Molecular Mechanisms of Progesterone Withdrawal in Human Uterine Smooth Muscle Cells Kaiyu

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Mechanisms of Progesterone Withdrawal in Human Uterine Smooth Muscle Cells Kaiyu Molecular Mechanisms of Progesterone Withdrawal in Human Uterine Smooth Muscle Cells Kaiyu Lei July 2011 Institute of Reproductive and Developmental Biology Department of Surgery and Cancer Division of Cancer, Faculty of Medicine Imperial College London This thesis is submitted for the degree of Doctor of Philosophy at Imperial College London - 1 - Dedicated to my beloved parents and wife - 2 - Abstract Progesterone administration reduces the risk of preterm labour in high-risk women with singleton pregnancies but has no effect in women with a multiple pregnancy. However, it should be noted that it is not clear why progesterone is effective in the singleton pregnancies and in addition stretch-induced preterm labour is an attractive but not fully proven explanation. The data from my studies showed that progesterone did not inhibit stretch-induced MAPK activation or gene expression possibly explaining why progesterone is ineffective in the prevention of preterm labour in multiple pregnancies. Although stretch did reduce PR expression in a NF-κB- dependent manner, this was not sufficient to inhibit progesterone action, suggesting that it is not responsible for the functional progesterone withdrawal observed with the onset of human labour. Progesterone is thought to reduce the risk of preterm labour by inhibiting inflammatory cytokine-induced increases in prostaglandin synthesis. Initially, I demonstrated that IL-1 inhibited progesterone-driven PRE activation via p65. Conversely, p65-driven NF-B reporter construct activity was reduced by overexpression of PR-B and this was enhanced by the addition of MPA. Both MPA and progesterone repression of IL-1-driven COX-2 expression was lost by knockdown of GR. Subsequently, a series of in vitro studies suggested that progesterone acted via progesterone-induced and GR-mediated MKP-1 activation to repress IL-1-driven COX-2 and that although the interaction between p65 and PR-B might be involved in the repression of progesterone-driven gene expression, it did not seem to be responsible for progesterone repression of IL-1-induced COX-2 expression. Finally, the cDNA microarray analysis showed that the PR and GR regulated distinct gene networks and cellular functions in the absence or presence of ligand. However, the ability of progesterone to modulate gene expression can be mediated via both PR and GR. These data broaden our view of progesterone action and suggest alternative roles for PR and GR in human parturition. - 3 - Statement of originality All work presented in this thesis was performed by myself unless stated otherwise in the text. - 4 - Acknowledgements I would first like to express my gratitude to my supervisors: Professor Mark Johnson, for giving me this opportunity to complete my PhD study, for your unflagging support and encouragement and for your unlimited ideas; Dr. Suren (Dev) Sooranna, for your guidance and innumerable help and for sharing all my happiness and sadness; Professor Phillip Bennett, for your brilliant advice and comments. I want to thank my labmates who have been studying and working with me over the past three years, especially the Chairman of our Communist Party Branch Dr. Chen (our cell-culture expert, should be called Prof. Chen or 陈老) for your generous help and “telling me off” all the time and the Minister of the Organization Dr. Hua (Juliet or 华老) for spending several nights with me in the animal house without complaining a single word. Many thanks to Ben for your advice in some of my studies and improving my listening with your speedy speaking; to Bronwen for guiding me in the animal work and teaching me lots of slang; to Leila for inspiring me with your hard working and the lovely Swiss dark chocolates; to Jackson for all the efforts you have made and your unlimited questions; to Johann for your suggestion about medical school and showing me what is the real social skill; to Winnie and Natasha for getting us lots of biopsies. I would also like to thank the ladies in Prof. Phillip Bennett’s group, Yooni (the PR pioneer) for showing me all the preliminary data and inviting us