Downloaded from the National Center for Biotechnology Information a Set of 41 Representative Strains, Belonging to All (NCBI) and “Alternaria Genomes Database” (AGD)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diplodia Corticola FERNANDES
Universidade de Aveiro Departamento de Biologia 2015 ISABEL OLIVEIRA Mecanismo de infecção de Diplodia corticola FERNANDES Infection mechanism of Diplodia corticola A tese foi realizada em regime de co-tutela com a Universidade de Ghent na Bélgica. The thesis was realized in co-tutelle regime (Joint PhD) with the Ghent University in Belgium. Universidade de Aveiro Departamento de Biologia 2015 ISABEL OLIVEIRA Mecanismo de infecção de Diplodia corticola FERNANDES Infection mechanism of Diplodia corticola Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Biologia, realizada sob a orientação científica da Doutora Ana Cristina de Fraga Esteves, Professora Auxiliar Convidada do Departamento de Biologia da Universidade de Aveiro e co-orientações do Doutor Artur Jorge da Costa Peixoto Alves, Investigador Principal do Departamento de Biologia da Universidade de Aveiro e do Doutor Bart Devreese, Professor Catedrático do Departamento de Bioquímica e Microbiologia da Universidade de Ghent. A tese foi realizada em regime de co-tutela com a Universidade de Ghent. Apoio financeiro da FCT e do Apoio financeiro da FCT e do FSE no FEDER através do programa âmbito do III Quadro Comunitário de COMPETE no âmbito do projecto de Apoio. investigação PROMETHEUS. Bolsa com referência BD/66223/2009 Bolsas com referência: PTDC/AGR-CFL/113831/2009 FCOMP-01-0124-FEDER-014096 Perguntaste-me um dia o que pretendia fazer a seguir, Respondi-te simplesmente que gostaria de ir mais além, Assim fiz! Gostava que me perguntasses de novo... Ao meu pai, You asked me one day what I intended to do next, I simply answered you that I would like to go further, I did so! I would like you ask me again.. -
By Thesis for the Degree of Doctor of Philosophy
COMPARATIVE ANATOMY AND HISTOCHEMISTRY OF TIIE ASSOCIATION OF PUCCIiVIA POARUM WITH ITS ALTERNATE HOSTS By TALIB aWAID AL-KHESRAJI Department of Botany~ Universiiy of SheffieZd Thesis for the degree of Doctor of Philosophy JUNE 1981 Vol 1 IMAGING SERVICES NORTH Boston Spa, Wetherby West Yorkshire, lS23 7BQ www.bl.uk BEST COpy AVAILABLE. VARIABLE PRINT QUALITY TO MY PARENTS i Ca.1PARATIVE ANATCl1Y AND HISTOCHEMISTRY OF THE ASSOCIATION OF PUCCINIA POARUM WITH ITS ALTERNATE HOSTS Talib Owaid Al-Khesraji Depaptment of Botany, Univepsity of Sheffield The relationship of the macrocyclic rust fungus PUccinia poarum with its pycnial-aecial host, Tussilago fapfaPa, and its uredial-telial host, Poa ppatensis, has been investigated, using light microscopy, electron microscopy and micro-autoradiography. Aspects of the morp hology and ontogeny of spores and sari, which were previously disputed, have been clarified. Monokaryotic hyphae grow more densely in the intercellular spaces of Tussilago leaves than the dikaryotic intercellular hyphae on Poa. Although ultrastructurally sbnilar, monokaryotic hyphae differ from dikaryotic hyphae in their interaction with host cell walls, often growing embedded in wall material which may project into the host cells. The frequency of penetration of Poa mesophyll cells by haustoria of the dikaryon is greater than that of Tussilago cells by the relatively undifferentiated intracellular hyphae of the monokaryon. Intracellular hyphae differ from haustoria in their irregular growth, septation, lack of a neck-band or markedly constricted neck, the deposition of host wall-like material in the external matrix bounded by the invaginated host plasmalemma and in the association of callose reactions \vith intracellular hyphae and adjacent parts of host walls. -
Resolving Cryptic Species Complexes in Diplodia
