Human Spaceflight
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Space Reporter's Handbook Mission Supplement
CBS News Space Reporter's Handbook - Mission Supplement Page 1 The CBS News Space Reporter's Handbook Mission Supplement Shuttle Mission STS-125: Hubble Space Telescope Servicing Mission 4 Written and Produced By William G. Harwood CBS News Space Analyst [email protected] CBS News 5/10/09 Page 2 CBS News Space Reporter's Handbook - Mission Supplement Revision History Editor's Note Mission-specific sections of the Space Reporter's Handbook are posted as flight data becomes available. Readers should check the CBS News "Space Place" web site in the weeks before a launch to download the latest edition: http://www.cbsnews.com/network/news/space/current.html DATE RELEASE NOTES 08/03/08 Initial STS-125 release 04/11/09 Updating to reflect may 12 launch; revised flight plan 04/15/09 Adding EVA breakdown; walkthrough 04/23/09 Updating for 5/11 launch target date 04/30/09 Adding STS-400 details from FRR briefing 05/04/09 Adding trajectory data; abort boundaries; STS-400 launch windows Introduction This document is an outgrowth of my original UPI Space Reporter's Handbook, prepared prior to STS-26 for United Press International and updated for several flights thereafter due to popular demand. The current version is prepared for CBS News. As with the original, the goal here is to provide useful information on U.S. and Russian space flights so reporters and producers will not be forced to rely on government or industry public affairs officers at times when it might be difficult to get timely responses. All of these data are available elsewhere, of course, but not necessarily in one place. -
Tailored Force Fields for Space-Based Construction: Key to a Space-Based Economy Phase 1 Final Report
Tailored Force Fields for Space-Based Construction: Key to a Space-Based Economy Phase 1 Final Report NIAC-CP-01-02, USRA Subcontract 07600-091 Narayanan Komerath Sam Wanis, Balakrishnan Ganesh, Joseph Czechowski, Waqar Zaidi, Joshua Hardy, Priya Gopalakrishnan School of Aerospace Engineering, Georgia Institute of Technology Atlanta GA 30332-0150 [email protected] November 2002 Contents 1. Abstract Page 3 2.Introduction to Tailored Force Fields 4 Forces in steady and unsteady potential fields Time line / Application Roadmap 3.Theory connecting acoustic, optical, microwave and radio regimes. 7 4. Task Report: Acoustic Shaping 12 Prior results Inverse-design Shape Generation Software 5. Task Report: Intermediate Term: Architecture for Radiation Shield Project Near Earth 16 Shield-Building Architecture. Launcher and boxcar considerations Deployment of the Outer Grid of the Radiation Shield “Shepherd” Rendezvous-Guidance-Delivery Vehicles. 6. Task Report: Exploration of cost and architecture models for a Space-Based 24 Economy 7. Task Report: Exploration of large-scale construction using Asteroids and Radio 34 Waves Parameter space and design point Power and material requirements Technology status 8. Opportunities& Outreach related to this project 45 SEM Expt. Preparation GAS Expt. Preparation Papers, presentations, discussions Media coverage & public interest “NASA Means Business” program synergy 9. Summary of Issues Identified 49 Metal production and hydrogen recycling Resonator / waveguide technology Cost linkage to comprehensive plan Microwave demonstrator experiment 10. Conclusions 51 11. Acknowledgements 53 12. References 54 2 1. Abstract Before humans can venture to live for extended periods in Space, the problem of building radiation shields must be solved. All current concepts for permanent radiation shields involve very large mass, and expensive and hazardous construction methods. -
The Newsletter of the Barnard-Seyfert Astronomical Society
