Supplementary Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
C8cc08685k1.Pdf
Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018 Supporting Information Minimalist Linkers Suitable for Irreversible Inhibitors in Simultaneous Proteome Profiling, Live-Cell Imaging and Drug Screening Cuiping Guo,Yu Chang, Xin Wang, Chengqian Zhang, Piliang Hao*, Ke Ding and Zhengqiu Li* School of Pharmacy, Jinan University, Guangzhou, China 510632 *Corresponding author ([email protected]) 1. General Information All chemicals were purchased from commercial vendors and used without further purification, unless indicated otherwise. All reactions requiring anhydrous conditions were carried out under argon or nitrogen atmosphere using oven-dried glassware. AR-grade solvents were used for all reactions. Reaction progress was monitored by TLC on pre-coated silica plates (Merck 60 F254 nm, 0.25 µm) and spots were visualized by UV, iodine or other suitable stains. Flash column chromatography was carried out using silica gel (Qingdao Ocean). All NMR spectra (1H-NMR, 13C-NMR) were recorded on Bruker 300 MHz/400 MHz NMR spectrometers. Chemical shifts were reported in parts per million (ppm) referenced with respect to appropriate internal standards or residual solvent peaks (CDCl3 = 7.26 ppm, DMSO-d6 = 2.50 ppm). The following abbreviations were used in reporting spectra, br s (broad singlet), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets). Mass spectra were obtained on Agilent LC-ESI-MS system. All analytical HPLC were carried out on Agilent system. Water with 0.1% TFA and acetonitrile with 0.1% TFA were used as eluents and the flow rate was 0.5 mL/min. -
The Rise and Fall of the Bovine Corpus Luteum
University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Spring 5-6-2017 The Rise and Fall of the Bovine Corpus Luteum Heather Talbott University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Biochemistry Commons, Molecular Biology Commons, and the Obstetrics and Gynecology Commons Recommended Citation Talbott, Heather, "The Rise and Fall of the Bovine Corpus Luteum" (2017). Theses & Dissertations. 207. https://digitalcommons.unmc.edu/etd/207 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. THE RISE AND FALL OF THE BOVINE CORPUS LUTEUM by Heather Talbott A DISSERTATION Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biochemistry and Molecular Biology Graduate Program Under the Supervision of Professor John S. Davis University of Nebraska Medical Center Omaha, Nebraska May, 2017 Supervisory Committee: Carol A. Casey, Ph.D. Andrea S. Cupp, Ph.D. Parmender P. Mehta, Ph.D. Justin L. Mott, Ph.D. i ACKNOWLEDGEMENTS This dissertation was supported by the Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture (NIFA) Pre-doctoral award; University of Nebraska Medical Center Graduate Student Assistantship; University of Nebraska Medical Center Exceptional Incoming Graduate Student Award; the VA Nebraska-Western Iowa Health Care System Department of Veterans Affairs; and The Olson Center for Women’s Health, Department of Obstetrics and Gynecology, Nebraska Medical Center. -
Reprogramming of Trna Modifications Controls the Oxidative Stress Response by Codon-Biased Translation of Proteins
Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Chan, Clement T.Y. et al. “Reprogramming of tRNA Modifications Controls the Oxidative Stress Response by Codon-biased Translation of Proteins.” Nature Communications 3 (2012): 937. As Published http://dx.doi.org/10.1038/ncomms1938 Publisher Nature Publishing Group Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/76775 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins Clement T.Y. Chan,1,2 Yan Ling Joy Pang,1 Wenjun Deng,1 I. Ramesh Babu,1 Madhu Dyavaiah,3 Thomas J. Begley3 and Peter C. Dedon1,4* 1Department of Biological Engineering, 2Department of Chemistry and 4Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; 3College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, NY 12203 * Corresponding author: PCD, Department of Biological Engineering, NE47-277, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; tel 617-253-8017; fax 617-324-7554; email [email protected] 2 ABSTRACT Selective translation of survival proteins is an important facet of cellular stress response. We recently demonstrated that this translational control involves a stress-specific reprogramming of modified ribonucleosides in tRNA. -
