Spaceport News John F

Total Page:16

File Type:pdf, Size:1020Kb

Spaceport News John F Aug. 9, 2013 Vol. 53, No. 16 Spaceport News John F. Kennedy Space Center - America’s gateway to the universe MAVEN arrives, Mars next stop Astronauts By Steven Siceloff Spaceport News gather for AVEN’s approach to Mars studies will be Skylab’s Mquite different from that taken by recent probes dispatched to the Red Planet. 40th gala Instead of rolling about on the By Bob Granath surface looking for clues to Spaceport News the planet’s hidden heritage, MAVEN will orbit high above n July 27, the Astronaut the surface so it can sample the Scholarship Foundation upper atmosphere for signs of Ohosted a dinner at the what changed over the eons and Kennedy Space Center’s Apollo/ why. Saturn V Facility celebrating the The mission will be the first 40th anniversary of Skylab. The of its kind and calls for instru- gala featured many of the astro- ments that can pinpoint trace nauts who flew the missions to amounts of chemicals high America’s first space station. above Mars. The results are Six Skylab astronauts partici- expected to let scientists test pated in a panel discussion dur- theories that the sun’s energy ing the event, and spoke about slowly eroded nitrogen, carbon living and conducting ground- dioxide and water from the Mar- breaking scientific experiments tian atmosphere to leave it the aboard the orbiting outpost. dry, desolate world seen today. Launched unpiloted on May “Scientists believe the planet 14, 1973, Skylab was a complex CLICK ON PHOTO NASA/Tim Jacobs orbiting scientific laboratory. has evolved significantly over NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft rests on a processing the past 4.5 billion years,” said stand inside Kennedy’s Payload Hazardous Servicing Facility Aug. 3. MAVEN is being Three crews of astronauts were David Mitchell, MAVEN’s prepared for its scheduled November launch to Mars. Positioned in an orbit above the Red sent up to perform micro- project manager for NASA’s Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more gravity experiments for up to about the mission, click on the photo. Goddard Space Flight Center in three months in a shirt-sleeve Maryland. “It had a thicker at- taking the first steps in getting it The spacecraft will be environment. The program also mosphere and water flowing on ready for launch in November. powered on during its second provided information about how the surface. It wasn’t like Earth, The instruments, systems week at Kennedy and tests will humans adapt to work during but it was not like it is today.” and all-important, power-gen- begin in earnest soon afterward, long periods of weightlessness. Before any of those studies erating solar array wings on the Mitchell said. Lessons in living and work- can take place at Mars, though, 5,400-pound spacecraft (once When the testing and fueling ing in space learned from the the spacecraft will see a few fueled) will be tested repeat- is complete, a payload fairing Skylab Program paid dividends months of intense launch pro- edly inside the clean room at the will be placed around MAVEN throughout the space shuttle cessing at Kennedy Space Kennedy facility. Engineers also and it will be trucked to Launch era, and now are being applied Center. The MAVEN spacecraft, will fuel the spacecraft so it can Complex 41 at Cape Canaveral during International Space short for Mars Atmosphere and maneuver through space and ar- Air Force Station. MAVEN will Station missions and plans for Volatile Evolution, stands inside rive safely in orbit around Mars. be hoisted atop a United Launch future long-duration missions the Payload Hazardous Servic- MAVEN arrived at Kennedy Alliance Atlas V for launch Nov. beyond low-Earth orbit. ing Facility at Kennedy where Aug. 2 on a C-17 transport 18 to begin a 10-month cruise engineers and technicians are aircraft. to Mars. To SKYLAB, Page 2 Page 2 SPACEPORT NEWS Aug. 9, 2013 OSIRIS-REx mission: Asteroid recon By William Steigerwald launch costs currently thousands -- since asteroids are relics from for asteroid exploration that Goddard Space Flight Center of dollars per pound, you want our solar system’s formation, will benefit anyone interested in to use water already available in analysis of the sample is ex- exploring or mining asteroids,” steroids could one day space to reduce mission costs,” pected to give insights into how Lauretta said. be a vast new source Lauretta said. the planets formed and life origi- “The mission will be a of scarce material if A The spacecraft, scheduled to nated. Also, the spacecraft will proof-of-concept -- can you go the financial and technological launch on an Atlas V from Cape accurately measure how the tiny to an asteroid, get material, and obstacles can be overcome. Canaveral Air