Supplementary Table S1 Demographic Characteristics Of

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Table S1 Demographic Characteristics Of Supplementary Table S1 Demographic characteristics of HCC patients • Age (year; mean ± SD) 53.950 ± 11.802 • Gender (number; %) Male 79 (79%) Female 21 (21%) • AFP (ng/mL; mean ± SD) 23928.571 ± 79577.084 • Tumor encapsulation (number; %) Absent 61 (63.5%) Present 35 (36.5%) • Cellular differentiation by Edmondson grading I-II 46 (47.9%) III-IV 50 (52.1%) • Tumor microsatellite formation (number, %) Absent 45 (46.9%) Present 51 (53.1%) • Tumor size (cm; mean ± SD) Length 8.3 ± 5.0 Width 7.4 ± 4.3 • Venous invasion (number; %) Absent 42 (43.3%) Present 55 (56.7%) • Direct liver invasion (number; %) Absent 53 (60.2%) Present 35 (39.8%) • pTNM staging (number, %) I-II 37(38.1%) III-IV 60 (61.9%) • Hepatitis B surface antigen (number; %) Absent 22 (23.4%) Present 72 (76.6%) • Background liver disease (number; %) Normal 7 (7.2%) Chronic hepatitis 36 (37.1%) Cirrhosis 54 (55.7%) Supplementary Table S2 Primer sequences used in qRT-PCR study Genes Sequences Forward: cagatcatcggtcaggccaa Human NDUFA4 Reverse: tctgtcccaacaaacatctgga Forward: aaaagacatccggggatcat Human NDUFA4L2 Reverse: tccgggttgttctttctgtc Forward: ctcctccactgcccactcta Human NDUFA4L2 HRE-1 (ChIP) Reverse: gtcactctgtactctgcctt Forward: gagagcaggtccccagaga Human NDUFA4L2 HRE-2 (ChIP) Reverse: ctccttggcccagacttatg Forward: gaggatgaggtggaacgtgt Human 18S Reverse: agaagtgacgcagccctcta Forward: gcactcttccagccttcctt Human ACTB Reverse: aatgccagggtacatggtgg Forward: ctttgctgacctgctggatt Human HPRT Reverse: ctgcattgttttcggagtgt Supplementary Table S3 The target regions of shRNA and siRNA constructs shRNA clones Genebank Target nucleotides shNDUFA4-30 NM_002489 124-144 shNDUFA4-88 NM_002489 353-373 shNDUFA4L2-90 NM_020142 60-80 shHIF-1α NM_181054 2,123-2,141 shHIF-2α NM_001430 1,992-2,012 siRNA clones Genebank Target nucleotides siNDUFA4L2-1 NM_020142 246-264 siNDUFA4L2-3 NM_020142 103-121 siNDUFA4L2-4 NM_020142 146-164 Supplementary Table S4 Clinico-pathological correlation of NDUFA4L2 over-expression in human HCC Clinico-pathological features No. of Cases Mean P value • Tumor size ≤ 5 cm 34 1.516 0.195 > 5 cm 62 2.068 • Cellular differentiation by Edmondson grading I – II 46 2.011 0.411 III – IV 50 1.678 • Tumor encapsulation Absent 61 2.203 *0.039 Present 35 1.346 • Tumor microsatellite formation Absent 45 1.198 *0.002 Present 51 2.402 • Direct liver invasion Absent 53 1.506 0.156 Present 35 2.106 • Hepatitis B surface antigen Absent 22 1.937 0.635 Present 72 1.712 • Venous invasion Absent 42 1.592 0.238 Present 55 2.074 *P<0.05; N=100 Supplementary Table S5 Down Regulated Genes in NDUFA4L2 Knockdown HCC cells Gene NTC (FPKM) shL2-90 (FPKM) Fold change SH3GL1P2 0.761623 0.380601 0.499723617 ADAM8 0.463544 0.231426 0.499253577 SCAMP1-AS1 1.67707 0.837189 0.49919741 SH3YL1 3.37804 1.68605 0.499120792 HIST1H3E 2.81929 1.40268 0.49752952 REREP3 0.647432 0.322092 0.497491628 NR3C2 0.142956 0.0711156 0.497464954 SEC31B 0.184359 0.0917107 0.497457135 MYO7B 0.375316 0.186703 0.497455478 TMEM254-AS1 0.108506 0.0537568 0.495426981 C21orf119 2.80135 1.38549 0.494579399 EXOC3L4 0.380068 0.187964 0.494553606 PRH1 1.68311 0.831699 0.494144174 KLF8 0.393827 0.194483 0.493828508 DENND2C 0.189965 0.0937807 