RESOLVING CRYPTIC SPECIES COMPLEXES IN DIPLODIA Joana Filipa de Sousa Ramos Reis Lopes Dissertação para obtenção do Grau de Mestre em Engenharia Agronómica - Biotecnologia e Melhoramento de Plantas Orientador: Doutor Alan John Lander Phillips Co-orientador: Doutora Maria Helena Mendes da Costa Ferreira Correia de Oliveira Júri: Presidente: Doutora Cristina Maria Moniz Simões de Oliveira, Professora Associada do Instituto Superior de Agronomia da Universidade Técnica de Lisboa. Vogais: Doutora Maria Helena Mendes da Costa Ferreira Correia de Oliveira, Professora Associada do Instituto Superior de Agronomia da Universidade Técnica de Lisboa; Doutor Alan John Lander Phillips, Investigador Principal da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa; Doutora Maria Cecília Nunes Farinha Rego, Investigadora Auxiliar do Laboratório de Patologia Vegetal “Veríssimo de Almeida”. Lisboa, 2008 Aos meus pais. ii Acknowledgements Firstly, I would like to thank Dr. Alan Phillips to whom I had the privilege to work with, for the suggestion of the studied theme and the possibility to work in his project. For the scientific orientation in the present work, the teachings and advices and for the support and persistency in the achievement of a coherent and consistent piece of work; I would also like to thank Prof. Dr. Helena Oliveira for the support and constant availability and especially for her human character and kindness in the most stressful moments; To Eng. Cecília Rego for the interest, attention and encouragement; To Dr. Artur Alves -
Bot 316 Mycology and Fungal Physiology
BOT 316 MYCOLOGY AND FUNGAL PHYSIOLOGY Dr Osondu Akoma 2011 BOT 316 MYCOLOGY AND FUNGAL PHYSIOLOGY INTRODUCTION HISTORICAL BACKGROUND Mycology is a classical translation of the Greek word Mykes logos which means mushroom discussion, thus mycology is the study of fungi. In the past this area of science was limited to the study of mushrooms but as science developed, the scope of the subject widened far beyond the objects seen with the naked eyes with the discovery of microscopes. The development of mycology cannot be isolated from that of science. The ancestry of fungi is ancient, dating back to the Devonian and Precambrian eras. The history is also influenced by calamities and man has always kept record from time and as such the first record of fungi was not that of observing fungi directly but that of their harmful effects. The Romans and Greeks have a lot in their records. Even in the Holy Bible there are many references of the fungi and their effects; Leviticus 14: 4-48, 1Kings 8:37, Deuteronomy 28:22. The first indication that man saw fungi as food was a report of death at Icarius. The first book devoted to fungi is the Van Sterbeek’s “Theatrum Fungerium” in 1675 and this work distinguished the edible from the poisonous mushrooms. The discovery of the microscope led to the systematic study of the fungi. Robert Hooke was credited with the first illustration of micro fungi in 1667 in his work titled Micrographa . The Greeks and Romans regarded fungi as mysterious things. They were regarded as the “evil formats of the earth originating from the mouth of vipers”. -
Study of Fungi- SBT 302 Mycology
MYCOLOGY DEPARTMENT OF PLANT SCIENCES DR. STANLEY KIMARU 2019 NOMENCLATURE-BINOMIAL SYSTEM OF NOMENCLATURE, RULES OF NOMENCLATURE, CLASSIFICATION OF FUNGI. KEY TO DIVISIONS AND SUB-DIVISIONS Taxonomy and Nomenclature Nomenclature is the naming of organisms. Both classification and nomenclature are governed by International code of Botanical Nomenclature, in order to devise stable methods of naming various taxa, As per binomial nomenclature, genus and species represent the name of an organism. Binomials when written should be underlined or italicized when printed. First letter of the genus should be capital and is commonly a noun, while species is often an adjective. An example for binomial can be cited as: Kingdom = Fungi Division = Eumycota Subdivision = Basidiomycotina Class = Teliomycetes Order = Uredinales Family = Pucciniaceae Genus = Puccinia Species = graminis Classification of Fungi An outline of classification (G.C. Ainsworth, F.K. Sparrow and A.S. Sussman, The Fungi Vol. IV-B, 1973) Key to divisions of Mycota Plasmodium or pseudoplasmodium present. MYXOMYCOTA Plasmodium or pseudoplasmodium absent, Assimilative phase filamentous. EUMYCOTA MYXOMYCOTA Class: Plasmodiophoromycetes 1. Plasmodiophorales Plasmodiophoraceae Plasmodiophora, Spongospora, Polymyxa Key to sub divisions of Eumycota Motile cells (zoospores) present, … MASTIGOMYCOTINA Sexual spores typically oospores Motile cells absent Perfect (sexual) state present as Zygospores… ZYGOMYCOTINA Ascospores… ASCOMYCOTINA Basidiospores… BASIDIOMYCOTINA Perfect (sexual) state -