Force Station in push from sunlight alters the A key step along the way will bring it back to Earth,” Lauretta September 2016, will arrive at orbit of Bennu, helping astrono- said. “Next, people will have be taken by NASA’s OSIRIS- the asteroid Bennu in Octo- mers better predict this influence REx when it surveys and then to industrialize it so that the ber 2018 and study it in detail on the path of any asteroid that economy works out, so for the collects a sample from a near- before returning with a sample presents an impact risk to Earth. Earth asteroid. recoverable value in any given of material from its surface. Its “However, the mission will asteroid, you’re spending half The possibilities of what primary purpose is scientific develop important technologies might be found in an asteroid that to bring it back.” have intrigued scientists for de- Launch Services Program cades and the latest information (LSP) is responsible for NASA shows a good chance of critical oversight of launch operations elements, including water, being and countdown management, found in the space rocks. providing added quality and “Water is a critical life- mission assurance in lieu of support item for a spacefaring the requirement for the launch civilization, and it takes a lot of service provider to obtain a energy to launch it into space,” commercial launch license. said Dante Lauretta of the Lockheed Martin Space Systems University of Arizona, Tuc- is building the spacecraft. son, principal investigator for Image courtesy of NASA/Goddard/Chris Meaney OSIRIS-REx is the third mis- NASA’s OSIRIS-REx asteroid An artist’s concept of NASA’s OSIRIS-REx spacecraft preparing to take a sample from sion in NASA’s New Frontiers sample return mission. “With asteroid Bennu. Program. From SKYLAB, Page 1 walks were a crucial part of Skylab, paying required us to develop new technologies,” dividends in the future. he said. “That put us in a more competitive Skylab 2 astronauts Joseph Kerwin and “We developed the procedures and position. What we got back from it econom- Paul Weitz, along with the late Charles techniques for doing effective spacewalks ically was at least two to three times what (Pete) Conrad, were the first to staff the sta- on Skylab that were used so successfully we put into it.” tion. Their stay took place May 25 through in putting together the International Space Skylab 4 completed the program when June 22, 1973. Station,” he said. the Apollo command module splashed down When Skylab 2 was launched, freeing a Lousma described the astronauts’ view in the Pacific Ocean on Feb. 8, 1974. stuck electricity-generating solar array was from a spacewalking perspective. the top priority. According to Skylab 2 pilot “From outside you can see the entire Also participating in the gala celebra- Weitz, the spacewalk in which Conrad and Earth in a three-dimensional perspective,” tion were astronauts Vance Brand, Robert Kerwin completed that task was crucial in he said. “You’re riding along on this ‘magic Crippen, Karol “Bo” Bobko and William order to continue the mission. carpet.’ There’s no vibration, no sound, and Thornton. “Pete and Joe’s successful deployment a sunrise and sunset every 90 minutes. You Brand, along with Don Lind, was pre- of that solar array was an extraordinary just want to stay out there.” pared to fly a mission to rescue a Skylab endeavor,” he said. Launched aboard Skylab 4 on Nov. 16, crew if its Apollo command-service module The effort also was an important mile- 1973, Gerald Carr, Edward Gibson, and was unusable. Crippen, Bobko and Thorn- stone in human spaceflight as it was the first William Pogue held the United States’ ton took part in a 56-day activity during time astronauts completed a major repair of spaceflight endurance record of 84 days 1972 called SMEAT -- Skylab Medical Ex- an orbiting spacecraft. until Americans spent up to six months periment Altitude Test -- that preceded the The second crew to the station was Alan working aboard the Russian space station launch of Skylab and helped NASA evalu- Bean, Owen Garriott and Jack Lousma who Mir in the mid-1990s. launched aboard Skylab 3 on July 28, 1973. Gibson, who served as Skylab 4’s science ate equipment and procedures proposed for They remained in orbit for 59 days, return- pilot, spoke of the era leading to the first the long-duration Skylab missions. ing Sept. 25, 1973. lunar landings and the Skylab space station. Skylab celebrates 40 years, pages 4-5 Skylab 3 pilot Lousma noted that space- “Apollo was really a great program that Aug. 9, 2013 SPACEPORT NEWS Page 3 Commercial Crew Program eyes future flights By Rebecca Regan on developing, verifying and validating Spaceport News More online an integrated system that is safe for crew Questions and answers from the Pre-Proposal transportation.