0.493673571 MAGEC1 0.464209 0.229 0.49331228 C9orf173 0.311722 0.153522 0.492496519 CHSY3 0.30456 0.149903 0.492195298 MRC2 0.17374 0.0855132 0.49219063 RPEL1 0.799184 0.392808 0.491511342 UNC5B-AS1 6.78942 3.33296 0.490904967 KLF3-AS1 0.672482 0.329245 0.489596748 DNAAF3 0.30395 0.148685 0.489175851 LRRC39 0.304849 0.149007 0.488789532 AHRR 0.44304 0.216479 0.488621795 COL11A2 0.234426 0.1144 0.488000478 C1QL1 0.978865 0.476937 0.487234706 KCNMB4 0.856615 0.417361 0.487221214 NFATC1 0.206553 0.100588 0.48698397 NECAB1 0.157432 0.0765264 0.486091773 CCDC150 0.397478 0.193184 0.486024384 FAM160A1 1.31199 0.636949 0.485483121 FAM27E2 0.175755 0.0850939 0.484162044 LDLRAD4 0.17958 0.0867033 0.48281156 APOH 1.73112 0.835328 0.482536162 HSD11B2 1.04178 0.502687 0.482527021 LOC102723385 0.321261 0.154866 0.482056646 PTPN22 0.113555 0.0546526 0.481287482 GPR160 11.0757 5.28357 0.477041632 RXFP1 0.987013 0.467323 0.473471981 RHD 0.162375 0.0766867 0.472281447 SPDYE7P 0.346316 0.163499 0.472109287 ENO1-AS1 0.350972 0.16494 0.469952019 LINC01023 1.45134 0.681979 0.469896096 HIST1H3J 0.314392 0.147728 0.46988473 HIST1H2AH 0.311348 0.146297 0.469882575 LOC101059948 0.300673 0.141281 0.469882563 SPINK13 0.28554 0.134169 0.469878126 LINC00571 0.275742 0.129565 0.469877639 RBAKDN 0.236504 0.111127 0.46987366 LOC102723809 0.989734 0.465049 0.469872713 LINC00539 0.231392 0.108724 0.469869313 CHKB-AS1 0.209275 0.0983317 0.469868355 LOC102467147 0.596706 0.280372 0.469866232 CLLU1OS 0.187297 0.0880038 0.469862304 LOC728228 0.188766 0.0886939 0.469861628 LOC100288911 0.353943 0.166304 0.469860966 LOC101928043 0.183026 0.0859966 0.46986002 CSAG1 0.197675 0.0928795 0.469859618 LOC100507661 0.506705 0.238079 0.469857215 ATP6AP1L 0.657166 0.308774 0.469856931 LOC101927142 0.160727 0.0755185 0.469855718 RASSF1-AS1 0.313603 0.147348 0.469855199 KCNE2 0.152578 0.0716895 0.469854763 ORM1 0.144345 0.0678209 0.469852783 LINC00412 0.138731 0.0651828 0.469850286 CLEC3B 0.141587 0.0665246 0.469849633 LOC101927843 0.398402 0.187189 0.469849549 C1orf162 0.129236 0.0607214 0.469848958 TAS2R46 0.12702 0.0596802 0.469848843 LY6G6C 0.271594 0.127608 0.469848377 ACOT6 0.115725 0.0543729 0.469845755 LOC338694 0.117994 0.0554389 0.469845077 CALML6 0.103644 0.0486965 0.469843889 RAB41 0.107102 0.0503212 0.4698437 MTNR1A 0.2064 0.0969754 0.469842054 LINC00592 0.21858 0.102698 0.469841706 SUGT1P3 0.109789 0.0515834 0.469841241 C11orf42 0.495811 0.232952 0.469840322 IL6 0.666018 0.312922 0.469840154 MRGPRE 0.171333 0.0804984 0.469835934 LOC100630918 0.462935 0.217503 0.469834858 CACNA1G-AS1 0.152721 0.0717536 0.469834535 UBAP1L 0.159026 0.0747159 0.469834492 LOC101928708 0.150337 0.0706334 0.469833773 FLJ26850 0.152359 0.0715833 0.469833092 LYRM9 0.294243 0.138245 0.469832757 CHAD 0.252903 0.118822 0.469832307 SOWAHD 0.203721 0.0957147 0.469832271 FAM19A3 0.323458 0.151971 0.46983225 GPR162 0.143504 0.0674227 0.469831503 LOC344967 0.20047 0.0941871 0.469831396 LOC101927257 0.218851 0.102823 0.469831072 ALKBH3-AS1 0.109737 0.0515578 0.469830595 PCDHGA4 0.380018 0.178544 0.469830376 BIN3-IT1 0.462118 0.217117 0.469830217 OVCH1 0.118593 0.0557185 0.469829585 LOC643770 0.116508 0.0547389 0.46982954 SCOC-AS1 0.156577 0.0735644 0.469828902 ZNF77 0.206199 0.0968782 0.469828661 LOC100507501 1.50383 0.706542 0.469828372 DLX6 0.113088 