to the parties and lunch-time concert; Shirin for giving me your precious constructs and sharing with me your experience as a foreigner; Mandeep for teaching me the electroporation and some very “useful” English words which I could never learn from textbooks; Lynne for influencing me with your constant optimism and teaching me the posh English; Vasso for your enthusiasm and yummy hand-made cakes; Kim for your kindness, diligence and declining my food offer without any hesitation. I am also grateful to Prof. Jan Brosens and Dr. Mark Christian for your insightful ideas and advice; to Sue and Ros for all your help and concern; to my friends: Shadi (Boss II), Mady (professor-to-be), Hiro (Boss I), Keiji (CEO), Marwa (consultant), Giulia (the CHIP expert) and Beatriz (for your generosity and advice); also to those who gave me the possibility to complete this thesis. Meeting you guys was fate, and working with you has always been my great pleasure. - 5 - I also appreciate all the patients who were willing to donate their biopsies and all the doctors and midwives who kindly helped us with tissue collection. Last but not least, I would love to give the final thank to my family: my dear parents, parents-in-law and my beloved wife, for your constant love and support no matter where and no matter when. - 6 - List of Publications and Conference Presentations during PhD Study List of Publications: 1. Lei K, Chen L, Cryar BJ, Hua R, Sooranna SR, Brosens JJ, Bennett PR, Johnson MR. Uterine stretch and progesterone action. J Clin Endocrinol Metab. 2011 Mar 30. [Epub ahead of print] PubMed PMID: 21450990. 2. Chen L, Sooranna SR, Lei K, Kandola, M, Bennett PR, Liang Z, Grammatopoulos D, Johnson MR. Cyclic AMP increases COX-2 expression via mitogen activated kinase in human myometrial cells. J Cell Mol Med. 2011 Aug 19. [Epub ahead of print] PMID:21854542 3. Lei K, Chen L, Khanjani S, Sooranna SR, Brosens JJ, Bennett PR, Johnson MR. Progesterone suppression of interleukin-1β gene expression is mediated via nuclear glucocorticoid receptors and MKP-1 activation in human myometrial cells. [Submitted to EMBO Molecular Medicine]. 4. Al-Sabbagh M, Fusi L, Higham J, Lee Y, Lei K, Hanyaloglu AC, Lam EW, Christian M, Brosens JJ. NADPH Oxidase-Derived Reactive Oxygen Species Mediate Decidualization of Human Endometrial Stromal Cells in Response to Cyclic AMP Signaling. Endocrinology. 2010 Dec 15. [Epub ahead of print] PubMed PMID: 21159852. List of Conference Presentations: 1. Lei K, Sooranna SR, Bennett PR, Johnson MR 2011 Glucocorticoid receptor is a key player that mediates progesterone action in human myometrium. Reprod Sci 18: 157A (oral) 2. Lei K, Chen L, Sooranna SR, Bennett PR, Johnson MR 2011 Mechanical stretch and progesterone action in human myometrium. Reprod Sci 18: 297A (poster) 3. Sooranna SR, Lei K, Bennett PR, Johnson MR 2011 Mechanical stretch of cultured human uterine myocytes leads to increased expression of metallothioneins and heat shock 70kDa proteins. Reprod Sci 18: 299A (poster) 4. Hua R, Lei K, Herbert B, Sooranna SR, Bennett PR, Johnson MR 2011 Uterine chemokine expression in progesterone delayed labour in mice. Reprod Sci 18: 296A (poster) 5. Al-Sabbagh M, Fusi L, Higham J, Lee Y, Lei K, Hanyaloglu AC, Lam E W-F, Christian M, Brosens JJ 2011 NAPDH oxidase-derived reactive oxygen species mediate decidualization of human endometrial stromal cells in response to cyclic AMP signalling. Reprod Sci 18: 162A (oral) - 7 - 6. Lei K, Chen L, Sooranna SR, Bennett PR, Johnson MR 2010 The role of cyclin dependent kinase 2 in stretch-induced progesterone receptor B activation in human myometrium. Reprod Sci 17: 281A (poster) 7. Lei K, Chen L, Sooranna SR, Bennett PR, Johnson MR 2010 The effect of pro-inflammatory transcription factors on progesterone receptor B transactivation in human myometrium. Reprod Sci 17: 281A (poster) 8. Lei K, Chen L, Sooranna SR, Bennett PR, Johnson MR 2010 The effect of cytokines and prostaglandins on nuclear receptor co-regulators in human myometrium. Reprod Sci 17: 285A (poster) 9. Chen L, Lei K, Sooranna SR, Bennett PR, Liang Z, Grammatopoulos DK, Johnson MR 2010 The effect of cAMP on PRE promoter activity in presence or absence of progesterone. Reprod Sci 17: 278A (poster) 10. Khanjani S, Sooranna SR, Lei K, Bennett PR, Johnson MR 2009 Regulation of