United States Patent 19 11 Patent Number: 5,780,253 Subramanian Et Al
III USOO5780253A United States Patent 19 11 Patent Number: 5,780,253 Subramanian et al. (45) Date of Patent: Jul. 14, 1998 54 SCREENING METHOD FOR DETECTION OF 4.433.999 2/1984 Hyzak ....................................... 71.03 HERBCDES 4.6–552 2/1987 Anoti et al. if O3. 4,802,912 2/1989 Baker ........................................ 7/103 Inventors: Wenkiteswaran Subramanian Danville: Anne G. Toschi. Burlingame. OTHERTHER PPUBLICATION CATIONS both of Calif. Heim et al. Pesticide Biochem & Physiol; vol. 53, pp. 138-145 (1995). 73) Assignee: Sandoz Ltd., Basel. Switzerland Hatch. MD.: Phytochem. vol. 6... pp. 115 to 119, (1967). Haworth et al. J. Agric. Food Chem, vol. 38, pp. 1271-1273. 21 Appl. No.:752.990 1990. Nishimura et al: Phytochem: vol. 34, pp. 613-615. (1993). 22 Filed: Nov. 21, 1996 Primary Examiner-Louise N. Leary Related U.S. Application Data Attorney, Agent, or Firm-Lynn Marcus-Wyner: Michael P. Morris 63 Continuation of Ser. No. 434.826, May 4, 1995, abandoned. 6 57 ABSTRACT 51 Int. Cl. ............................... C12Q 1/48: C12Q 1/32: C12Q 1/37; C12O 1/00 This invention relates to novel screening methods for iden 52 U.S. Cl. ................................. 435/15:435/18: 435/26: tifying compounds that specifically inhibit a biosynthetic 435/23: 435/4, 536/23.6:536/23.2:536/24.3 pathway in plants. Enzymes which are specifically affected 536/26.11:536/26.12:536/26.13 by the novel screening method include plant purine biosyn 58 Field of Search .................................. 435/15, 8, 26, thetic pathway enzymes and particularly the enzymes 435/23 4: 536/23.6, 23.2, 24.3, 26.1, involved in the conversion of inosine monophosphate to 26.12, 26.13 adenosine monophosphate and inosine monophosphate to guanosine monophosphate. -
Allele-Specific Expression of Ribosomal Protein Genes in Interspecific Hybrid Catfish
Allele-specific Expression of Ribosomal Protein Genes in Interspecific Hybrid Catfish by Ailu Chen A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 1, 2015 Keywords: catfish, interspecific hybrids, allele-specific expression, ribosomal protein Copyright 2015 by Ailu Chen Approved by Zhanjiang Liu, Chair, Professor, School of Fisheries, Aquaculture and Aquatic Sciences Nannan Liu, Professor, Entomology and Plant Pathology Eric Peatman, Associate Professor, School of Fisheries, Aquaculture and Aquatic Sciences Aaron M. Rashotte, Associate Professor, Biological Sciences Abstract Interspecific hybridization results in a vast reservoir of allelic variations, which may potentially contribute to phenotypical enhancement in the hybrids. Whether the allelic variations are related to the downstream phenotypic differences of interspecific hybrid is still an open question. The recently developed genome-wide allele-specific approaches that harness high- throughput sequencing technology allow direct quantification of allelic variations and gene expression patterns. In this work, I investigated allele-specific expression (ASE) pattern using RNA-Seq datasets generated from interspecific catfish hybrids. The objective of the study is to determine the ASE genes and pathways in which they are involved. Specifically, my study investigated ASE-SNPs, ASE-genes, parent-of-origins of ASE allele and how ASE would possibly contribute to heterosis. My data showed that ASE was operating in the interspecific catfish system. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5,420 (8.2%) and 13,390 (7.5%) SNPs were identified as significant ASE-SNPs, respectively. -
Supplementary Materials
1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No. -
Swissprot Genetrail Acc. No. ID Exp1 Exp2 Exp1 Exp2 Exp1 Exp2