0.0531319 0.469827922 STK4-AS1 0.148604 0.0698183 0.469827865 FAAH 0.350529 0.164688 0.469827033 LINC00501 0.152769 0.071775 0.469826994 CHRNA3 0.12244 0.0575255 0.469826037 C19orf57 0.342693 0.161006 0.469825762 LOC100128361 0.291304 0.136862 0.469825337 SLC16A9 0.151454 0.0711566 0.469823181 WNT4 0.128984 0.0605996 0.469822614 ROBO4 0.105102 0.0493792 0.469821697 GNN 0.110843 0.0520763 0.469820377 GPR133 0.110861 0.0520846 0.469818962 BEGAIN 0.269196 0.126472 0.469813816 PDC 0.189156 0.088868 0.469813276 TMOD2 0.194677 0.0914606 0.469806911 LOC100132529 0.190634 0.0895539 0.469768772 C4B_2 0.17881 0.083828 0.468810469 LOXL1 2.29853 1.07474 0.467577104 NEURL1B 14.8661 6.94447 0.467134622 LOC101927811 0.818921 0.382264 0.466789837 NBPF11 3.29108 1.52877 0.464519246 CDKN2B-AS1 1.11798 0.517799 0.46315587 PDE5A 0.875884 0.404448 0.461759776 SIRPB1 0.503763 0.232441 0.461409433 MRPL42P5 1.27122 0.58609 0.461045295 YPEL1 0.894964 0.412066 0.460427459 RORC 0.54904 0.252755 0.46035808 RAET1E-AS1 0.132074 0.0607946 0.460307101 SNHG21 1.88131 0.865421 0.46000978 OAZ1 264.986 121.621 0.458971417 ZNF773 0.513736 0.235754 0.45890107 GDPD3 1.0658 0.488542 0.458380559 OSCP1 0.601027 0.274812 0.457237362 FYN 1.11284 0.506793 0.45540509 ARMC12 0.102323 0.0465853 0.455276917 JAZF1 1.4475 0.65765 0.45433506 DRD4 1.09236 0.494223 0.45243601 GKAP1 0.776409 0.351116 0.452230719 HOXC5 0.10029 0.0452748 0.451438827 UCN 2.49897 1.12314 0.44944117 LINC00854 1.39452 0.626722 0.449417721 USP27X-AS1 0.522854 0.23497 0.449398876 PRODH 51.7476 23.2366 0.44903725 GUSBP3 0.476315 0.213876 0.449022181 AGER 1.24434 0.558654 0.448956073 ANKRD16 2.48992 1.11587 0.448154961 TMEM200B 0.307683 0.137875 0.448107305 LINC00035 3.35578 1.50175 0.447511458 NAPSA 0.414363 0.185412 0.447462732 PCDHGB6 0.220671 0.09874 0.447453449 MOB3B 0.159164 0.0712172 0.447445402 RYR2 0.18139 0.0810289 0.446710954 SULT2B1 0.578977 0.257859 0.445370023 MARCH1 0.350718 0.1561 0.445086936 C7orf63 0.193633 0.0861464 0.44489524 GPR161 1.77598 0.789736 0.444676179 FGF13 0.979771 0.434695 0.44367 IQUB 0.147545 0.065389 0.443180047 SLAIN1 0.430705 0.190134 0.441448323 LOC100289580 0.203496 0.0896847 0.440719719 ZMYND15 0.684168 0.30139 0.440520457 PLXNC1 0.221024 0.0972151 0.439839565 CYP4V2 1.27494 0.55906 0.438499067 RFESD 0.28061 0.122854 0.437810484 INHA 1.64436 0.718676 0.437055146 CA11 2.9746 1.29828 0.436455322 AKAP7 2.91843 1.26941 0.434963319 STAM-AS1 0.508268 0.220428 0.433684592 ID4 0.168992 0.0732889 0.43368266 ELFN1 0.175335 0.0760397 0.433682379 CLCNKB 0.156194 0.067579 0.432660666 TP73 0.716315 0.309883 0.432607163 PCDHGC5 0.175796 0.0758945 0.431719152 SOX2-OT 0.128938 0.055615 0.431331338 ENDOU 0.13769 0.0593478 0.431024766 LOC101929696 0.19855 0.0855091 0.430667842 KCNQ1 0.851664 0.366275 0.43006984 TSC22D1-AS1 0.21402 0.0918467 0.429150079 C6orf201 0.236836 0.101233 0.427439241 DFNB59 0.391718 0.167311 0.427121041 TMLHE-AS1 0.173076 0.0739239 0.427118145 TMLHE-AS1 0.173076 0.0739239 0.427118145 EFCAB6 0.120402 0.051424 0.42710254 TNFRSF10C 0.258494 0.110062
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Genetic Basis of Simple and Complex Traits with Relevance to Avian Evolution