progesterone receptor by transcriptions factors in human uterine myocytes. Reprod Sci 16: 116A (poster) - 8 - Table of Contents ABSTRACT ............................................................................................................................................ - 3 - STATEMENT OF ORIGINALITY ............................................................................................................... - 4 - ACKNOWLEDGEMENTS ........................................................................................................................ - 5 - LIST OF PUBLICATIONS AND CONFERENCE PRESENTATIONS DURING PHD STUDY ............................... - 7 - TABLE OF CONTENTS ............................................................................................................................ - 9 - LIST OF FIGURES ................................................................................................................................. - 12 - LIST OF TABLES ................................................................................................................................... - 14 -
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,347,934 B2 Shekdar Et Al
    USOO9347934B2 (12) United States Patent (10) Patent No.: US 9,347,934 B2 Shekdar et al. (45) Date of Patent: May 24, 2016 (54) ASSAYS FOR IDENTIFYING COMPOUNDS 2008, OO38739 A1 2/2008 Li et al. THAT MODULATE BITTERTASTE 2008/0167286 A1* 7/2008 Gopalakrishnan et al. ........................ 514,21016 (71) Applicants: CHROMOCELL CORPORATION, 2010/01298.33 A1* 5/2010 Brune et al. ................. 435/721 North Brunswick, NJ (US); KRAFT FOODS GROUP BRANDS LLC, FOREIGN PATENT DOCUMENTS Northfield, IL (US) CN 1341632 A 3, 2002 CN 101583717 A 11, 2009 (72) Inventors: Kambiz Shekdar, New York, NY (US); CN 101828.111 A 9, 2010 Purvi Manoj Shah, Bridgewater, NJ WO WO-0038536 A2 7, 2000 WO WO-2004O29087 4/2004 (US); Joseph Gunnet, Flemington, NJ WO WO-2006053771 A2 5, 2006 (US); Jane V. Leland, Wilmette, IL WO WO-2007002026 A2 1/2007 (US); Peter H. Brown, Glenview, IL WO WO-2008057470 5, 2008 (US); Louise Slade, Morris Plains, NJ WO WO-2008119.195 A1 10, 2008 (US) WO WO-20081191.96 10, 2008 WO WO-20081191.97 10, 2008 (73) Assignees: Chromocell Corporation, North W WSi. A2 1929 Brunswick, NJ (US); Kraft Foods WO WO-2010O886.33 8, 2010 Group Brands LLC, Northfield, IL WO WO-2010O99983 A1 9, 2010 (US) WO WO-2013022947 2, 2013 (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. Bachmanov et al., Taste Receptor Genes, 2007, 27:389-414.* Behrens et al., Structural Requirements for Bitter Taste Receptor (21) Appl.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • Methods to Identify Tas2r Modulators Verfahren Zur Identifizierung Von Tas2r Modulatoren Procédé D’Identification De Modulateurs Tas2r
    (19) TZZ _¥¥ _T (11) EP 2 137 322 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12Q 1/68 (2006.01) A23L 2/52 (2006.01) 27.02.2013 Bulletin 2013/09 A23G 4/00 (2006.01) C07C 53/134 (2006.01) (21) Application number: 08714784.9 (86) International application number: PCT/CH2008/000134 (22) Date of filing: 27.03.2008 (87) International publication number: WO 2008/119195 (09.10.2008 Gazette 2008/41) (54) METHODS TO IDENTIFY TAS2R MODULATORS VERFAHREN ZUR IDENTIFIZIERUNG VON TAS2R MODULATOREN PROCÉDÉ D’IDENTIFICATION DE MODULATEURS TAS2R (84) Designated Contracting States: • BEHRENS MAIK ET AL: "Members of RTP and AT BE BG CH CY CZ DE DK EE ES FI FR GB GR REEP gene families influence functional bitter HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT taste receptor expression" JOURNAL OF RO SE SI SK TR BIOLOGICAL CHEMISTRY, vol. 281, no. 29, July 2006(2006-07), pages 20650-20659, XP002494217 (30) Priority: 30.03.2007 US 909143 P ISSN: 0021-9258 30.07.2007 US 962549 P • KUHN CHRISTINA ET AL: "Bitter taste receptors for saccharin and acesulfame K" JOURNAL OF (43) Date of publication of application: NEUROSCIENCE, vol. 24, no. 45, 10 November 30.12.2009 Bulletin 2009/53 2004 (2004-11-10), pages 10260-10265, XP002494218 ISSN: 0270-6474 (73) Proprietor: Givaudan SA • BUFE BERND ET AL: "The human TAS2R16 1214 Vernier (CH) receptor mediates bitter taste in response to beta- glucopyranosides" NATURE GENETICS, (72) Inventors: NATURE PUBLISHING GROUP, NEW YORK, US, • BRUNE, Nicole, Erna, Irene vol.