Master Thesis
Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Forest Mycology and Plant Pathology Uppsala 2011 Taxonomic and phylogenetic study of rust fungi forming aecia on Berberis spp. in Sweden Iuliia Kyiashchenko Master‟ thesis, 30 hec Ecology Master‟s programme SLU, Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Forest Mycology and Plant Pathology Iuliia Kyiashchenko Taxonomic and phylogenetic study of rust fungi forming aecia on Berberis spp. in Sweden Uppsala 2011 Supervisors: Prof. Jonathan Yuen, Dept. of Forest Mycology and Plant Pathology Anna Berlin, Dept. of Forest Mycology and Plant Pathology Examiner: Anders Dahlberg, Dept. of Forest Mycology and Plant Pathology Credits: 30 hp Level: E Subject: Biology Course title: Independent project in Biology Course code: EX0565 Online publication: http://stud.epsilon.slu.se Key words: rust fungi, aecia, aeciospores, morphology, barberry, DNA sequence analysis, phylogenetic analysis Front-page picture: Barberry bush infected by Puccinia spp., outside Trosa, Sweden. Photo: Anna Berlin 2 3 Content 1 Introduction…………………………………………………………………………. 6 1.1 Life cycle…………………………………………………………………………….. 7 1.2 Hyphae and haustoria………………………………………………………………... 9 1.3 Rust taxonomy……………………………………………………………………….. 10 1.3.1 Formae specialis………………………………………………………………. 10 1.4 Economic importance………………………………………………………………... 10 2 Materials and methods……………………………………………………………... 13 2.1 Rust and barberry -
Auaust 17, 1929] NATURE 267
AuausT 17, 1929] NATURE 267 anxiety, especially among biologists, who are used to pycniospores of one sex are applied to a pycnium of checking the adequacy of their methods by control opposite sex, the pycniospores are stimulated to experiments. The difficulty of obtaining decisive germinate and to produce haploid hyphoo which grow results often flows from heterogeneity of material, down to the hypha! wefts near the lower epidermis and often from causes of bias, often, too, from the diffi there fuse with cells of opposite sex. The solution of culty of setting up an experiment in such a way as to the p:oblem of tracing the hyphoo from the germinating obtain a valid estimate of error. I have never known pycmospores to the base of the oocium must await difficulty to arise in biological work from imperfect further investigation. W. F. HANNA. normality of the variation, often though I have Dominion Rust Research Laboratory, examined data for this particular cause of difficulty; Winnipeg, June 24. nor is there, I believe, any case to the contrary in the literature. This is not to say that the deviation from The Crystal Structure of Solid Nitrogen. " Student's " t-distribution found by Shewhart and RECENT researches on the luminescence of solidified Winters, for samples from rectangular and triangular gases have shown that systems consisting of mixtures distributions, may not have a real application in some of nitrogen with inert gases give a great variety of technological work, but rather that such deviations oscillatory bands, which are intimately connected have not been found, and are scarcely to be looked for, with the oscillations which the nitrogen atoms are in biological research as ordinarily conducted. -
Objective Plant Pathology