Recommended publications
  • Bibliography
    Annotated List of Works Cited Primary Sources Newspapers “Apollo 11 se Vraci na Zemi.” Rude Pravo [Czechoslovakia] 22 July 1969. 1. Print. This was helpful for us because it showed how the U.S. wasn’t the only ones effected by this event. This added more to our project so we had views from outside the US. Barbuor, John. “Alunizaron, Bajaron, Caminaron, Trabajaron: Proeza Lograda.” Excelsior [Mexico] 21 July 1969. 1. Print. The front page of this newspaper was extremely helpful to our project because we used it to see how this event impacted the whole world not just America. Beloff, Nora. “The Space Race: Experts Not Keen on Getting a Man on the Moon.” Age [Melbourne] 24 April 1962. 2. Print. This was an incredibly important article to use in out presentation so that we could see different opinions. This article talked about how some people did not want to go to the moon; we didn’t find many articles like this one. In most everything we have read it talks about the advantages of going to the moon. This is why this article was so unique and important. Canadian Press. “Half-billion Watch the Moon Spectacular.” Gazette [Montreal] 21 July 1969. 4. Print. This source gave us a clear idea about how big this event really was, not only was it a big deal in America, but everywhere else in the world. This article told how Russia and China didn’t have TV’s so they had to find other ways to hear about this event like listening to the radio.
    [Show full text]
  • CENTRIPETAL FORCE from GRAVITY Unit 14 & 8
    CENTRIPETAL FORCE FROM GRAVITY Unit 14 & 8 Dr. John P. Cise, Professor of Physics, Austin Com. College, Austin , Tx. [email protected] & New York Times November 7, 2017 by Richard Goldstein. Dedicated to all the American Apollo Astronauts in 1960s & 1970s. -------------------------------------------------------------------------------------------------------------------------------------------------------------- Richard Gordon, Astronaut Who Reached for Moon (1969)and Very Nearly Made It, Dies at 88 INTRODUCTION: Gordon commanded the command module Yankee Clipper from 60 miles above moon surface in 1969. The other 2 Apollo Astronauts went to Lunar surface in lunar lander. The radius of moon is 1079 miles. Gordon did 45 orbits of moon over 89 hrs. (3.7 days). Gravity provides centripetal force. G m M/R2 = m v2/R , v = Rω = 2π R/T, thus Solving for M = [4π2/6.67 X 10-11](R3/T2) , Kepler’s 3rd. Law. Richard Gordon, center, with Charles Conrad, left, QUESTIONS: (a) Find R from center of moon?, (b)Find period T of lunar and Alan Bean, aboard the U.S.S. Hornet, an aircraft orbit?, (c) Find mass of moon? See below for Hints and Answers. carrier, after their spacecraft splashed down. Richard Gordon, who undertook what became a harrowing and abortive spacewalk in a 1966 NASA mission, then orbited the moon three years later, but never achieved his dream of walking on the lunar surface, died on Monday at his home in San Marcos, Calif., near San Diego. He was 88. His death was confirmed by NASA. Mr. Gordon piloted the command module ((Yankee Clipper ))during its orbit of the moon in November 1969 while Mr.
