Reentry Motion and Aerodynamics of the MUSES-C Sample Return Capsule
Total Page:16
File Type:pdf, Size:1020Kb
Trans. Japan Soc. Aero. Space Sci. Vol. 51, No. 172, pp. 65–70, 2008 Reentry Motion and Aerodynamics of the MUSES-C Sample Return Capsule By Nobuaki ISHII,1Þ Tetsuya YAMADA,1Þ Koju HIRAKI2Þ and Yoshifumi INATANI1Þ 1ÞThe Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan 2ÞKyushu Institute of Technology, Kita-Kyushu, Japan (Received June 21st, 2006) The Hayabusa spacecraft (MUSES-C) carries a small capsule for bringing asteroid samples back to the earth. The initial spin rate of the reentry capsule together with the flight path angle of the reentry trajectory is a key parameter for the aerodynamic motion during the reentry flight. The initial spin rate is given by the spin-release mechanism attached between the capsule and the mother spacecraft, and the flight path angle can be modified by adjusting the earth approach orbit. To determine the desired values of both parameters, the attitude motion during atmospheric flight must be clarified, and angles of attack at the maximum dynamic pressure and the parachute deployment must be assessed. In previous studies, to characterize the aerodynamic effects of the reentry capsule, several wind-tunnel tests were conducted using the ISAS high-speed flow test facilities. In addition to the ground test data, the aerodynamic properties in hypersonic flows were analyzed numerically. Moreover, these data were made more accurate using the results of balloon drop tests. This paper summarized the aerodynamic properties of the reentry capsule and simulates the attitude motion of the full- configuration capsule during atmospheric flight in three dimensions with six degrees of freedom. The results show the best conditions for the initial spin rates and flight path angles of the reentry trajectory. Key Words: Reentry Aerodynamics, Attitude Motion of Blunt-Nose Capsule Nomenclature dominant design parameters, governing the attitude motion during reentry. CA: axial force coefficient In previous studies, to determine acceptable reentry con- CLp: roll rate damping coefficient ditions, aerodynamic properties were modeled as a function 7,8) CM: pitching moment coefficient of Mach number and angle of attack. These data were CMq: pitch rate damping coefficient obtained from wind-tunnel tests in the subsonic through CN: normal force coefficient supersonic region, and analyzed numerically in the hyper- Dp: dynamic pressure sonic region. On the other hand, the convective and radiative M: Mach number heating at the stagnation point was also modeled as a func- p0: initial pitch rate at atmospheric entry tion of air density and flight velocity, whose parameters r0: initial spin rate at atmospheric entry were evaluated by a series of aerothermodynamic analyses : angle of attack taking into account the radiant in the high temperature shock 0: initial angle of attack at atmospheric entry layer and succeeding flow and interaction between outer 9–12) n: nutation angle (half coning angle) of capsule defined flow and ablation products. The results of balloon-drop as angle between angular momentum and spin axis of tests enabled data modification in the transonic region and capsule also revealed that the angle of attack must be less than 15 at parachute deployment and less than 5.5 at maximum 1. Introduction dynamic pressure.13–15) This paper uses the modified aerody- namic model to numerically simulate attitude motion to find The Hayabusa spacecraft (MUSES-C) was launched in the set of design parameters, such as position of center of May 2003 and arrived at the small ITOKAWA asteroid in gravity, initial flight path angle, and initial spin rate at atmo- September 2005.1–3) Under the current schedule, the space- spheric entry, to satisfy the above requirements for angles craft will return to the earth in 2010 with a small reentry of attack. capsule4,5) containing asteroid surface soil. The capsule will Section 2 outlines the configuration of the reentry capsule enter the earth’s atmosphere directly at the hypervelocity of and Section 3 summarizes the aerodynamic properties. the interplanetary orbit.6) After severe aerodynamic deceler- Using the more accurate aerodynamic model, the attitude ation, the capsule will deploy its parachute and carry the motion of the capsule is simulated numerically and asteroid sample to the ground. At the reentry phase, the the effects of aerodynamic coefficients are analyzed in initial spin rate of the capsule and the flight path angle are Section 4. Ó 2008 The Japan Society for Aeronautical and Space Sciences 66 Trans. Japan Soc. Aero. Space Sci. Vol. 51, No. 172 Fig. 2. Axial force coefficient vs. Mach number. Fig. 1. Outline configuration and dimensions of reentry capsule. 