly in sub-Saharan Africa where it is a major cause of AIDS-related mortality due in part to limited resources and variable drug availability. Current treatment options are restricted to three out-dated antifungals amphotericin B, flucytosine and fluconazole; where possible they are used in combination as nephrotoxicity and resistance are contributing factors in the unacceptably high mortality rates. Alternative therapeutic agents are urgently required to improve survival rates and combat antifungal drug resistance. Two main routes of compound development can be taken: classical drug screening or rational drug design. Classical design requires groups of compounds to be screened against pathogens and those identified with high efficacy and low cytotoxicity are pursued. Rational drug design requires a detailed characterization of the proposed target; exploitable differences between the pathogen and human host are sought out as potential druggable targets. In this thesis both classical and rational methods have been investigated. A classical approach was taken to investigate a class of octapeptin compounds, produced as secondary metabolites by the soil dwelling bacterium, Bacillus circulans.
    [Show full text]
  • SUPPY Liglucosexlmtdh
    US 20100314248A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0314248 A1 Worden et al. (43) Pub. Date: Dec. 16, 2010 (54) RENEWABLE BOELECTRONIC INTERFACE Publication Classification FOR ELECTROBOCATALYTC REACTOR (51) Int. Cl. (76) Inventors: Robert M. Worden, Holt, MI (US); C25B II/06 (2006.01) Brian L. Hassler, Lake Orion, MI C25B II/2 (2006.01) (US); Lawrence T. Drzal, Okemos, GOIN 27/327 (2006.01) MI (US); Ilsoon Lee, Okemo s, MI BSD L/04 (2006.01) (US) C25B 9/00 (2006.01) (52) U.S. Cl. ............... 204/403.14; 204/290.11; 204/400; Correspondence Address: 204/290.07; 427/458; 204/252: 977/734; PRICE HENEVELD COOPER DEWITT & LIT 977/742 TON, LLP 695 KENMOOR, S.E., PO BOX 2567 (57) ABSTRACT GRAND RAPIDS, MI 495.01 (US) An inexpensive, easily renewable bioelectronic device useful for bioreactors, biosensors, and biofuel cells includes an elec (21) Appl. No.: 12/766,169 trically conductive carbon electrode and a bioelectronic inter face bonded to a surface of the electrically conductive carbon (22) Filed: Apr. 23, 2010 electrode, wherein the bioelectronic interface includes cata lytically active material that is electrostatically bound directly Related U.S. Application Data or indirectly to the electrically conductive carbon electrode to (60) Provisional application No. 61/172,337, filed on Apr. facilitate easy removal upon a change in pH, thereby allowing 24, 2009. easy regeneration of the bioelectronic interface. 7\ POWER 1 - SUPPY|- LIGLUCOSEXLMtDH?till pi 6.0 - esses&aaaas-exx-xx-xx-xx-xxxxixax-e- Patent Application Publication Dec. 16, 2010 Sheet 1 of 18 US 2010/0314248 A1 Potential (nV) Patent Application Publication Dec.
    [Show full text]
  • Nucleotide Metabolism Pathway: the Achilles' Heel for Bacterial Pathogens
    REVIEW ARTICLES Nucleotide metabolism pathway: the achilles’ heel for bacterial pathogens Sujata Kumari1,2,* and Prajna Tripathi1,3 1National Institute of Immunology, New Delhi 110 067, India 2Present address: Department of Zoology, Magadh Mahila College, Patna University, Patna 800 001, India 3Present address: Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110 062, India de novo pathway, the nucleotides are synthesized from Pathogens exploit their host to extract nutrients for their survival. They occupy a diverse range of host simple precursor molecules. In the salvage pathway, the niches during infection which offer variable nutrients preformed nucleobases or nucleosides which are present accessibility. To cause a successful infection a patho- in the cell or transported from external environmental gen must be able to acquire these nutrients from the milieu to the cell are utilized to form nucleotides. host as well as be able to synthesize the nutrients on its own, if required. Nucleotides are the essential me- tabolite for a pathogen and also affect the pathophysi- Purine biosynthesis pathway ology of infection. This article focuses on the role of nucleotide metabolism of pathogens during infection The purine biosynthesis pathway is universally conserved in a host. Nucleotide metabolism and disease pathoge- in living organisms (Figure 1). As an example, we here nesis are closely related in various pathogens. Nucleo- present the pathway derived from well-studied Gram- tides, purines and pyrimidines, are biosynthesized by positive bacteria Lactococcus lactis. In the de novo the de novo and salvage pathways. Whether the patho- pathway the purine nucleotides are synthesized from sim- gen will employ the de novo or salvage pathway dur- ple molecules such as phosphoribosyl pyrophosphate ing infection is dependent on various factors, like (PRPP), amino acids, CO2 and NH3 by a series of enzy- availability of nucleotides, energy condition and pres- matic reactions.