    [Show full text]
  • Delta II Icesat-2 Mission Booklet
    A United Launch Alliance (ULA) Delta II 7420-10 photon-counting laser altimeter that advances MISSION rocket will deliver the Ice, Cloud and land Eleva- technology from the first ICESat mission tion Satellite-2 (ICESat-2) spacecraft to a 250 nmi launched on a Delta II in 2003 and operated until (463 km), near-circular polar orbit. Liftoff will 2009. Our planet’s frozen and icy areas, called occur from Space Launch Complex-2 at Vanden- the cryosphere, are a key focus of NASA’s Earth berg Air Force Base, California. science research. ICESat-2 will help scientists MISSION investigate why, and how much, our cryosphere ICESat-2, with its single instrument, the is changing in a warming climate, while also Advanced Topographic Laser Altimeter System measuring heights across Earth’s temperate OVERVIEW (ATLAS), will provide scientists with height and tropical regions and take stock of the vege- measurements to create a global portrait of tation in forests worldwide. The ICESat-2 mission Earth’s third dimension, gathering data that can is implemented by NASA’s Goddard Space Flight precisely track changes of terrain including Center (GSFC). Northrop Grumman built the glaciers, sea ice, forests and more. ATLAS is a spacecraft. NASA’s Launch Services Program at Kennedy Space Center is responsible for launch management. In addition to ICESat-2, this mission includes four CubeSats which will launch from dispens- ers mounted to the Delta II second stage. The CubeSats were designed and built by UCLA, University of Central Florida, and Cal Poly. The miniaturized satellites will conduct research DELTA II For nearly 30 years, the reliable in space weather, changing electric potential Delta II rocket has been an industry and resulting discharge events on spacecraft workhorse, launching critical and damping behavior of tungsten powder in a capabilities for NASA, the Air Force Image Credit NASA’s Goddard Space Flight Center zero-gravity environment.
    [Show full text]
  • USGS Open-File Report 2005-1190, Table 1
    TABLE 1 GEOLOGIC FIELD-TRAINING OF NASA ASTRONAUTS BETWEEN JANUARY 1963 AND NOVEMBER 1972 The following is a year-by-year listing of the astronaut geologic field training trips planned and led by personnel from the U.S. Geological Survey’s Branches of Astrogeology and Surface Planetary Exploration, in collaboration with the Geology Group at the Manned Spacecraft Center, Houston, Texas at the request of NASA between January 1963 and November 1972. Regional geologic experts from the U.S. Geological Survey and other governmental organizations and universities s also played vital roles in these exercises. [The early training (between 1963 and 1967) involved a rather large contingent of astronauts from NASA groups 1, 2, and 3. For another listing of the astronaut geologic training trips and exercises, including all attending and the general purposed of the exercise, the reader is referred to the following website containing a contribution by William Phinney (Phinney, book submitted to NASA/JSC; also http://www.hq.nasa.gov/office/pao/History/alsj/ap-geotrips.pdf).] 1963 16-18 January 1963: Meteor Crater and San Francisco Volcanic Field near Flagstaff, Arizona (9 astronauts). Among the nine astronaut trainees in Flagstaff for that initial astronaut geologic training exercise was Neil Armstrong--who would become the first man to step foot on the Moon during the historic Apollo 11 mission in July 1969! The other astronauts present included Frank Borman (Apollo 8), Charles "Pete" Conrad (Apollo 12), James Lovell (Apollo 8 and the near-tragic Apollo 13), James McDivitt, Elliot See (killed later in a plane crash), Thomas Stafford (Apollo 10), Edward White (later killed in the tragic Apollo 1 fire at Cape Canaveral), and John Young (Apollo 16).
    [Show full text]
  • And Ground-Based Observations of Pulsating Aurora
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2010 Space- and ground-based observations of pulsating aurora Sarah Jones University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Jones, Sarah, "Space- and ground-based observations of pulsating aurora" (2010). Doctoral Dissertations. 597. https://scholars.unh.edu/dissertation/597 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. SPACE- AND GROUND-BASED OBSERVATIONS OF PULSATING AURORA BY SARAH JONES B.A. in Physics, Dartmouth College 2004 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physics May, 2010 UMI Number: 3470104 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Dissertation Publishing UMI 3470104 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 This dissertation has been examined and approved.