    Genetic basis of simple and complex traits with relevance to avian evolution Małgorzata Anna Gazda Doctoral Program in Biodiversity, Genetics and Evolution D Faculdade de Ciências da Universidade do Porto 2019 Supervisor Miguel Jorge Pinto Carneiro, Auxiliary Researcher, CIBIO/InBIO, Laboratório Associado, Universidade do Porto Co-supervisor Ricardo Lopes, CIBIO/InBIO Leif Andersson, Uppsala University FCUP Genetic basis of avian traits Nota Previa Na elaboração desta tese, e nos termos do número 2 do Artigo 4º do Regulamento Geral dos Terceiros Ciclos de Estudos da Universidade do Porto e do Artigo 31º do D.L.74/2006, de 24 de Março, com a nova redação introduzida pelo D.L. 230/2009, de 14 de Setembro, foi efetuado o aproveitamento total de um conjunto coerente de trabalhos de investigação já publicados ou submetidos para publicação em revistas internacionais indexadas e com arbitragem científica, os quais integram alguns dos capítulos da presente tese. Tendo em conta que os referidos trabalhos foram realizados com a colaboração de outros autores, o candidato esclarece que, em todos eles, participou ativamente na sua conceção, na obtenção, análise e discussão de resultados, bem como na elaboração da sua forma publicada. Este trabalho foi apoiado pela Fundação para a Ciência e Tecnologia (FCT) através da atribuição de uma bolsa de doutoramento (PD/BD/114042/2015) no âmbito do programa doutoral em Biodiversidade, Genética e Evolução (BIODIV). 2 FCUP Genetic basis of avian traits Acknowledgements Firstly, I would like to thank to my all supervisors Miguel Carneiro, Ricardo Lopes and Leif Andersson, for the demanding task of supervising myself last four years.
    [Show full text]
  • Mechanism of Action Through an IFN Type I-Independent Responses To
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 is online at: average * The Journal of Immunology , 12 of which you can access for free at: 2012; 188:3088-3098; Prepublished online 20 from submission to initial decision 4 weeks from acceptance to publication February 2012; doi: 10.4049/jimmunol.1101764 http://www.jimmunol.org/content/188/7/3088 MF59 and Pam3CSK4 Boost Adaptive Responses to Influenza Subunit Vaccine through an IFN Type I-Independent Mechanism of Action Elena Caproni, Elaine Tritto, Mario Cortese, Alessandro Muzzi, Flaviana Mosca, Elisabetta Monaci, Barbara Baudner, Anja Seubert and Ennio De Gregorio J Immunol cites 33 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/02/21/jimmunol.110176 4.DC1 This article http://www.jimmunol.org/content/188/7/3088.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Investigation of Candidate Genes and Mechanisms Underlying Obesity
    Prashanth et al. BMC Endocrine Disorders (2021) 21:80 https://doi.org/10.1186/s12902-021-00718-5 RESEARCH ARTICLE Open Access Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules G. Prashanth1 , Basavaraj Vastrad2 , Anandkumar Tengli3 , Chanabasayya Vastrad4* and Iranna Kotturshetti5 Abstract Background: Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. Methods: To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. Results: A total of 820 DEGs were identified between
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Involvement of Taste Receptors in the Effectiveness of Sublingual Immunotherapy