June TheECLIPSE 2020 The Newsletter of the Barnard-Seyfert Astronomical Society From the President It’s been another long, strange month. Lots of things have been happening that aren’t in the Next Membership Meeting: realm of astronomy and I have been distracted by Stay tuned to the BSAS Google Group it all. As you know, we haven’t had a meeting in a or Night Sky Network email for couple of months, and I am really starting to miss information about future meetings. the meetings. It is nice to get out of the house and socialize with people that share a common interest. Hopefully this month is the month that we can come together as a group and get back into a new normal routine. Watch for emails and Facebook updates regarding the monthly meeting. Last month did have a big space event with the In this Issue: launch of the SpaceX Crew Dragon capsule to the Happy Birthday Pete Conrad ISS late in the month. It marks a return to U.S. byRobinByrne 3 spaceflight and NASA working with private corporations to get astronauts into space. I hope Summer Triangle Corner: Vega you had a chance to watch the launch on TV or by David Prosper and VivianWhite 8 the Internet, it was very exciting to see. I have not been around long enough to remember the Apollo BSAS Board Minutes launch days, but it did bring back memories of the May6,2020 10 shuttle launches for me. I hope this gets America excited about space travel again and brings back Membership Information 13 talk of getting people to the moon. -
Go for Lunar Landing Conference Report
CONFERENCE REPORT Sponsored by: REPORT OF THE GO FOR LUNAR LANDING: FROM TERMINAL DESCENT TO TOUCHDOWN CONFERENCE March 4-5, 2008 Fiesta Inn, Tempe, AZ Sponsors: Arizona State University Lunar and Planetary Institute University of Arizona Report Editors: William Gregory Wayne Ottinger Mark Robinson Harrison Schmitt Samuel J. Lawrence, Executive Editor Organizing Committee: William Gregory, Co-Chair, Honeywell International Wayne Ottinger, Co-Chair, NASA and Bell Aerosystems, retired Roberto Fufaro, University of Arizona Kip Hodges, Arizona State University Samuel J. Lawrence, Arizona State University Wendell Mendell, NASA Lyndon B. Johnson Space Center Clive Neal, University of Notre Dame Charles Oman, Massachusetts Institute of Technology James Rice, Arizona State University Mark Robinson, Arizona State University Cindy Ryan, Arizona State University Harrison H. Schmitt, NASA, retired Rick Shangraw, Arizona State University Camelia Skiba, Arizona State University Nicolé A. Staab, Arizona State University i Table of Contents EXECUTIVE SUMMARY..................................................................................................1 INTRODUCTION...............................................................................................................2 Notes...............................................................................................................................3 THE APOLLO EXPERIENCE............................................................................................4 Panelists...........................................................................................................................4 -
Np-2015-03-011-Jsc-Expedition-43
National Aeronautics and Space Administration International Space Station [MISSION SUMMARY] began March 11, 2015 and ends May 13, 2015. This expedition will include the EXPEDITION 43 beginning of research projects focusing on the One-Year mission, which includes medical, psychological and biomedical studies with NASA Astronaut Scott Kelly and Roscosmos Cosmonaut Mikhail Kornienko who will spend a year in space. Expedition 43 also will include astrophysics research, physical science investigations and technology demonstrations. There are no spacewalks planned during Expedition 43. THE CREW: Soyuz TMA-15M • Launch: Nov. 23, 2014 • Landing: May 13, 2015 Soyuz TMA-16M • March 27, 2015 • Landing: September 11, 2015 Note: Kelly and Kornienko will remain onboard until March 2016 Terry Virts (NASA) – Commander Gennady Padalka (Roscosmos) – Flight Engineer (Verts) (Puh-DOLL-kuh) Born: Baltimore Born: Krasnodar, Russia Interests: Astronomy, baseball, coaching youth sports Interests: Diving, parachute sport and theater Spaceflights: STS-130 Spaceflights: Soyuz-TM-28/Mir Exp. 26, ISS Exps. 9, 19 Bio: http://go.nasa.gov/w1eH1s and 20 Twitter: @AstroTerry Bio: http://go.nasa.gov/1u1HVm6 Anton Shkaplerov (Roscosmos) – Flight Engineer Scott Kelly (NASA) – Flight Engineer (SHKAP-luh-roff) Born: Sevastopol, Crimean Peninsula Born: Orange, New Jersey Interests: Fishing, golf, sports, travel Interests: Racquetball, running, water sports and Spaceflights: Exps. 29 and 30 weight lifting Bio: http://go.nasa.gov/1Dmd1Yd Spaceflights: STS-103, STS-118, Exps. 25 and 26 Twitter: @AntonAstrey Bio: http://go.nasa.gov/SbcMZD Twitter: @StationCDRKelly Instagram: stationcdrkelly Samantha Cristoforetti (ESA) – Flight Engineer Mikhail Kornienko (Roscosmos) – Flight Engineer (Cris-ta-four-REHT-ee) (Kor-knee-EHN-koh) Born: Milan, Italy Born: Syzran, Russia Interests: Hiking, reading, scuba diving, travel, yoga Interests: Mountaineering Spaceflights: Exps. -