    [Show full text]
  • The Newsletter of the Barnard-Seyfert Astronomical Society
    June TheECLIPSE 2020 The Newsletter of the Barnard-Seyfert Astronomical Society From the President It’s been another long, strange month. Lots of things have been happening that aren’t in the Next Membership Meeting: realm of astronomy and I have been distracted by Stay tuned to the BSAS Google Group it all. As you know, we haven’t had a meeting in a or Night Sky Network email for couple of months, and I am really starting to miss information about future meetings. the meetings. It is nice to get out of the house and socialize with people that share a common interest. Hopefully this month is the month that we can come together as a group and get back into a new normal routine. Watch for emails and Facebook updates regarding the monthly meeting. Last month did have a big space event with the In this Issue: launch of the SpaceX Crew Dragon capsule to the Happy Birthday Pete Conrad ISS late in the month. It marks a return to U.S. byRobinByrne 3 spaceflight and NASA working with private corporations to get astronauts into space. I hope Summer Triangle Corner: Vega you had a chance to watch the launch on TV or by David Prosper and VivianWhite 8 the Internet, it was very exciting to see. I have not been around long enough to remember the Apollo BSAS Board Minutes launch days, but it did bring back memories of the May6,2020 10 shuttle launches for me. I hope this gets America excited about space travel again and brings back Membership Information 13 talk of getting people to the moon.
    [Show full text]
  • Earthrise- Contents and Chapter 1
    EARTHRISE: HOW MAN FIRST SAW THE EARTH Contents 1. Earthrise, seen for the first time by human eyes 2. Apollo 8: from the Moon to the Earth 3. A Short History of the Whole Earth 4. From Landscape to Planet 5. Blue Marble 6. An Astronaut’s View of Earth 7. From Cold War to Open Skies 8. From Spaceship Earth to Mother Earth 9. Gaia 10. The Discovery of the Earth 1. Earthrise, seen for the first time by human eyes On Christmas Eve 1968 three American astronauts were in orbit around the Moon: Frank Borman, James Lovell, and Bill Anders. The crew of Apollo 8 had been declared by the United Nations to be the ‘envoys of mankind in outer space’; they were also its eyes.1 They were already the first people to leave Earth orbit, the first to set eyes on the whole Earth, and the first to see the dark side of the Moon, but the most powerful experience still awaited them. For three orbits they gazed down on the lunar surface through their capsule’s tiny windows as they carried out the checks and observations prescribed for almost every minute of this tightly-planned mission. On the fourth orbit, as they began to emerge from the far side of the Moon, something happened. They were still out of radio contact with the Earth, but the on- board voice recorder captured their excitement. Borman: Oh my God! Look at that picture over there! Here’s the Earth coming up. Wow, that is pretty! Anders: Hey, don’t take that, it’s not scheduled.
    [Show full text]
  • Gateway Program Acquisition Strategy Overview
    70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019. Copyright ©2019 by the International Astronautical Federation (IAF). All rights reserved. IAC-19,E3,6,5,x53831 GATEWAY PROGRAM ACQUISITION STRATEGY OVERVIEW Emma Lehnhardta, Christopher Zavrelb, Nicole Herrmannc a National Aeronautics and Space Administration, Johnson Space Center, United States, [email protected] b Stellar Solutions Inc, United States, [email protected] c National Aeronautics and Space Administration, Headquarters, United States, [email protected] Abstract This paper will provide an overview of the acquisition strategy for the Gateway Program. The Gateway will be an outpost orbiting the Moon that provides vital support for a sustainable, long-term human return to the lunar surface, as well as a staging point for further deep space exploration. The Gateway will foster U.S. industry and international partnerships and enable multi-discipline utilization. The National Aeronautics and Space Administration (NASA) will lead this next step and will serve as the integrator of the spaceflight capabilities and contributions of U.S. commercial partners and international partners to develop the Gateway. The Gateway will be developed in a manner that will also allow future capabilities and collaborations with U.S. Government, private sector companies, and international partners. Gateway is embracing innovation and flexibility; both in system architecture and in procurement approach. The Gateway’s agile acquisition strategy will shape the entire system life cycle, from design and analysis through production, verification, launch, logistics and operations. This strategy will encourage new ways of doing business to accommodate new techniques, technologies and approaches; improving affordability and maximizing Gateway utility.