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/305442822 Objective plant pathology Book · July 2013 CITATIONS READS 0 34,711 3 authors: Surendra Nath M. Gurivi Reddy Tamil Nadu Agricultural University Acharya N G Ranga Agricultural University 5 PUBLICATIONS 2 CITATIONS 15 PUBLICATIONS 11 CITATIONS SEE PROFILE SEE PROFILE Prabhukarthikeyan S. R ICAR - National Rice Research Institute, Cuttack 48 PUBLICATIONS 108 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Management of rice diseases View project Identification and characterization of phytoplasma View project All content following this page was uploaded by Surendra Nath on 20 July 2016. The user has requested enhancement of the downloaded file. Objective Plant Pathology (A competitive examination guide)- As per Indian examination pattern M. Gurivi Reddy, M.Sc. (Plant Pathology), TNAU, Coimbatore S.R. Prabhukarthikeyan, M.Sc (Plant Pathology), TNAU, Coimbatore R. Surendranath, M. Sc (Horticulture), TNAU, Coimbatore INDIA A.E. Publications No. 10. Sundaram Street-1, P.N.Pudur, Coimbatore-641003 2013 First Edition: 2013 © Reserved with authors, 2013 ISBN: 978-81972-22-9 Price: Rs. 120/- PREFACE The so called book Objective Plant Pathology is compiled by collecting and digesting the pertinent information published in various books and review papers to assist graduate and postgraduate students for various competitive examinations like JRF, NET, ARS conducted by ICAR. It is mainly helpful for students for getting an in-depth knowledge in plant pathology. The book combines the basic concepts and terminology in Mycology, Bacteriology, Virology and other applied aspects. -
Botryosphaeriaceae Species Associated with Cankers and Dieback of Grapevine and Other Woody Hosts in Agricultural and Forestry Ecosystems
UNIVERSITÀ DEGLI STUDI DI SASSARI SCUOLA DI DOTTORATO DI RICERCA Scienze e Biotecnologie dei Sistemi Agrari e Forestali e delle Produzioni Alimentari Indirizzo Monitoraggio e Controllo degli Ecosistemi Forestali in Ambiente Mediterraneo Ciclo XXVII Botryosphaeriaceae species associated with cankers and dieback of grapevine and other woody hosts in agricultural and forestry ecosystems dr. Antonio Deidda Direttore della Scuola prof. Alba Pusino Referente di Indirizzo prof. Ignazio Floris Docente Guida prof. Salvatorica Serra Tutor dott. Benedetto T. Linaldeddu Anno accademico 2013 - 2014 UNIVERSITÀ DEGLI STUDI DI SASSARI SCUOLA DI DOTTORATO DI RICERCA Scienze e Biotecnologie dei Sistemi Agrari e Forestali e delle Produzioni Alimentari Indirizzo Monitoraggio e Controllo degli Ecosistemi Forestali in Ambiente Mediterraneo Ciclo XXVII La presente tesi è stata prodotta durante la frequenza del corso di dottorato in “Scienze e Biotecnologie dei Sistemi Agrari e Forestali e delle Produzioni Alimentari” dell’Università degli Studi di Sassari, a.a. 2013/2014 - XXVII ciclo, con il supporto di una borsa di studio finanziata con le risorse del P.O.R. SARDEGNA F.S.E. 2007-2013 - Obiettivo competitività regionale e occupazione, Asse IV Capitale umano, Linea di Attività l.3.1 “Finanziamento di corsi di dottorato finalizzati alla formazione di capitale umano altamente specializzato, in particolare per i settori dell’ICT, delle nanotecnologie e delle biotecnologie, dell'energia e dello sviluppo sostenibile, dell'agroalimentare e dei materiali tradizionali”. Antonio Deidda gratefully acknowledges Sardinia Regional Government for the financial support of his PhD scholarship (P.O.R. Sardegna F.S.E. Operational Programme of the Autonomous Region of Sardinia, European Social Fund 2007-2013 - Axis IV Human Resources, Objective l.3, Line of Activity l.3.1.) Table of contents Table of contents Chapter 1. -
ASCOMYCOTINA the 'Sac Fungi'
ASCOMYCOTINA The ‘Sac fungi’ General character of ASCOMYCOTINA • Largest group of fungi – more than 32,000 species in 3,400 genera • Name derived from Greek word: askos – bag or bladder and mykes – fungus • Sexually produced spores (ascospores) are contained within a sac (ascus) • Include both saprophytic and parasitic species • Some are symbionts – about 40% of lichen have ascomycotina members as fungal partner • Majority are terrestrial but few are aquatic – marine and fresh water Vegetative structure • Thallus may be unicellular (Yeast) or mycelial • Mycelium is well developed with branched and septate hyphae • Septa with simple pore • Hyphae compactly or loosely arranged • Mycelium may be homokaryotic – all neclei are genetically similar or heterokaryotic – nuclei are genetically different • Some members (Eg. Xylaria, Claviceps) form hyphal aggregations – Stroma, Sclerotium