California State University, Northridge Low Earth Orbit
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE LOW EARTH ORBIT BUSINESS CENTER A Project submitted in partial satisfaction of the requirements for the degree of Master of Science in Engineering by Dallas Gene Bienhoff May 1985 The Proj'ectof Dallas Gene Bienhoff is approved: Dr. B. J. Bluth Professor T1mothy Wm. Fox - Chair California State University, Northridge ii iii ACKNOWLEDGEHENTS I wish to express my gratitude to those who have helped me over the years to complete this thesis by providing encouragement, prodding and understanding: my advisor, Tim Fox, Chair of Mechanical and Chemical Engineering; Dr. B. J. Bluth for her excellent comments on human factors; Dr. B. J. Campbell for improving the clarity; Richard Swaim, design engineer at Rocketdyne Division of Rockwell International for providing excellent engineering drawings of LEOBC; Mike Morrow, of the Advanced Engineering Department at Rockwell International who provided the Low Earth Orbit Business Center panel figures; Bob Bovill, a commercial artist, who did all the artistic drawings because of his interest in space commercialization; Linda Martin for her word processing skills; my wife, Yolanda, for egging me on without nagging; and finally Erik and Danielle for putting up with the excuse, "I have to v10rk on my paper," for too many years. iv 0 ' PREFACE The Low Earth Orbit Business Center (LEOBC) was initially conceived as a modular structure to be launched aboard the Space Shuttle, it evolved to its present configuration as a result of research, discussions and the desire to increase the efficiency of space utilization. Although the idea of placing space stations into Earth orbit is not new, as is discussed in the first chapter, and the configuration offers nothing new, LEOBC is unique in its application. -
European Astronaut Selection ESA Prepares for the Missions of the 21 St Century
European Astronaut Selection ESA prepares for the missions of the 21 st century With the selection of its first astronauts ESA’s human spaceflight activities in 1978 and the first Spacelab mission are now entering a new era, with ESA in 1983, the European Space Agency astronauts working aboard the (ESA) took its first steps into human International Space Station (ISS), spaceflight. The advent of the Columbus Columbus starting operations, and orbital laboratory project required a the new ‘ATV’ cargo ship delivering second selection of astronauts in 1992. fresh supplies to the Station. The exploration of the Solar System will be one of humanity’s most exciting adventures in the near future. All of the world’s spacefaring nations are preparing for this huge enterprise, and an astronaut corps is essential for Europe, thanks to ESA, to take part in this endeavour. Now is the time for ESA to seek new talents to reinforce its astronaut team, to prepare for missions to the ISS, the Moon and beyond. T The Selection | How? When? Where? h e S e l e c t i o n How can I apply? You can apply online via the ESA web portal (www.esa.int/ astronautselection). Registration is in two steps: • pre-registration: provide identity information and a JAR-FCL 3, Class 2 medi- cal examination certificate, from an Aviation Medical Examiner who has been certified by his/her national Aviation Medical Authority; • a password then allows you to access the application form. T The Selection | How? When? Where? h e S e l e • initial selection according to basic criteria; c t i What are the o • psychological tests for selected candidates; n • second round of psychological tests and interviews; steps in the • medical tests; selection • job interview. -
Limitations of Spacecraft Redundancy: a Case Study Analysis
