The 25 Years of the Microprocessor

Total Page:16

File Type:pdf, Size:1020Kb

The 25 Years of the Microprocessor .. _--_._ .... _-------------• Artifacts for the exhibit: The 25 years of the Microprocessor Artifact To send Taken Digitor x MC 68020 die shot x MOS Technology die shot x Apple add x RCA 1800 manual x RCA 1802 die shot x. Speak and spell x TI 9900 die shot x TI9900 chip x TI 0100 and 1000 manuals x DEC LSI 11 manual x Data General MicroNOVA manual x National semi conductor IMP doc x Intel 8080-MCS 8 manual x Intel data catalog x Intel MCS 4 manual x Intel MCS 86 prototype kit x Intel 8080 chip " x Altair manual x Intel 8008 die shot x Intel 8080 die shot x Intel 268, 368, 468 doc x Intel pentium plot x Intel 8080 rubylith x Motorola MC 68000 manual x: Motorola MC 68000 data sheet x Motorola MC 6800 dire shot x IBM RISC 1 die shot x Captain Zilog x Z 80 Product specifications x Z80 die shot x Z 80 contact mask x Sun 2 CPU + other boards x Sun 3 CPU x MIPS R2000 wafer x TI Super Sparc x AMD K5 wafer x AMD K 5 projection screen x PDP 8/E omnibus x Artifact To send Taken Adidas micropacer shoes x Playskool Play & Learn x Palm pilot x Paperweights ??? x RCA Cosmac x Maria 1702B graphics processor die shoe x Crisp die shot x Genealogy of Silicon Valley poster x DEC VAX 11/785 processor board x Pile of documents: all to send Microchess Osborne 16-bit microprocessor handbook Data General press release (new computers) Data General press release (high- performance MP) Data General microNOV A product brief Intel 8080 product specification Interface Vol. 1, issue 1 (Dec. 75) Mostek 8-bit microprocessor M6800 data sheet National-PACE data sheet National SC/MP data sheet Gary Boone summary of TMS 9900 Intel 8008 central processing unit doc Kim 1 add MOS MCS 6501 and MCS 6505 doc Intel MCS 4 users manual MCS 68020 User's manual Intel i486 product briefs Intel 386 family doc Intel 386 family (other doc) Intel i286 presentation The 8080 programmer's pocket guide Fairchild optimos DEC VAX add Data general MicroNOVA presentation The MicroNOVA design story Data general MicroNOVA product brief Data general MicroNOVA technical reference Data general MicroNOVA user's manual Data general- MicroNOVA board computers Data general MicroNOVA add DEC memo DEC LSI 11 add B Artifact To send Taken TCM report : catalog of personal computers .. Intel data catalog Datapoint equipment catalog Datapoint 2200 systems book MOS Technology MCS650X instruction Fairchild F8 user's manual Popular electronics magazine DEC LSI 11 processor handbook MITS Altair assembly manual MITS Altair presentation TI Total microprocessorr capability TI TMS 1000 series TI TMS 1000 series data manual TI TMS 0100 series RCA 1800 user manual RCA 1800 presentation RCA 1800 add National IMP-16L Product description National IMP-8c/200 Product description National I MP-00Al520 data sheet National microprocessor group report Motorola MC 68010 advance information RCA 1800 instructions for RCA Cosmac Motorola MC 68000 User's manual NB. Artfiacts I forgot to list, and which I took Pentium processor Paperweights : MIPS R200 + R2010 MIPS May 6, 1986 MIPS December 26, 1985 First IPU chip - UCS1 Supercomputer Symblic processing using RISCs Apo"o Series 10000 (1985-1988) .