    [Show full text]
  • Immunological An0 Metabolic Reconstruction Following
    IMMUNOLOGICAL AN0 METABOLIC RECONSTRUCTION FOLLOWING--.. - ISOZYME SHIFT OF ADENYLOSUCCINATE SYNTHASE IN RATS SUCCESSFULL BONE MARROW TRANSPLANTATION FROM A HLA- AND HUMAN NEOPLASMS IDENTICAL SIBLING IN AN INAFANT WITH ADENOSINE DEAMI- 62 Tadashi Ikegami. Yutaka Natsumeda and Georqe Weber 59 NASE DEFICIENCY AND SEVERE COMBINED IMMUNODEFICIENCY Indiana University School of Medicine. Laboratory for Experimental Dncoloqy... Indianapolis. Indiana. U.S.A. Yukio Hyodo,Roichi Itoh*,Hiroko Kurozumi,Masaaki Ibe, Jun Oka*. The distribution of two isozymes of adenylosuccinate synthase Kanagawa Children's Medical Center,Divi sion of Infection and was measured in rat transplantable tumors. human tumors. and their Immunology,Yokohama,Japan. *The National Institute of Nutrition corresponding normal tissues. The two isozymes, the acidic and Division of Adult Nutrition,Tokyo,Japan. basic enzymes, were separated by DEAE cellulose column and the Adenosine deaminase(ADA) activity and immunological functions proportions of each fraction were quantitatively compared. In rat following successful1 bone marrow transplantation(BMT) was liver. the activity was distributed 47% in the passed fraction of evaluated for 3 years in a 3-year-old boy with ADA deficieny and basic enzyme and 53X in the adsorbed fraction of acidic enzyme. severe combined irmunodeficiency(SCID) who was diagnosed at the In hepatoma 3924A. however. 99% of activity was found in the ad- age of 1 month and recieved BMTs three times during the following sorbed fraction. Adenylosuccinate synthase in rat skeletal muscle 3 months from a HLA-identical brother.0n 12th day of posttrans- was entirely basic enzyme. whereas sarcoma consisted of 99% acidic plantation,ADA activities of lymphocytes and red cells,which were enzyme and 1% basic enzyme.
    [Show full text]
  • Insights Into the Role and Mechanism of the AAA+ Adaptor Clps
    Insights into the role and mechanism of the AAA+ adaptor ClpS by Jennifer Yuan Hou Sc.B. Biochemistry Brown University, 2002 SUBMITTED TO THE DEPARTMENT OF BIOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2009 © 2009 Jennifer Yuan Hou. All Rights Reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author:_______________________________________________________ Department of Biology May 22, 2009 Certified by:_____________________________________________________________ Tania A. Baker E. C. Whitehead Professor of Biology Thesis Supervisor Accepted by:_____________________________________________________________ Stephen P. Bell Professor of Biology Co-Chair, Graduate Committee 1 2 Insights into the role and mechanism of the AAA+ adaptor ClpS by Jennifer Yuan Hou Submitted to the Department of Biology on May 22, 2009 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology ABSTRACT Protein degradation is a vital process in cells for quality control and participation in regulatory pathways. Intracellular ATP-dependent proteases are responsible for regulated degradation and are highly controlled in their function, especially with respect to substrate selectivity. Adaptor proteins that can associate with the proteases add an additional layer of control to substrate selection. Thus, understanding the mechanism and role of adaptor proteins is a critical component to understanding how proteases choose their substrates. In this thesis, I examine the role of the intracellular protease ClpAP and its adaptor ClpS in Escherichia coli.