44th International Conference on Environmental Systems Paper Number 13-17 July 2014, Tucson, Arizona Limitations of Spacecraft Redundancy: A Case Study Analysis Robert P. Ocampo1 University of Colorado Boulder, Boulder, CO, 80309 Redundancy can increase spacecraft safety by providing the crew or ground with multiple means of achieving a given function. However, redundancy can also decrease spacecraft safety by 1) adding additional failure modes to the system, 2) increasing design “opaqueness”, 3) encouraging operational risk, and 4) masking or “normalizing” design flaws. Two Loss of Crew (LOC) events—Soyuz 11 and Challenger STS 51-L—are presented as examples of these limitations. Together, these case studies suggest that redundancy is not necessarily a fail-safe means of improving spacecraft safety. I. Introduction A redundant system is one that can achieve its intended function through multiple independent pathways or Aelements 1,2. In crewed spacecraft, redundancy is typically applied to systems that are critical for safety and/or mission success3,4. Since no piece of hardware can be made perfectly reliable, redundancy—in theory—allows for the benign (e.g. non-catastrophic) failure of critical elements. Redundant elements can be 1) similar or dissimilar to each other, 2) activated automatically (“hot spare”) or manually (“cold spare”), and 3) located together or separated geographically5-7. U.S. spacecraft have employed redundancy on virtually all levels of spacecraft design, from component to subsystem7,8. Redundancy has a successful history of precluding critical and catastrophic failures during human spaceflight. A review of NASA mission reports, from Mercury to Space Shuttle, indicates that redundancy has saved the crew or extended the mission over 160 times, or roughly once per flight9. -
Reentry Motion and Aerodynamics of the MUSES-C Sample Return Capsule
Trans. Japan Soc. Aero. Space Sci. Vol. 51, No. 172, pp. 65–70, 2008 Reentry Motion and Aerodynamics of the MUSES-C Sample Return Capsule By Nobuaki ISHII,1Þ Tetsuya YAMADA,1Þ Koju HIRAKI2Þ and Yoshifumi INATANI1Þ 1ÞThe Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan 2ÞKyushu Institute of Technology, Kita-Kyushu, Japan (Received June 21st, 2006) The Hayabusa spacecraft (MUSES-C) carries a small capsule for bringing asteroid samples back to the earth. The initial spin rate of the reentry capsule together with the flight path angle of the reentry trajectory is a key parameter for the aerodynamic motion during the reentry flight. The initial spin rate is given by the spin-release mechanism attached between the capsule and the mother spacecraft, and the flight path angle can be modified by adjusting the earth approach orbit. To determine the desired values of both parameters, the attitude motion during atmospheric flight must be clarified, and angles of attack at the maximum dynamic pressure and the parachute deployment must be assessed. In previous studies, to characterize the aerodynamic effects of the reentry capsule, several wind-tunnel tests were conducted using the ISAS high-speed flow test facilities. In addition to the ground test data, the aerodynamic properties in hypersonic flows were analyzed numerically. Moreover, these data were made more accurate using the results of balloon drop tests. This paper summarized the aerodynamic properties of the reentry capsule and simulates the attitude motion of the full- configuration capsule during atmospheric flight in three dimensions with six degrees of freedom. The results show the best conditions for the initial spin rates and flight path angles of the reentry trajectory. -
Ground Into Sky: the Topology of Interstellar
The Avery Review Fred scharmen – Ground into Sky: The Topology of Interstellar Christopher Nolan’s Interstellar was nominated for five Oscars. The Citation: Fred Scharmen, “Ground Into Sky: The Topology of Interstellar,” in The Avery Review, no. 6 movie won the Oscar for Best Visual Effects, many of which were created with (March 2015), http://averyreview.com/issues/6/ analog camera techniques. It has been controversial for its use of emotional ground-into-sky. themes, and its scientific accuracy. The physics in the film is either shockingly sloppy, or accurate enough to generate new peer-reviewed research, depend- ing on which review you read. [1] [2] But the best and most curious thing about [1] Phil Plait, “Interstellar Science: What the movie gets wrong and really wrong about black Interstellar is its topology. holes, relativity, plot, and dialogue,” Slate, http:// Again and again, in different ways, we see the ground lifting up to www.slate.com/articles/health_and_science/ space_20/2014/11/interstellar_science_review_ become the sky. The first appearance of this effect is early in the movie—the the_movie_s_black_holes_wormholes_relativity.html, horizon-obliterating dust storms that sweep across the American Midwest. accessed February 24, 2015. Cooper (the main character) and his family are at a baseball game when a dust [2]: Adam Rogers, “Wrinkles in Spacetime: The Warped Astrophysics of Interstellar,” Wired, http:// storm rises, looming like a growing mountain. Drought and blight have killed the www.wired.com/2014/10/astrophysics-interstellar- plant life that binds the soil, the near-future world of the movie has become a black-hole/, accessed February 24, 2015. -