2. Configuration of Reentry Capsule The outline configuration of the reentry capsule is shown in Fig. 1. The shape was determined within restricted weight and dimensions to maximize the internal volume for instal- ling the sample canister, parachute, pyrotechnic devices, and electronic devices.4,5) The capsule has a hemispherical nose with 202-mm diameter and conical side body with 45 half cone angle. The maximum diameter is 404 mm, and the mass is 17 kg. The position of the center of gravity is about 120 mm from the nose. The moments of inertia around the three axes x, y, and z are 0.289, 0.147, and 0.136 kg m2, respectively. The nutation angle (half coning angle) n of the capsule mainly due to the attitude disturb- ance at capsule separation from the mother spacecraft is Fig. 3. Normal force coefficient vs. Mach number. defined as the angle between the angular momentum and spin axis of the capsule, i.e., the angle n is equivalent to the inverse tangent of ðIyy p0Þ=ðIxxr0Þ. 10% to 20% smaller than the zero angle of attack values. The normal force generated by is quite a lot smaller than 3. Aerodynamic Properties the axial force. 3.2. Static stability In the subsonic, transonic and supersonic regions The pitching moment coefficients CM as a function of (M < 4), sub-scale model wind tunnel tests were conducted Mach number are shown in Fig. 4. It is clear that the capsule using the ISAS high-speed flow test facilities. These wind- is statically stable throughout the flight Mach number rang- tunnel data were modified using the results of the balloon- ing from 30 to zero, although the stability is somewhat lower drop tests.6–8) In the hypersonic region (M > 4), the aerody- in the transonic region. As shown in Fig. 5, the effect of namic properties were analyzed numerically on the basis moving the center of gravity on CM is about 10% for of the Newtonian approximation. In addition, the diffuse 10 mm of movement. reflection model was applied in the rarefied flow regime 3.3. Dynamic damping for Knudsen numbers greater than 1/1000. The wind-tunnel The pitch rate damping coefficients CMq are shown in data were obtained for angles of attack smaller than Figs. 6 and 7. In the subsonic and transonic regimes, CMq 35, while aerodynamic coefficients are assumed constant is positive for angles of attack smaller than 13 and negative for 35. for angles of attack larger than 13. In this situation, at 3.1. Axial and normal forces angles of attack smaller than 13, the attitude is dynamically The axial force coefficients CA and normal force coeffi- unstable due to the positive value of CMq; at angles of attack cients CN are shown in Figs. 2 and 3, respectively. CA has larger than 13 , the attitude is dynamically stable due to the its peak values at M ¼ 1 and Mach-number-independent negative value of CMq. On the other hand, in the hypersonic values in the hypersonic regime. Due to the effect, CA is regime, CMq has small negative values independent of the Aug. 2008 N. ISHII et al.: Reentry Motion of MUSES-C Capsule 67 Fig. 4. Pitching moment coefficient vs. Mach number. Fig. 6. Dynamic damping vs. Mach number. Fig. 5. Effect of movement of center of gravity on static stability. Fig. 7. Effect of angle of attack on dynamic damping. angle of attack. In this situation, the attitude remains dynam- parameters and can be modified by adjusting the perigee ically stable. altitude of the earth approach orbit. The nominal angle of Accurate estimation of the roll rate damping coefficient attack of the capsule should be zero to reduce aerodynamic CLp is difficult. Although CLp is zero for an ideally axisym- heating, while the maximum error in attitude pointing is metric body in inviscid flow, it has a small negative value in estimated to be 5.4) viscous flows due to surface friction. In the following atti- The initial spin rate is given by the spin-release mecha- tude simulation, a constant value CLp ¼0:01 is assumed nism between the capsule and mother spacecraft. A spring in all flight conditions independent of Mach number and in the mechanism gives the spin rate together with the trans- angle of attack. lational speed for capsule separation. Due to the mechanical fittings between the mother spacecraft and capsule, attitude 4. Analysis of Attitude Motion disturbance is generated in the pitch and yaw rates at sepa- ration. From separation tests using a microgravity free-fall Using the aerodynamic coefficients mentioned above, the tower, the maximum disturbance was about 1/3 of the spin attitude motion is simulated numerically in three dimensions rate, and the nutation angle (half coning angle) n, i.e., with six degrees of freedom. equivalent to the inverse tangent of ðIyy p0Þ=ðIxxr0Þ, was 4.1. Initial conditions 9.6.16) The nominal conditions for position, velocity and When considering the initial conditions of reentry trajec- attitude of the reentry trajectory are listed in Table 1. tories, the entry velocity is given from the orbital energy of The following sections analyze reasonable values for the the interplanetary approach orbit to earth and the altitude of flight path angle and the initial spin rate together with the the interface point at atmospheric entry.6) On the other hand, effects of aerothermodynamic environments and aerody- the flight path angle of the reentry trajectory is a changeable namic stability.