    [Show full text]
  • Bivariate Genome-Wide Association Analysis Strengthens the Role of Bitter Receptor Clusters on Chromosomes 7 and 12 in Human Bitter Taste
    bioRxiv preprint doi: https://doi.org/10.1101/296269; this version posted April 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bivariate genome-wide association analysis strengthens the role of bitter receptor clusters on chromosomes 7 and 12 in human bitter taste Liang-Dar Hwang1,2,3,4, Puya Gharahkhani1, Paul A. S. Breslin5,6, Scott D. Gordon1, Gu Zhu1, Nicholas G. Martin1, Danielle R. Reed5, and Margaret J. Wright2,7 1 QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia 2 Queensland Brain Institute, University of Queensland, St Lucia, Queensland 4072, Australia 3 Faculty of Medicine, University of Queensland, Herston, Queensland 4006, Australia 4 University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Woolloongabba, Queensland 4102, Australia 5 Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA 6 Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick NJ, 08901 USA 7 Centre for Advanced Imaging, University of Queensland, St Lucia, Queensland 4072, Australia Correspondence to be sent to: Liang-Dar Hwang University of Queensland Diamantina Institute Wolloongabba QLD 4102, Australia Email: [email protected] Telephone: +61 7 3443 7976 Fax: +61 7 3443 6966 1 bioRxiv preprint doi: https://doi.org/10.1101/296269; this version posted April 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0178642 A1 Salomon Et Al
    US 2012O178642A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0178642 A1 Salomon et al. (43) Pub. Date: Jul. 12, 2012 (54) GENE EXPRESSION PROFILES ASSOCATED Related U.S. Application Data WITH CHRONICALLOGRAFT (60) Provisional application No. 61/224.328, filed on Jul.9. NEPHROPATHY 2009, provisional application No. 61/224.317, filed on Jul. 9, 2009. (75) Inventors: Daniel Salomon, San Diego, CA (US); Sunil M. Kurian, Ssan Publication Classification Diego, CA (US); Steven R. Head, (51) Int. Cl. Lakeside, CA (US) C40B 30/04 (2006.01) C40B 40/06 (2006.01) (73) Assignee: The Scripps Research Institute, (52) U.S. Cl. ............................................... 506/9; 506/16 La Jolla, CA (US) (57) ABSTRACT (21) Appl. No.: 13/261,130 By a genome-wide gene analysis of expression profiles of over 50,000 known or putative gene sequences in peripheral (22) PCT Fled: Jul. 9, 2010 blood, the present inventors have identified a consensus set of gene expression-based molecular biomarkers associated with (86) PCT NO.: PCT/US2O10/041598 chronic allograft nephropathy and/or interstitial fibrosis and tubular atrophy CAN/IFTA and subtypes thereof. These S371 (c)(1), genes sets are useful for diagnosis, prognosis, monitoring (2), (4) Date: Mar. 20, 2012 and/or subtyping of CAN/IFTA. Patent Application Publication Jul. 12, 2012 Sheet 1 of 2 US 2012/0178642 A1 Top 50 Mild CAN genes 1.0 ------------- 0.9 ---------- 0.8 -- 0.7 ----- Top 50 Mild CAN genes 0.6 - 0.5 79%. 82% 0.4 82% 79% O.O O.2 0.4 O.6 O.8 1.O FIG.