Recommended publications
  • Floating-Point Package for Intel 8008 and 8080 Microprocessors
    UCRL-51940 FLOATING-POINT PACKAGE FOR INTEL 8008 AND 8080 MICROPROCESSORS Michael D. Maples October 24, 1975 Prepared for U.S. Energy Research& Development Administration under contract No. W-7405-Eng-48 I_AV~=IENCE I_IVEFIMORE I.ABOFIATOFIY University ol Calilomia ~ Livermore ~ NOTICE .sponsored by tht: United $~ates G~ven~menl.Neilhe~ the United States nor the United ~tates I’:n,~rgy of their employees,IIOr lilly of their eorltl’ilctclrs~ warranty~ express t~r implied, or asstltlleS ~t]y legld liability or responsihilit y fnr the accuracy, apparatus, product or ])rc)eess disclosed, represents that its rise would IIt~l illl’r liege privlttely-owned rights." Printed in the United States of America Avai.] able from National Technical. information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22151 Price: Printed Copy $ *; Microfiche $2.25 NTIS ""Pages _Sellin_.g Price 1-50 $4.00 51-150 $5.45 151-325 $7.60 326-500 $10.60 501.-1000 $13.60 DISCI.AlMBR This documeut was prepared as an account of work sponsored by an agency of the United States Gnvernment.Neither the United States Governmentnor the University of California nor any of their employees,makes any warranty, express or implied, or assumesany legal liability or responsibility for the accuracy, complete.aess, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use wouldnot infrioge privately ownedrights. Refarenceherein to any specific commercialproduct, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,or favoring by the United States Govermnentor the University of California.
    [Show full text]
  • Computer Organization and Architecture Designing for Performance Ninth Edition
    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION William Stallings Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editorial Director: Marcia Horton Designer: Bruce Kenselaar Executive Editor: Tracy Dunkelberger Manager, Visual Research: Karen Sanatar Associate Editor: Carole Snyder Manager, Rights and Permissions: Mike Joyce Director of Marketing: Patrice Jones Text Permission Coordinator: Jen Roach Marketing Manager: Yez Alayan Cover Art: Charles Bowman/Robert Harding Marketing Coordinator: Kathryn Ferranti Lead Media Project Manager: Daniel Sandin Marketing Assistant: Emma Snider Full-Service Project Management: Shiny Rajesh/ Director of Production: Vince O’Brien Integra Software Services Pvt. Ltd. Managing Editor: Jeff Holcomb Composition: Integra Software Services Pvt. Ltd. Production Project Manager: Kayla Smith-Tarbox Printer/Binder: Edward Brothers Production Editor: Pat Brown Cover Printer: Lehigh-Phoenix Color/Hagerstown Manufacturing Buyer: Pat Brown Text Font: Times Ten-Roman Creative Director: Jayne Conte Credits: Figure 2.14: reprinted with permission from The Computer Language Company, Inc. Figure 17.10: Buyya, Rajkumar, High-Performance Cluster Computing: Architectures and Systems, Vol I, 1st edition, ©1999. Reprinted and Electronically reproduced by permission of Pearson Education, Inc. Upper Saddle River, New Jersey, Figure 17.11: Reprinted with permission from Ethernet Alliance. Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text. Copyright © 2013, 2010, 2006 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the United States of America.
    [Show full text]
  • Lecture 1: Course Introduction G Course Organization G Historical Overview G Computer Organization G Why the MC68000? G Why Assembly Language?