    Allergology International 67 (2018) 421e424 Contents lists available at ScienceDirect Allergology International journal homepage: http://www.elsevier.com/locate/alit Letter to the Editor Involvement of taste receptors in the effectiveness of sublingual immunotherapy Dear Editor, RNA or DNA was damaged, 25 samples each in the HR and NR groups underwent microarray analyses. We identified 56 genes, Japanese cedar pollinosis (JCP) is a specific seasonal allergic dis- differentially expressed between the HR and NR patients, based ease which affects ~30% of the Japanese population, between on the log2 ratio of their averages (Fig. 1). Among these, 5 genes February and April, every year.1 Apart from a series of symptom- encoded taste receptors, 4 of which tended to increase in the HR reliever medications, allergen-specific immunotherapy (AIT) is group but not in the NR group, after SLIT. Consistently, the expres- þ one of the most effective treatments for JCP. After several years of sion of TAS2R13, 43 and 50 in CD4 T cells could be retrieved by relying on the application of subcutaneous immunotherapy (SCIT) BioGPS (http://biogps.org/)(Supplementary Figs. 1e3). Among with standardized Japanese cedar pollen extract (since the them, we confirmed the cell surface expression of TAS2R43 on þ 1960s), the use of sublingual immunotherapy (SLIT) was approved CD4 T cells (Supplementary Fig. 4). SLIT-induced increasing ten- in 2014.2 In addition to the numerous clinical and scientific evi- dency was also observed for several small nuclear RNAs and micro- dences pertaining to its effectiveness and safety on JCP including RNAs especially in the HR group.
    [Show full text]
  • 140503 IPF Signatures Supplement Withfigs Thorax
    Supplementary material for Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis Daryle J. DePianto1*, Sanjay Chandriani1⌘*, Alexander R. Abbas1, Guiquan Jia1, Elsa N. N’Diaye1, Patrick Caplazi1, Steven E. Kauder1, Sabyasachi Biswas1, Satyajit K. Karnik1#, Connie Ha1, Zora Modrusan1, Michael A. Matthay2, Jasleen Kukreja3, Harold R. Collard2, Jackson G. Egen1, Paul J. Wolters2§, and Joseph R. Arron1§ 1Genentech Research and Early Development, South San Francisco, CA 2Department of Medicine, University of California, San Francisco, CA 3Department of Surgery, University of California, San Francisco, CA ⌘Current address: Novartis Institutes for Biomedical Research, Emeryville, CA. #Current address: Gilead Sciences, Foster City, CA. *DJD and SC contributed equally to this manuscript §PJW and JRA co-directed this project Address correspondence to Paul J. Wolters, MD University of California, San Francisco Department of Medicine Box 0111 San Francisco, CA 94143-0111 [email protected] or Joseph R. Arron, MD, PhD Genentech, Inc. MS 231C 1 DNA Way South San Francisco, CA 94080 [email protected] 1 METHODS Human lung tissue samples Tissues were obtained at UCSF from clinical samples from IPF patients at the time of biopsy or lung transplantation. All patients were seen at UCSF and the diagnosis of IPF was established through multidisciplinary review of clinical, radiological, and pathological data according to criteria established by the consensus classification of the American Thoracic Society (ATS) and European Respiratory Society (ERS), Japanese Respiratory Society (JRS), and the Latin American Thoracic Association (ALAT) (ref. 5 in main text). Non-diseased normal lung tissues were procured from lungs not used by the Northern California Transplant Donor Network.