    [Show full text]
  • Transcriptome Analysis Reveals Upregulation of Bitter Taste Receptors in Severe Asthmatics
    ORIGINAL ARTICLE ASTHMA Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics Christina Orsmark-Pietras1,2, Anna James2,3, Jon R. Konradsen2,4,5, Bjo¨rn Nordlund2,4,5, Cilla So¨derha¨ll1,2, Ville Pulkkinen2,3,6,7, Christophe Pedroletti2,5, Kameran Daham2,8,9, Maciek Kupczyk2,3, Barbro Dahle´n2,8,9, Juha Kere1,2,10, Sven-Erik Dahle´n2,3, Gunilla Hedlin2,4,5,11 and Erik Mele´n2,3,4,11 Affiliations: 1Dept of Biosciences and Nutrition at Novum, Karolinska Institute, Stockholm, 2The Centre for Allergy Research at Karolinska Institute, Stockholm, 3Institute of Environmental Medicine, Karolinska Institute, Stockholm, 4Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, 5Dept of Women’s and Children’s Health, Karolinska Institute, Stockholm, 8Lung/Allergy Clinic, Karolinska University Hospital Huddinge, Stockholm, 9Dept of Internal Medicine, Karolinska University Hospital Huddinge, Stockholm, and 10Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden. 6Dept of Medical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, and 7Folkha¨lsan Institute of Genetics, Helsinki, Finland. 11Both authors contributed equally. Correspondence: S-E. Dahle´n, The National Institute of Environmental Medicine, Karolinska Institutet, SE- 17177 Stockholm, Sweden. E-mail: [email protected] ABSTRACT The causes of severe childhood asthma are poorly understood. Our aim was to define global patterns of gene expression in children with severe therapy-resistant and controlled asthma. White blood cells were isolated and the global transcriptome profile was characterised using the Affymetrix Human Gene ST 1.0 chip in children with severe, therapy-resistant asthma (n517), controlled asthma (n519) and healthy controls (n518).
    [Show full text]
  • The Bitter Taste Receptor Tas2r14 Is Expressed in Ovarian Cancer and Mediates Apoptotic Signalling
    THE BITTER TASTE RECEPTOR TAS2R14 IS EXPRESSED IN OVARIAN CANCER AND MEDIATES APOPTOTIC SIGNALLING by Louis T. P. Martin Submitted in partial fulfilment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia June 2017 © Copyright by Louis T. P. Martin, 2017 DEDICATION PAGE To my grandparents, Christina, Frank, Brenda and Bernie, and my parents, Angela and Tom – for teaching me the value of hard work. ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................. vi LIST OF FIGURES .......................................................................................................... vii ABSTRACT ....................................................................................................................... ix LIST OF ABBREVIATIONS AND SYMBOLS USED .................................................... x ACKNOWLEDGEMENTS .............................................................................................. xii CHAPTER 1 INTRODUCTION ........................................................................................ 1 1.1 G-PROTEIN COUPLED RECEPTORS ................................................................ 1 1.2 GPCR CLASSES .................................................................................................... 4 1.3 GPCR SIGNALING THROUGH G PROTEINS ................................................... 6 1.4 BITTER TASTE RECEPTORS (TAS2RS) ...........................................................
    [Show full text]
  • Clinical, Molecular, and Immune Analysis of Dabrafenib-Trametinib
    Supplementary Online Content Chen G, McQuade JL, Panka DJ, et al. Clinical, molecular and immune analysis of dabrafenib-trametinib combination treatment for metastatic melanoma that progressed during BRAF inhibitor monotherapy: a phase 2 clinical trial. JAMA Oncology. Published online April 28, 2016. doi:10.1001/jamaoncol.2016.0509. eMethods. eReferences. eTable 1. Clinical efficacy eTable 2. Adverse events eTable 3. Correlation of baseline patient characteristics with treatment outcomes eTable 4. Patient responses and baseline IHC results eFigure 1. Kaplan-Meier analysis of overall survival eFigure 2. Correlation between IHC and RNAseq results eFigure 3. pPRAS40 expression and PFS eFigure 4. Baseline and treatment-induced changes in immune infiltrates eFigure 5. PD-L1 expression eTable 5. Nonsynonymous mutations detected by WES in baseline tumors This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/30/2021 eMethods Whole exome sequencing Whole exome capture libraries for both tumor and normal samples were constructed using 100ng genomic DNA input and following the protocol as described by Fisher et al.,3 with the following adapter modification: Illumina paired end adapters were replaced with palindromic forked adapters with unique 8 base index sequences embedded within the adapter. In-solution hybrid selection was performed using the Illumina Rapid Capture Exome enrichment kit with 38Mb target territory (29Mb baited). The targeted region includes 98.3% of the intervals in the Refseq exome database. Dual-indexed libraries were pooled into groups of up to 96 samples prior to hybridization.