Supplementary TABLE 1. Quantitative MS-based proteomic results from the macrophage cytosolic proteomes for both biological replicates separately Human proteins HSV-1 dLeu d3-4 Protein name SwissProt Genetrail N % Seq Cov Pept(95%) Fold change P-value Fold change P-value Fold change P-value Acc. No. ID Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 10 kDa heat shock protein, mitochondrial P61604 HSPE1 121 108 69,6 65,7 9 18 1,24 1,11 0,014 0,141 1,12 1,16 0,127 0,054 1,07 0,96 0,290 0,529 14-3-3 protein beta/alpha P31946 YWHAB 350 145 37 52,9 13 16 1,10 0,97 0,409 0,743 1,12 0,72 0,651 0,184 1,04 0,72 0,730 0,101 14-3-3 protein epsilon P62258 YWHAE 661 524 16,5 24,7 5 8 1,43 1,00 0,996 0,60 0,78 0,238 0,84 0,87 0,765 14-3-3 protein eta Q04917 YWHAH 572 376 36,2 34,6 9 10 0,77 1,00 1,30 14-3-3 protein gamma P61981 YWHAG 135 358 38,1 35,2 13 10 1,93 1,21 0,170 1,10 0,44 0,515 1,88 1,17 0,099 14-3-3 protein theta P27348 YWHAQ 659 596 20,4 43,7 7 8 1,12 0,72 1,16 14-3-3 protein zeta/delta P63104 YWHAZ 59 36 45,3 54,7 15 19 1,48 1,33 0,004 0,019 1,22 0,95 0,265 0,570 1,08 1,10 0,315 0,416 182 kDa tankyrase-1-binding protein Q9C0C2 TNKS1BP1 517 2,7 2 0,89 0,874 1,18 0,345 1,06 0,651 1-phosphatidylinositol 4,5-bisphosphate phosphodiesteraseQ00722 beta-2 PLCB2 291 9,1 3 0,67 0,290 0,65 0,046 0,94 0,793 2,4-dienoyl-CoA reductase, mitochondrial Q16698 DECR1 335 14,3 4 0,76 0,284 0,97 0,841 0,91 0,415 26S proteasome non-ATPase regulatory subunit 11 O00231 PSMD11 375 18,7 3 1,43 1,19 0,93 26S proteasome non-ATPase -
Complete Genome of the Cellyloytic Thermophile Acidothermus Cellulolyticus 11B Provides Insights Into Its Ecophysiological and Evloutionary Adaptations
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Complete genome of the cellyloytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evloutionary adaptations Permalink https://escholarship.org/uc/item/5xg662d7 Author Barabote, Ravi D. Publication Date 2009-08-25 eScholarship.org Powered by the California Digital Library University of California Title: Complete genome of the cellyloytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations Author(s): R. Barabote1,†, G. Xie1, D. Leu2, P. Normand3, A. Necsulea4, V. Daubin4, C. Médigue5, W. Adney6, X. Xu2, A. Lapidus7, C. Detter1, P. Pujic3, D. Bruce1, C. Lavire3, J. Challacombe1, T. Brettin1 and Alison M. Berry2. Author Affiliations: 1 DOE Joint Genome Institute, Bioscience Division, Los Alamos National Laboratory, 2 Department of Plant Sciences, University of California, Davis, 3 Centre National de la Recherche Scientifique (CNRS), UMR5557, Écologie Microbienne, Université Lyon I, Villeurbanne, 4 Centre National de la Recherche Scientifique (CNRS), UMR5558, Laboratoire de Biométrie et Biologie Évolutive, Université Lyon I, Villeurbanne, 5 Centre National de la Recherche Scientifique (CNRS), UMR8030 and CEA/DSV/IG/Genoscope, Laboratoire de Génomique Comparative, 6 National Renewable Energy Laboratory 7 DOE Joint Genome Institute Date: 06/10/09 Funding: This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02- 05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. R. D. Barabote Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. -
Immunoprecipitation and Mass Spectrometry Defines an Extensive
BRES : 44759 Model7 pp: À 1221ðcol:fig: : NILÞ brain research ] ( ]]]]) ]]]– ]]] Available online at www.sciencedirect.com 121 122 123 124 125 126 www.elsevier.com/locate/brainres 127 128 129 Review 130 131 fi 132 Immunoprecipitation and mass spectrometry de nes 133 – 134 an extensive RBM45 protein protein interaction 135 Q2 136 network 137 138 a a,b a a c 139 Yang Li , Mahlon Collins , Jiyan An , Rachel Geiser , Tony Tegeler , c c c a,b,n 140 Q1 Kristine Tsantilas , Krystine Garcia , Patrick Pirrotte , Robert Bowser 141 aDivisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 142 Phoenix, AZ 85013, USA 143 bUniversity of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA 144 cCenter for Proteomics, TGen (Translational Genomics Research Institute), Phoenix, AZ 85004, USA 145 146 147 article info abstract 148 149 Article history: The pathological accumulation of RNA-binding proteins (RBPs) within inclusion bodies is a 150 Received 30 January 2016 hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration 151 Received in revised form (FTLD). RBP aggregation results in both toxic gain and loss of normal function. Determining 152 25 February 2016 the protein binding partners and normal functions of disease-associated RBPs is necessary 153 Accepted 28 February 2016 to fully understand molecular mechanisms of RBPs in disease. Herein, we characterized 154 the protein–protein interactions (PPIs) of RBM45, a RBP that localizes to inclusions in ALS/ 155 – fi Keywords: FTLD. Using immunoprecipitation coupled to mass spectrometry (IP MS), we identi ed 132 156 fi RBM45 proteins that speci cally interact with RBM45 within HEK293 cells. -