    Lecture 1: Course introduction g Course organization g Historical overview g Computer organization g Why the MC68000? g Why assembly language? Microprocessor-based System Design 1 Ricardo Gutierrez-Osuna Wright State University Course organization g Grading Instructor n Exams Ricardo Gutierrez-Osuna g 1 midterm and 1 final Office: 401 Russ n Homework Tel:775-5120 g 4 problem sets (not graded) [email protected] n Quizzes http://www.cs.wright.edu/~rgutier g Biweekly Office hours: TBA n Laboratories g 5 Labs Teaching Assistant g Grading scheme Mohammed Tabrez Office: 339 Russ [email protected] Weight (%) Office hours: TBA Quizes 20 Laboratory 40 Midterm 20 Final Exam 20 Microprocessor-based System Design 2 Ricardo Gutierrez-Osuna Wright State University Course outline g Module I: Programming (8 lectures) g MC68000 architecture (2) g Assembly language (5) n Instruction and addressing modes (2) n Program control (1) n Subroutines (2) g C language (1) g Module II: Peripherals (9) g Exception processing (1) g Devices (6) n PI/T timer (2) n PI/T parallel port (2) n DUART serial port (1) g Memory and I/O interface (1) g Address decoding (2) Microprocessor-based System Design 3 Ricardo Gutierrez-Osuna Wright State University Brief history of computers GENERATION FEATURES MILESTONES YEAR NOTES Asia Minor, Abacus 3000BC Only replaced by paper and pencil Mech., Blaise Pascal, Pascaline 1642 Decimal addition (8 decimal figs) Early machines Electro- Charles Babbage Differential Engine 1823 Steam powered (3000BC-1945) mech. Herman Hollerith,
    [Show full text]
  • The Birth, Evolution and Future of Microprocessor
    The Birth, Evolution and Future of Microprocessor Swetha Kogatam Computer Science Department San Jose State University San Jose, CA 95192 408-924-1000 [email protected] ABSTRACT timed sequence through the bus system to output devices such as The world's first microprocessor, the 4004, was co-developed by CRT Screens, networks, or printers. In some cases, the terms Busicom, a Japanese manufacturer of calculators, and Intel, a U.S. 'CPU' and 'microprocessor' are used interchangeably to denote the manufacturer of semiconductors. The basic architecture of 4004 same device. was developed in August 1969; a concrete plan for the 4004 The different ways in which microprocessors are categorized are: system was finalized in December 1969; and the first microprocessor was successfully developed in March 1971. a) CISC (Complex Instruction Set Computers) Microprocessors, which became the "technology to open up a new b) RISC (Reduced Instruction Set Computers) era," brought two outstanding impacts, "power of intelligence" and "power of computing". First, microprocessors opened up a new a) VLIW(Very Long Instruction Word Computers) "era of programming" through replacing with software, the b) Super scalar processors hardwired logic based on IC's of the former "era of logic". At the same time, microprocessors allowed young engineers access to "power of computing" for the creative development of personal 2. BIRTH OF THE MICROPROCESSOR computers and computer games, which in turn led to growth in the In 1970, Intel introduced the first dynamic RAM, which increased software industry, and paved the way to the development of high- IC memory by a factor of four.
    [Show full text]
  • Professor Won Woo Ro, School of Electrical and Electronic Engineering Yonsei University the Intel® 4004 Microprocessor, Introdu
    Professor Won Woo Ro, School of Electrical and Electronic Engineering Yonsei University The 1st Microprocessor The Intel® 4004 microprocessor, introduced in November 1971 An electronics revolution that changed our world. There were no customer‐ programmable microprocessors on the market before the 4004. It propelled software into the limelight as a key player in the world of digital electronics design. 4004 Microprocessor Display at New Intel Museum A Japanese calculator maker (Busicom) asked to design: A set of 12 custom logic chips for a line of programmable calculators. Marcian E. "Ted" Hoff Recognized the integrated circuit technology (of the day) had advanced enough to build a single chip, general purpose computer. Federico Faggin to turn Hoff's vision into a silicon reality. (In less than one year, Faggin and his team delivered the 4004, which was introduced in November, 1971.) The world's first microprocessor application was this Busicom calculator. (sold about 100,000 calculators.) Measuring 1/8 inch wide by 1/6 inch long, consisting of 2,300 transistors, Intel’s 4004 microprocessor had as much computing power as the first electronic computer, ENIAC. 2 inch 4004 and 12 inch Core™2 Duo wafer ENIAC, built in 1946, filled 3000‐cubic‐ feet of space and contained 18,000 vacuum tubes. The 4004 microprocessor could execute 60,000 operations per second Running frequency: 108 KHz Founders wanted to name their new company Moore Noyce. However the name sounds very much similar to “more noise”. "Only the paranoid survive". Moore received a B.S. degree in Chemistry from the University of California, Berkeley in 1950 and a Ph.D.