    [Show full text]
  • Annual Symposium of the Society for the Study of Inborn Errors of Metabolism Birmingham, UK, 4 – 7 September 2012
    J Inherit Metab Dis (2012) 35 (Suppl 1):S1–S182 DOI 10.1007/s10545-012-9512-z ABSTRACTS Annual Symposium of the Society for the Study of Inborn Errors of Metabolism Birmingham, UK, 4 – 7 September 2012 This supplement was not sponsored by outside commercial interests. It was funded entirely by the SSIEM. 01. Amino Acids and PKU O-002 NATURAL INHIBITORS OF CARNOSINASE (CN1) O-001 Peters V1 ,AdelmannK2 ,YardB2 , Klingbeil K1 ,SchmittCP1 , Zschocke J3 3-HYDROXYISOBUTYRIC ACID DEHYDROGENASE DEFICIENCY: 1Zentrum für Kinder- und Jugendmedizin de, Heidelberg, Germany IDENTIFICATION OF A NEW INBORN ERROR OF VALINE 2Universitätsklinik, Mannheim, Germany METABOLISM 3Humangenetik, Innsbruck, Austria Wanders RJA1 , Ruiter JPN1 , Loupatty F.1 , Ferdinandusse S.1 , Waterham HR1 , Pasquini E.1 Background: Carnosinase degrades histidine-containing dipeptides 1Div Metab Dis, Univ Child Hosp, Amsterdam, Netherlands such as carnosine and anserine which are known to have several protective functions, especially as antioxidant agents. We recently Background, Objectives: Until now only few patients with an established showed that low carnosinase activities protect from diabetic nephrop- defect in the valine degradation pathway have been identified. Known athy, probably due to higher histidine-dipeptide concentrations. We deficiencies include 3-hydroxyisobutyryl-CoA hydrolase deficiency and now characterized the carnosinase metabolism in children and identi- methylmalonic semialdehyde dehydrogenase (MMSADH) deficiency. On fied natural inhibitors of carnosinase. the other hand many patients with 3-hydroxyisobutyric aciduria have been Results: Whereas serum carnosinase activity and protein concentrations described with a presumed defect in the valine degradation pathway. To correlate in adults, children have lower carnosinase activity although pro- identify the enzymatic and molecular defect in a group of patients with 3- tein concentrations were within the same level as for adults.
    [Show full text]
  • Comparing Meiothermus Ruber and Myxococcus Xanthus in the Purine Metabolism Pathway Linnea J
    Augustana College Augustana Digital Commons Meiothermus ruber Genome Analysis Project Biology 2-2016 Comparing Meiothermus ruber and Myxococcus xanthus in the Purine Metabolism Pathway Linnea J. Ritchie Augustana College - Rock Island Dr. Lori Scott Augustana College, Rock Island Illinois Follow this and additional works at: http://digitalcommons.augustana.edu/biolmruber Part of the Bioinformatics Commons, Biology Commons, Genetics Commons, Genomics Commons, Molecular Biology Commons, and the Molecular Genetics Commons Recommended Citation Ritchie, Linnea J. and Scott, Dr. Lori. "Comparing Meiothermus ruber and Myxococcus xanthus in the Purine Metabolism Pathway" (2016). Meiothermus ruber Genome Analysis Project. http://digitalcommons.augustana.edu/biolmruber/7 This Student Paper is brought to you for free and open access by the Biology at Augustana Digital Commons. It has been accepted for inclusion in Meiothermus ruber Genome Analysis Project by an authorized administrator of Augustana Digital Commons. For more information, please contact [email protected]. Comparing Meiothermus ruber and Myxococcus xanthus in the Purine Metabolism Pathway Linnea Ritchie Bio-375 Molecular Genetics (Dr. Lori Scott) Background The purine metabolism pathway is an essential part of an organism’s ability to make nucleotides. It is through this pathway that adenine and guanine are made, these molecules later become the bases of nucleotides, which are a key component in DNA (Westby 1974). There are two different routes for purine synthesis: the de novo pathway and the salvage pathway (Berg 2002). During the de novo pathway the purine molecules are essentially built from scratch. While this route uses comparatively simple molecules and amino acids there is a high energy requirement which is why at times the salvage pathway is used instead.