Yeast Genome Gazetteer P35-65
gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal -
Classical and Rational Approaches to Antifungal Drug Design
Classical and rational approaches to antifungal drug design Jessica Louise Chitty BSc (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 School of Chemistry and Molecular Biosciences Institute of Molecular Biosciences Abstract The emergence of human immunodeficiency virus (HIV) in the 1980s has led to an increase in infections from previously rare pathogens. Many of these now cause widespread infection among individuals with compromised immune systems, not just limited to AIDS patients but also to those placed on immunosuppressive medication. The encapsulated yeast Cryptococcus neoformans causes widespread disease in the immunocompromised population, particularly in sub-Saharan Africa where it is a major cause of AIDS-related mortality due in part to limited resources and variable drug availability. Current treatment options are restricted to three out-dated antifungals amphotericin B, flucytosine and fluconazole; where possible they are used in combination as nephrotoxicity and resistance are contributing factors in the unacceptably high mortality rates. Alternative therapeutic agents are urgently required to improve survival rates and combat antifungal drug resistance. Two main routes of compound development can be taken: classical drug screening or rational drug design. Classical design requires groups of compounds to be screened against pathogens and those identified with high efficacy and low cytotoxicity are pursued. Rational drug design requires a detailed characterization of the proposed target; exploitable differences between the pathogen and human host are sought out as potential druggable targets. In this thesis both classical and rational methods have been investigated. A classical approach was taken to investigate a class of octapeptin compounds, produced as secondary metabolites by the soil dwelling bacterium, Bacillus circulans. -
SUPPY Liglucosexlmtdh
US 20100314248A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0314248 A1 Worden et al. (43) Pub. Date: Dec. 16, 2010 (54) RENEWABLE BOELECTRONIC INTERFACE Publication Classification FOR ELECTROBOCATALYTC REACTOR (51) Int. Cl. (76) Inventors: Robert M. Worden, Holt, MI (US); C25B II/06 (2006.01) Brian L. Hassler, Lake Orion, MI C25B II/2 (2006.01) (US); Lawrence T. Drzal, Okemos, GOIN 27/327 (2006.01) MI (US); Ilsoon Lee, Okemo s, MI BSD L/04 (2006.01) (US) C25B 9/00 (2006.01) (52) U.S. Cl. ............... 204/403.14; 204/290.11; 204/400; Correspondence Address: 204/290.07; 427/458; 204/252: 977/734; PRICE HENEVELD COOPER DEWITT & LIT 977/742 TON, LLP 695 KENMOOR, S.E., PO BOX 2567 (57) ABSTRACT GRAND RAPIDS, MI 495.01 (US) An inexpensive, easily renewable bioelectronic device useful for bioreactors, biosensors, and biofuel cells includes an elec (21) Appl. No.: 12/766,169 trically conductive carbon electrode and a bioelectronic inter face bonded to a surface of the electrically conductive carbon (22) Filed: Apr. 23, 2010 electrode, wherein the bioelectronic interface includes cata lytically active material that is electrostatically bound directly Related U.S. Application Data or indirectly to the electrically conductive carbon electrode to (60) Provisional application No. 61/172,337, filed on Apr. facilitate easy removal upon a change in pH, thereby allowing 24, 2009. easy regeneration of the bioelectronic interface. 7\ POWER 1 - SUPPY|- LIGLUCOSEXLMtDH?till pi 6.0 - esses&aaaas-exx-xx-xx-xx-xxxxixax-e- Patent Application Publication Dec. 16, 2010 Sheet 1 of 18 US 2010/0314248 A1 Potential (nV) Patent Application Publication Dec.