    [Show full text]
  • Computer Organization EECC 550 • Introduction: Modern Computer Design Levels, Components, Technology Trends, Register Transfer Week 1 Notation (RTN)
    Computer Organization EECC 550 • Introduction: Modern Computer Design Levels, Components, Technology Trends, Register Transfer Week 1 Notation (RTN). [Chapters 1, 2] • Instruction Set Architecture (ISA) Characteristics and Classifications: CISC Vs. RISC. [Chapter 2] Week 2 • MIPS: An Example RISC ISA. Syntax, Instruction Formats, Addressing Modes, Encoding & Examples. [Chapter 2] • Central Processor Unit (CPU) & Computer System Performance Measures. [Chapter 4] Week 3 • CPU Organization: Datapath & Control Unit Design. [Chapter 5] Week 4 – MIPS Single Cycle Datapath & Control Unit Design. – MIPS Multicycle Datapath and Finite State Machine Control Unit Design. Week 5 • Microprogrammed Control Unit Design. [Chapter 5] – Microprogramming Project Week 6 • Midterm Review and Midterm Exam Week 7 • CPU Pipelining. [Chapter 6] • The Memory Hierarchy: Cache Design & Performance. [Chapter 7] Week 8 • The Memory Hierarchy: Main & Virtual Memory. [Chapter 7] Week 9 • Input/Output Organization & System Performance Evaluation. [Chapter 8] Week 10 • Computer Arithmetic & ALU Design. [Chapter 3] If time permits. Week 11 • Final Exam. EECC550 - Shaaban #1 Lec # 1 Winter 2005 11-29-2005 Computing System History/Trends + Instruction Set Architecture (ISA) Fundamentals • Computing Element Choices: – Computing Element Programmability – Spatial vs. Temporal Computing – Main Processor Types/Applications • General Purpose Processor Generations • The Von Neumann Computer Model • CPU Organization (Design) • Recent Trends in Computer Design/performance • Hierarchy
    [Show full text]
  • Microprocessors in the 1970'S
    Part II 1970's -- The Altair/Apple Era. 3/1 3/2 Part II 1970’s -- The Altair/Apple era Figure 3.1: A graphical history of personal computers in the 1970’s, the MITS Altair and Apple Computer era. Microprocessors in the 1970’s 3/3 Figure 3.2: Andrew S. Grove, Robert N. Noyce and Gordon E. Moore. Figure 3.3: Marcian E. “Ted” Hoff. Photographs are courtesy of Intel Corporation. 3/4 Part II 1970’s -- The Altair/Apple era Figure 3.4: The Intel MCS-4 (Micro Computer System 4) basic system. Figure 3.5: A photomicrograph of the Intel 4004 microprocessor. Photographs are courtesy of Intel Corporation. Chapter 3 Microprocessors in the 1970's The creation of the transistor in 1947 and the development of the integrated circuit in 1958/59, is the technology that formed the basis for the microprocessor. Initially the technology only enabled a restricted number of components on a single chip. However this changed significantly in the following years. The technology evolved from Small Scale Integration (SSI) in the early 1960's to Medium Scale Integration (MSI) with a few hundred components in the mid 1960's. By the late 1960's LSI (Large Scale Integration) chips with thousands of components had occurred. This rapid increase in the number of components in an integrated circuit led to what became known as Moore’s Law. The concept of this law was described by Gordon Moore in an article entitled “Cramming More Components Onto Integrated Circuits” in the April 1965 issue of Electronics magazine [338].