    [Show full text]
  • Ep 2391711 B1
    (19) TZZ ¥____T (11) EP 2 391 711 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 5/00 (2006.01) C12N 5/07 (2010.01) 08.04.2015 Bulletin 2015/15 G01N 33/50 (2006.01) (21) Application number: 10736548.8 (86) International application number: PCT/US2010/022781 (22) Date of filing: 01.02.2010 (87) International publication number: WO 2010/088633 (05.08.2010 Gazette 2010/31) (54) NOVEL CELL LINES AND METHODS NEUE ZELLLINIEN UND VERFAHREN NOUVELLES LIGNÉES CELLULAIRES ET PROCÉDÉS (84) Designated Contracting States: • SAWCHUK, Dennis AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Fanwood, NJ 07023 (US) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • SHAH, Purvi, Manoj PT RO SE SI SK SM TR North Brunswick, NJ 08902 (US) (30) Priority: 02.02.2009 US 149311 P (74) Representative: Jennings, Tara Romaine 02.02.2009 US 149318 P FRKelly 02.02.2009 US 149321 P 27 Clyde Road 31.07.2009 US 230536 P Ballsbridge 19.08.2009 US 235181 P Dublin 4 (IE) 02.02.2009 US 149324 P (56) References cited: (43) Date of publication of application: WO-A2-2009/102569 US-A1- 2005 032 158 07.12.2011 Bulletin 2011/49 US-A1- 2006 147 937 US-A1- 2008 262 087 (60) Divisional application: • TOYONO ET AL: "CCAAT/Enhancer-binding 15156204.8 protein beta regulates expression of human T1R3 taste receptor gene in the bile duct carcinoma cell (73) Proprietor: Chromocell Corporation line, HuCCT1", BIOCHIMICA ET BIOPHYSICA North Brunswick, NJ 08902 (US) ACTA .
    [Show full text]
  • Global Metabolic Effect of Manipulating Pyruvate Dehydrogenase Complex Activity in Mammalian Cells
    Global metabolic effect of manipulating pyruvate dehydrogenase complex activity in mammalian cells Maria Buchsteiner (Dipl.-Ing., M. Sc.) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 Australian Institute of Bioengineering and Nanotechnology ii Abstract Aerobic glycolysis is an inefficient metabolic phenotype displayed by many rapidly proliferating cells during growth. It is characterized by high glycolytic activity and only partial oxidation of glucose resulting in the production of high amounts of lactate. This phenotype was originally reported by Otto Warburg in 1927 as a hallmark of cancer and – while it is now known to occur in other fast growing cells as well – it remains an interesting target for cancer therapy. Aerobic glycolysis also has major implications for biopharmaceutical production, since lactate accumulation can be growth inhibiting, limiting the cell density that can be achieved in culture. Due to its association with various diseases and being an unfavorable metabolic phenotype in industrial applications, reducing the Warburg effect and analyzing accompanying effects on the cell as a whole are of great interest. Whereas in cancer therapy the objective is to kill cells relying on aerobic glycolysis, the aim in industrial applications is to reduce aerobic glycolysis without inducing cell death or inhibiting cell growth. Pyruvate dehydrogenase complex (PDC) is a mitochondrial gatekeeping enzyme determining how much pyruvate is converted to acetyl-CoA and subsequently enters the TCA cycle. PDC activity is regulated by reversible phosphorylation catalyzed by pyruvate dehydrogenase kinase (PDK) (phosphorylation → inactivation) and pyruvate dehydrogenase phosphatase (dephosphorylation → activation). PDC activity can be increased by inhibiting PDK using dichloroacetate (DCA) a known PDK inhibitor, hereby reducing aerobic glycolysis.
    [Show full text]
  • Identification of Novel Therapeutic Targets and Tumor Suppressor Genes in Colon Cancer Using Genome‐Wide High‐ Throughput Approaches
    Identification of novel thera peutic targets and tu m or sup press or gene s in colon cancer using genome - wide high - throughput approac hes Sarah Bazzocco ADVERTIMENT . La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX ( www.tdx.cat ) i a través del Dipòsit Digital de la UB ( diposit.ub.edu ) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposici ó d es d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB . No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la te si com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA . La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta t esis por medio del servicio TDR ( www.tdx.cat ) y a través del Repositorio Digital de la UB ( diposit.ub.edu ) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigació n y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB .
    [Show full text]