VII Congress
Association of Space Explorers 7th Planetary Congress Berlin, Germany 1991 Commemorative Poster Signature Key Viktor Afanasyev Vladimir Aksyonov Alexander Alexandrov (Bul.) Soyuz TM-11 Soyuz 22, Soyuz T-2 Soyuz TM-5 Joe Allen Alexander Balandin John-David Bartoe STS 5, STS 51A Soyuz TM-9 STS 51F Patrick Baudry Gerald Carr Robert Cenker STS 51G Skylab IV 7 STS 61C Jean-Loup Chretien Charles Conrad, Jr. Samuel Durrance Soyuz T-6, Soyuz TM-7 Gemini 5, Gemini 11 STS 35 Apollo 12, Skylab II Lev Dyomin John Fabian Bertalan Farkas Soyuz 15 STS 7, STS 51G Soyuz 36 Reinhard Furrer Drew Gaffney Viktor Gorbatko STS 61A STS 40 Soyuz 7, Soyuz 24, Soyuz 37 Georgi Grechko Miroslaw Hermaszewski Alexander Ivanchenkov Soyuz 17, Soyuz 26 Soyuz 30 Soyuz 29, Soyuz T-6 Soyuz T-14 Georgi Ivanov Yevgeni Khrunov Vladimir Kovolyonok Soyuz 33 Soyuz 5 Soyuz 25, Soyuz 29, Soyuz T-4 Alexei Leonov Don Lind James Lovell, Jr. Voskhod 2, Apollo-Soyuz STS 51B Gemini 7, Gemini 12 Apollo 8, Apollo 13 Vladimir Lyakhov Oleg Makarov Gennadi Manakov Soyuz 32, Soyuz T-9 Soyuz 12, Soyuz 27, Soyuz T-3 Soyuz TM-10 Soyuz TM-6 Musa Manarov Jon McBride Bruce McCandless II Soyuz TM-4, Soyuz TM-11 STS 41G STS 41B, STS 31 Ernst Messerschmid William Nelson Wubbo Ockels STS 61A STS 61C STS 61A Donald Peterson Leonid Popov Dumitru Prunariu STS 6 Soyuz 35, Soyuz 40, Soyuz T-7 Soyuz 40 Vladimir Remek Stuart Roosa Rusty Schweickart Soyuz 28 Apollo 14 Apollo 9 Vitali Sevastyonov Thomas Stafford Gennadi Strekalov Soyuz 9, Soyuz 18 Gemini 6, Gemini 9, Apollo 10 Soyuz T-3, Soyuz T-8 Apollo-Soyuz Soyuz TM-11 Valentina Tereshkova Lodewijk van den Berg Igor Volk Vostok 6 STS 51B Soyuz T-12 Charles Walker Donald Williams Boris Yegorov STS 41D, STS 51D, STS 61B STS 51D, STS 34 Voskhod 1 Vyacheslav Zhudov Soyuz 23 This poster commemorates the 7th Planetary Congress of the Association of Space Explorers (ASE). -
PT-365-Science-And-Tech-2020.Pdf
SCIENCE AND TECHNOLOGY Table of Contents 1. BIOTECHNOLOGY ___________________ 3 3.11. RFID ___________________________ 29 1.1. DNA Technology (Use & Application) 3.12. Miscellaneous ___________________ 29 Regulation Bill ________________________ 3 4. DEFENCE TECHNOLOGY _____________ 32 1.2. National Guidelines for Gene Therapy __ 3 4.1. Missiles _________________________ 32 1.3. MANAV: Human Atlas Initiative _______ 5 4.2. Submarine and Ships _______________ 33 1.4. Genome India Project _______________ 6 4.3. Aircrafts and Helicopters ____________ 34 1.5. GM Crops _________________________ 6 4.4. Other weapons system _____________ 35 1.5.1. Golden Rice ________________________ 7 4.5. Space Weaponisation ______________ 36 2. SPACE TECHNOLOGY ________________ 8 4.6. Drone Regulation __________________ 37 2.1. ISRO _____________________________ 8 2.1.1. Gaganyaan _________________________ 8 4.7. Other important news ______________ 38 2.1.2. Chandrayaan 2 _____________________ 9 2.1.3. Geotail ___________________________ 10 5. HEALTH _________________________ 39 2.1.4. NaVIC ____________________________ 11 5.1. Viral diseases _____________________ 39 2.1.5. GSAT-30 __________________________ 12 5.1.1. Polio _____________________________ 39 2.1.6. GEMINI __________________________ 12 5.1.2. New HIV Subtype Found by Genetic 2.1.7. Indian Data Relay Satellite System (IDRSS) Sequencing _____________________________ 40 ______________________________________ 13 5.1.3. Other viral Diseases _________________ 40 2.1.8. Cartosat-3 ________________________ 13 2.1.9. RISAT-2BR1 _______________________ 14 5.2. Bacterial Diseases _________________ 40 2.1.10. Newspace India ___________________ 14 5.2.1. Tuberculosis _______________________ 40 2.1.11. Other ISRO Missions _______________ 14 5.2.1.1. Global Fund for AIDS, TB and Malaria42 5.2.2.