    [Show full text]
  • Computer Organization EECC 550 • Introduction: Modern Computer Design Levels, Components, Technology Trends, Register Transfer Week 1 Notation (RTN)
    Computer Organization EECC 550 • Introduction: Modern Computer Design Levels, Components, Technology Trends, Register Transfer Week 1 Notation (RTN). [Chapters 1, 2] • Instruction Set Architecture (ISA) Characteristics and Classifications: CISC Vs. RISC. [Chapter 2] Week 2 • MIPS: An Example RISC ISA. Syntax, Instruction Formats, Addressing Modes, Encoding & Examples. [Chapter 2] • Central Processor Unit (CPU) & Computer System Performance Measures. [Chapter 1] 3rd Edition Ch. 4 Week 3 • CPU Organization: Datapath & Control Unit Design. [Chapter 4] 3rd Edition Ch. 5 Week 4 – MIPS Single Cycle Datapath & Control Unit Design. – MIPS Multicycle Datapath and Finite State Machine Control Unit Design. 3rd Edition Ch. 5 (not in 4th) Week 5 • Microprogrammed Control Unit Design. 3rd Edition Ch. 5 (not in 4th Edition) – Microprogramming Project Week 6 • Midterm Review and Midterm Exam Week 7 • CPU Pipelining. [Chapter 4] 3rd Edition Ch. 6 • The Memory Hierarchy: Cache Design & Performance. [Chapter 5] Week 8 3rd Edition Ch. 7 • The Memory Hierarchy: Main & Virtual Memory. [Chapter 5] Week 9 • Input/Output Organization & System Performance Evaluation. [Chapter 7] 3rd Edition Ch. 8 Week 10 • Computer Arithmetic & ALU Design. [Chapter 3] If time permits. Week 11 • Final Exam. EECC550 - Shaaban #1 Lec # 1 Winter 2011 11-29-2011 Computing System History/Trends + Instruction Set Architecture (ISA) Fundamentals • Computing Element Choices: – Computing Element Programmability – Spatial vs. Temporal Computing – Main Processor Types/Applications • General
    [Show full text]
  • Introduction to Cpu
    microprocessors and microcontrollers - sadri 1 INTRODUCTION TO CPU Mohammad Sadegh Sadri Session 2 Microprocessor Course Isfahan University of Technology Sep., Oct., 2010 microprocessors and microcontrollers - sadri 2 Agenda • Review of the first session • A tour of silicon world! • Basic definition of CPU • Von Neumann Architecture • Example: Basic ARM7 Architecture • A brief detailed explanation of ARM7 Architecture • Hardvard Architecture • Example: TMS320C25 DSP microprocessors and microcontrollers - sadri 3 Agenda (2) • History of CPUs • 4004 • TMS1000 • 8080 • Z80 • Am2901 • 8051 • PIC16 microprocessors and microcontrollers - sadri 4 Von Neumann Architecture • Same Memory • Program • Data • Single Bus microprocessors and microcontrollers - sadri 5 Sample : ARM7T CPU microprocessors and microcontrollers - sadri 6 Harvard Architecture • Separate memories for program and data microprocessors and microcontrollers - sadri 7 TMS320C25 DSP microprocessors and microcontrollers - sadri 8 Silicon Market Revenue Rank Rank Country of 2009/2008 Company (million Market share 2009 2008 origin changes $ USD) Intel 11 USA 32 410 -4.0% 14.1% Corporation Samsung 22 South Korea 17 496 +3.5% 7.6% Electronics Toshiba 33Semiconduc Japan 10 319 -6.9% 4.5% tors Texas 44 USA 9 617 -12.6% 4.2% Instruments STMicroelec 55 FranceItaly 8 510 -17.6% 3.7% tronics 68Qualcomm USA 6 409 -1.1% 2.8% 79Hynix South Korea 6 246 +3.7% 2.7% 812AMD USA 5 207 -4.6% 2.3% Renesas 96 Japan 5 153 -26.6% 2.2% Technology 10 7 Sony Japan 4 468 -35.7% 1.9% microprocessors and microcontrollers
    [Show full text]
  • Related Links History of the Radio Shack Computers
    Home Page Links Search About Buy/Sell! Timeline: Show Images Radio Shack TRS-80 Model II 1970 Datapoint 2200 Catalog: 26-4002 1971 Kenbak-1 Announced: May 1979 1972 HP-9830A Released: October 1979 Micral Price: $3450 (32K RAM) 1973 Scelbi-8H $3899 (64K RAM) 1974 Mark-8 CPU: Zilog Z-80A, 4 MHz MITS Altair 8800 RAM: 32K, 64K SwTPC 6800 Ports: Two serial ports 1975 Sphere One parallel port IMSAI 8080 IBM 5100 Display: Built-in 12" monochrome monitor MOS KIM-1 40 X 24 or 80 X 24 text. Sol-20 Storage: One 500K 8-inch built-in floppy drive. Hewlett-Packard 9825 External Expansion w/ 3 floppy bays. PolyMorphic OS: TRS-DOS, BASIC. 1976 Cromemco Z-1 Apple I The Digital Group Rockwell AIM 65 Compucolor 8001 ELF, SuperELF Wameco QM-1A Vector Graphic Vector-1 RCA COSMAC VIP Apple II 1977 Commodore PET Radio Shack TRS-80 Atari VCS (2600) NorthStar Horizon Heathkit H8 Intel MCS-85 Heathkit H11 Bally Home Library Computer Netronics ELF II IBM 5110 VideoBrain Family Computer The TRS-80 Model II microcomputer system, designed and manufactured by Radio Shack in Fort Worth, TX, was not intended to replace or obsolete Compucolor II the Model I, it was designed to take up where the Model I left off - a machine with increased capacity and speed in every respect, targeted directly at the Exidy Sorcerer small-business application market. Ohio Scientific 1978 Superboard II Synertek SYM-1 The Model II contains a single-sided full-height Shugart 8-inch floppy drive, which holds 500K bytes of data, compared to only 87K bytes on the 5-1/4 Interact Model One inch drives of the Model I.