    [Show full text]
  • PURINE SALVAGE in HELICOBACTER PYLORI by ERICA FRANCESCA MILLER (Under the Direction of Robert J. Maier) ABSTRACT Purines Are Es
    PURINE SALVAGE IN HELICOBACTER PYLORI by ERICA FRANCESCA MILLER (Under the Direction of Robert J. Maier) ABSTRACT Purines are essential for all living cells. This fact is reflected in the high degree of pathway conservation for purine metabolism across all domains of life. The availability of purines within a mammalian host is thought to be a limiting factor for infection, as demonstrated by the importance of purine synthesis and salvage genes among many bacterial pathogens. Helicobacter pylori, a primary causative agent of peptic ulcers and gastric cancers, colonizes a niche that is otherwise uninhabited by bacteria: the surface of the human gastric epithelium. Despite many studies over the past 30 years that have addressed virulence mechanisms such as acid resistance, little knowledge exists regarding this organism’s purine metabolism. To fill this gap in knowledge, we asked whether H. pylori can carry out de novo purine biosynthesis, and whether its purine salvage network is complete. Based on genomic data from the fully sequenced H. pylori genomes, we combined mutant analysis with physiological studies to determine that H. pylori, by necessity, must acquire purines from its human host. Furthermore, we found the purine salvage network to be complete, allowing this organism to use any single purine nucleobase or nucleoside for growth. In the process of elucidating these pathways, we discovered a nucleoside transporter in H. pylori that, in contrast to the biochemically- characterized homolog NupC, aids in uptake of purine rather than pyrimidine nucleosides into the cell. Lastly, we investigated an apparent pathway gap in the genome annotation—that of adenine degradation—and in doing so uncovered a new family of adenosine deaminase that lacks sequence homology with all other adenosine deaminases studied to date.
    [Show full text]
  • Developmental Disorder Associated with Increased Cellular Nucleotidase Activity (Purine-Pyrimidine Metabolism͞uridine͞brain Diseases)
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 11601–11606, October 1997 Medical Sciences Developmental disorder associated with increased cellular nucleotidase activity (purine-pyrimidine metabolismyuridineybrain diseases) THEODORE PAGE*†,ALICE YU‡,JOHN FONTANESI‡, AND WILLIAM L. NYHAN‡ Departments of *Neurosciences and ‡Pediatrics, University of California at San Diego, La Jolla, CA 92093 Communicated by J. Edwin Seegmiller, University of California at San Diego, La Jolla, CA, August 7, 1997 (received for review June 26, 1997) ABSTRACT Four unrelated patients are described with a represent defects of purine metabolism, although no specific syndrome that included developmental delay, seizures, ataxia, enzyme abnormality has been identified in these cases (6). In recurrent infections, severe language deficit, and an unusual none of these disorders has it been possible to delineate the behavioral phenotype characterized by hyperactivity, short mechanism through which the enzyme deficiency produces the attention span, and poor social interaction. These manifesta- neurological or behavioral abnormalities. Therapeutic strate- tions appeared within the first few years of life. Each patient gies designed to treat the behavioral and neurological abnor- displayed abnormalities on EEG. No unusual metabolites were malities of these disorders by replacing the supposed deficient found in plasma or urine, and metabolic testing was normal metabolites have not been successful in any case. except for persistent hypouricosuria. Investigation of purine This report describes four unrelated patients in whom and pyrimidine metabolism in cultured fibroblasts derived developmental delay, seizures, ataxia, recurrent infections, from these patients showed normal incorporation of purine speech deficit, and an unusual behavioral phenotype were bases into nucleotides but decreased incorporation of uridine.
    [Show full text]