Reproduction • Asexual or Sexual reproduction Asexual reproduction • By formation of spores • Conidia, Oidia or Chlamydospores Conidia • Important mode of asexual reproduction in Ascomycotina • Exogenous, non-motile spores • Produced on tip of conidiophores – branched or unbranced / unicellular or multicellular • Single or many chains of conidia are formed on a conidiophore • Conidia are generally formed basipetally • Formation of conidia on conidiophore (conidiogenesis) occurs in two ways – Blastic conidiogenesis: conidium develops by blowing out of wall of a cell, usually from the tip of a hypha – Thallic conidiogenesis: conidium develops from a pre-existing -
Protection of Grapevine Pruning Wounds Against Phaeomoniella
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.26.117374; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Protection of grapevine pruning wounds against Phaeomoniella 2 chlamydospora and Diplodia seriata by biological and chemical 3 methods 4 5 6 María del Pilar Martínez-Diza,b, Emilia Díaz-Losadaa, Ángela Díaz-Fernándeza, Yolanda 7 Bouzas-Cida, David Gramajec,* 8 9 10 aEstación de Viticultura e Enoloxía de Galicia (AGACAL-EVEGA), Ponte San Clodio s/n 11 32428-Leiro-Ourense, Spain. 12 bUniversidade da Coruña, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain. 13 cInstituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones 14 Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La 15 Grajera, 26071 Logroño, Spain. 16 17 18 * Corresponding author. Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior 19 de Investigaciones Científicas, Universidad de la Rioja, Gobierno de La Rioja, Ctra. LO-20 20 Salida 13, 26007 Logroño, Spain. 21 E-mail address: [email protected] (D. Gramaje) 22 23 24 25 26 27 28 ABSTRACT 29 The grapevine trunk diseases (GTDs) Botryosphaeria dieback and esca threaten the 30 sustainability of the grapevine industry worldwide. This study aimed to evaluate and compare 31 the efficacy of various liquid (pyraclostrobin + boscalid and thiophanate methyl) and paste 32 (paste + tebuconazole) formulation fungicide treatments, and biological control agents 33 (Trichoderma atroviride SC1 and T. -
What Do We Know About Botryosphaeriaceae? an Overview of a Worldwide Cured Dataset
Review What Do We Know about Botryosphaeriaceae? An Overview of a Worldwide Cured Dataset Eduardo Batista , Anabela Lopes and Artur Alves * CESAM, Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; [email protected] (E.B.); [email protected] (A.L.) * Correspondence: [email protected] Abstract: Botryosphaeriaceae-related diseases occur worldwide in a wide variety of plant hosts. The number of studies targeting the distribution, diversity, ecology, and pathogenicity of Botryosphaeri- aceae species are consistently increasing. However, with the lack of consistency in species delimita- tion, the name of hosts, and the locations of studies, it is almost impossible to quantify the presence of these species worldwide, or the number of different host–fungus interactions that occur. In this re- view, we collected and organized Botryosphaeriaceae occurrences in a single cured dataset, allowing us to obtain for the first time a complete perspective on species’ global diversity, dispersion, host association, ecological niches, pathogenicity, communication efficiency of new occurrences, and new host–fungus associations. This dataset is freely available through an interactive and online applica- tion. The current release (version 1.0) contains 14,405 cured isolates and 2989 literature references of 12,121 different host–fungus interactions with 1692 different plant species from 149 countries. Keywords: Botryosphaeriaceae; fungal diversity; host jumps; pathogenicity; ecological niches; quarantine measures Citation: Batista, E.; Lopes, A.; Alves, A. What Do We Know about Botryosphaeriaceae? An Overview of a Worldwide Cured Dataset. Forests 1. Introduction 2021, 12, 313. https://doi.org/ Species of Botryosphaeriaceae (Botryosphaeriales, Ascomycetes) are distributed world- 10.3390/f12030313 wide and are known to have different ecological roles.