    [Show full text]
  • The IA-32 Processor Architecture
    The IA-32 processor architecture Nicholas FitzRoy-Dale Document Revision: 1 Date: 2006/05/30 22:31:24 [email protected] http://www.cse.unsw.edu.au/∼disy/ Operating Systems and Distributed Systems Group School of Computer Science and Engineering The University of New South Wales UNSW Sydney 2052, Australia 1 Introduction This report discusses the most common instruction set architecture for desktop microprocessors: IA- 32. From a programmer’s perspective, IA-32 has not changed changed significantly since its introduc- tion with the Intel 80386 processor in 1985. IA-32 implementations, however, have undergone dra- matic changes in order to stay competitive with more modern architectures, particularly in the area of instruction-level parallelism. This report discusses the history of IA-32, and then the architectural features of recent IA-32 im- plementations, with particular regard to caching, multiprocessing, and instruction-level parallelism. An archtectural description is not particularly useful in isolation. Therefore, to provide context, each as- pect is compared with analogous features of other architectures, with particular attention paid to the RISC-style ARM processor and the VLIW-inspired Itanium. 2 A brief history of IA-32 IA-32 first appeared with the 80386 processor, but the architecture was by no means completely new. IA-32’s 8-bit predecessor first appeared in the Datapoint 2200 programmable terminal, released in 1971. Under contract to produce a single-chip version of the terminal’s multiple-chip TTL design, Intel’s im- plementation, the 8008, was not included in the terminal. Intel released the chip in 1972.
    [Show full text]
  • Proceedings of the 1974 Clinic on Library Applications of Data
    DAVID P. WAITE President, Information Dynamics Corporation Reading, Massachusetts The Minicomputer: Its Role in a Nationwide Bibliographic and Information Network In January 1974, Information Dynamics Corporation introduced to the library community a nationwide on-line bibliographic and information net- work called BIBNET. Installations have begun and operations are expected to go into full swing in the summer of 1974. Hardware and software systems being installed at user locations, as well as data entry points, employ mini- computers (see figure 1). This paper will describe the several applications of minicomputers in this large-scale computing network. When BIBNET was first conceived, the decision was made to use minicomputers in order to meet the multipurpose design objectives of a far-reaching nationwide library and information support service. The ultimate objective was not simply the development of a new on-line cataloging system, but the design of a complete service system that would be able to meet successfully future developments in the library community. The network is being established to provide libraries with on-line access to the national data base of machine-readable cataloging records, to provide access to information service modules and for data processing where machine-readable records are available to carry out a number of technical processing operations that in the past have been performed by manual means. Before describing the several system design requirements, it is important to review the basic supporting role and service objectives of the overall bibliographic and information network program. 136 NATIONWIDE BIBLIOGRAPHIC NETWORK 137 This diagram depicts the capabilities of each BIBNET user's terminal regardless of location on North American continent.
    [Show full text]