    [Show full text]
  • PRODUCT SPECIFICATION Anti-GJC3 Product Datasheet
    Anti-GJC3 Product Datasheet Polyclonal Antibody PRODUCT SPECIFICATION Product Name Anti-GJC3 Product Number HPA015024 Gene Description gap junction protein, gamma 3, 30.2kDa Clonality Polyclonal Isotype IgG Host Rabbit Antigen Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: RTWKHKSSSSKYFLTSESTRRHKKATDSLPVVETKEQFQEAVPGRSLAQE KQRPVGPRDA Purification Method Affinity purified using the PrEST antigen as affinity ligand Verified Species Human Reactivity Recommended IHC (Immunohistochemistry) Applications - Antibody dilution: 1:20 - 1:50 - Retrieval method: HIER pH6 WB (Western Blot) - Working concentration: 0.04-0.4 µg/ml Characterization Data Available at atlasantibodies.com/products/HPA015024 Buffer 40% glycerol and PBS (pH 7.2). 0.02% sodium azide is added as preservative. Concentration Lot dependent Storage Store at +4°C for short term storage. Long time storage is recommended at -20°C. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. For protocols, additional product information, such as images and references, see atlasantibodies.com. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • Supplementary Tables Supplemental Table S1: Comparison of the Coverage of Reference Panels Used for SNP Imputation. the Markers
    Supplementary Tables Supplemental Table S1: Comparison of the coverage of reference panels used for SNP imputation. The markers on the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) reference panel and Haplotype Reference Consortium (HRG) used to impute SNPs from our AA and CAU participants were compared to one thousand genomes (1kG) dataset. Loci information CAAPA vs 1kG HRC vs 1kG Total loci 45,639,158 90,558,388 Overlapping loci 24,880,301 49,826,569 Percent overlap 54.52% 55.02% 1kG-only loci 9,363,544 15,148,191 Ref-only loci 8,461,186 22,649,501 Supplemental Table S2: SNP imputation results. The total number of SNPs imputed for the AA and CAU participants either using the Michigan imputation server (Minimac) or Beagle. Targets prepared for: AA CAU Beagle 730,616 726,165 Minimac 698,343 660,733 Supplemental Table S3: Allele frequencies of TA2R38 SNPs by each ancestral group and time point. The rs number of each SNP, the location of SNP buy chromosome (CHR) and base pair position (POS) is provided along with the allele frequency (ALLELE:FREQ) for each SNP. Baseline 6-month Baseline 6-month AA (N = 297) AA (N = 234) CAU (N = 198) CAU (N = 151) SNP CHR POS ALLELE:FREQ ALLELE:FREQ ALLELE:FREQ ALLELE:FREQ rs10246939 7 141672604 T:0.49 C:0.51 T:0.50 C:0.50 T:0.54 C:0.46 T:0.54 C:0.46 rs1726866 7 141672705 G:0.68 A:0.32 G:0.68 A:0.32 G:0.46 A:0.54 G:0.46 A:0.54 rs713598 7 141673345 C:0.50 G:0.50 C:0.50 G:0.50 C:0.58 G:0.42 C:0.58 G:0.42 Supplemental Table S4: Linkage disequilibrium analysis of TAS2R38 SNPs at each time point of the intervention.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,347,934 B2 Shekdar Et Al
    USOO9347934B2 (12) United States Patent (10) Patent No.: US 9,347,934 B2 Shekdar et al. (45) Date of Patent: May 24, 2016 (54) ASSAYS FOR IDENTIFYING COMPOUNDS 2008, OO38739 A1 2/2008 Li et al. THAT MODULATE BITTERTASTE 2008/0167286 A1* 7/2008 Gopalakrishnan et al. ........................ 514,21016 (71) Applicants: CHROMOCELL CORPORATION, 2010/01298.33 A1* 5/2010 Brune et al. ................. 435/721 North Brunswick, NJ (US); KRAFT FOODS GROUP BRANDS LLC, FOREIGN PATENT DOCUMENTS Northfield, IL (US) CN 1341632 A 3, 2002 CN 101583717 A 11, 2009 (72) Inventors: Kambiz Shekdar, New York, NY (US); CN 101828.111 A 9, 2010 Purvi Manoj Shah, Bridgewater, NJ WO WO-0038536 A2 7, 2000 WO WO-2004O29087 4/2004 (US); Joseph Gunnet, Flemington, NJ WO WO-2006053771 A2 5, 2006 (US); Jane V. Leland, Wilmette, IL WO WO-2007002026 A2 1/2007 (US); Peter H. Brown, Glenview, IL WO WO-2008057470 5, 2008 (US); Louise Slade, Morris Plains, NJ WO WO-2008119.195 A1 10, 2008 (US) WO WO-20081191.96 10, 2008 WO WO-20081191.97 10, 2008 (73) Assignees: Chromocell Corporation, North W WSi. A2 1929 Brunswick, NJ (US); Kraft Foods WO WO-2010O886.33 8, 2010 Group Brands LLC, Northfield, IL WO WO-2010O99983 A1 9, 2010 (US) WO WO-2013022947 2, 2013 (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. Bachmanov et al., Taste Receptor Genes, 2007, 27:389-414.* Behrens et al., Structural Requirements for Bitter Taste Receptor (21) Appl.
    [Show full text]