    [Show full text]
  • Celebrate Apollo
    National Aeronautics and Space Administration Celebrate Apollo Exploring The Moon, Discovering Earth “…We go into space because whatever mankind must undertake, free men must fully share. … I believe that this nation should commit itself to achieving the goal before this decade is out, of landing a man on the moon and returning him safely to Earth. No single space project in this period will be more exciting, or more impressive to mankind, or more important for the long-range exploration of space; and none will be so difficult or expensive to accomplish …” President John F. Kennedy May 25, 1961 Celebrate Apollo Exploring The Moon, Discovering Earth Less than five months into his new administration, on May 25, 1961, President John F. Kennedy, announced the dramatic and ambitious goal of sending an American safely to the moon before the end of the decade. Coming just three weeks after Mercury astronaut Alan Shepard became the first American in space, Kennedy’s bold challenge that historic spring day set the nation on a journey unparalleled in human history. Just eight years later, on July 20, 1969, Apollo 11 commander Neil Armstrong stepped out of the lunar module, taking “one small step” in the Sea of Tranquility, thus achieving “one giant leap for mankind,” and demonstrating to the world that the collective will of the nation was strong enough to overcome any obstacle. It was an achievement that would be repeated five other times between 1969 and 1972. By the time the Apollo 17 mission ended, 12 astronauts had explored the surface of the moon, and the collective contributions of hundreds of thousands of engineers, scientists, astronauts and employees of NASA served to inspire our nation and the world.
    [Show full text]
  • VII Congress
    Association of Space Explorers 7th Planetary Congress Berlin, Germany 1991 Commemorative Poster Signature Key Viktor Afanasyev Vladimir Aksyonov Alexander Alexandrov (Bul.) Soyuz TM-11 Soyuz 22, Soyuz T-2 Soyuz TM-5 Joe Allen Alexander Balandin John-David Bartoe STS 5, STS 51A Soyuz TM-9 STS 51F Patrick Baudry Gerald Carr Robert Cenker STS 51G Skylab IV 7 STS 61C Jean-Loup Chretien Charles Conrad, Jr. Samuel Durrance Soyuz T-6, Soyuz TM-7 Gemini 5, Gemini 11 STS 35 Apollo 12, Skylab II Lev Dyomin John Fabian Bertalan Farkas Soyuz 15 STS 7, STS 51G Soyuz 36 Reinhard Furrer Drew Gaffney Viktor Gorbatko STS 61A STS 40 Soyuz 7, Soyuz 24, Soyuz 37 Georgi Grechko Miroslaw Hermaszewski Alexander Ivanchenkov Soyuz 17, Soyuz 26 Soyuz 30 Soyuz 29, Soyuz T-6 Soyuz T-14 Georgi Ivanov Yevgeni Khrunov Vladimir Kovolyonok Soyuz 33 Soyuz 5 Soyuz 25, Soyuz 29, Soyuz T-4 Alexei Leonov Don Lind James Lovell, Jr. Voskhod 2, Apollo-Soyuz STS 51B Gemini 7, Gemini 12 Apollo 8, Apollo 13 Vladimir Lyakhov Oleg Makarov Gennadi Manakov Soyuz 32, Soyuz T-9 Soyuz 12, Soyuz 27, Soyuz T-3 Soyuz TM-10 Soyuz TM-6 Musa Manarov Jon McBride Bruce McCandless II Soyuz TM-4, Soyuz TM-11 STS 41G STS 41B, STS 31 Ernst Messerschmid William Nelson Wubbo Ockels STS 61A STS 61C STS 61A Donald Peterson Leonid Popov Dumitru Prunariu STS 6 Soyuz 35, Soyuz 40, Soyuz T-7 Soyuz 40 Vladimir Remek Stuart Roosa Rusty Schweickart Soyuz 28 Apollo 14 Apollo 9 Vitali Sevastyonov Thomas Stafford Gennadi Strekalov Soyuz 9, Soyuz 18 Gemini 6, Gemini 9, Apollo 10 Soyuz T-3, Soyuz T-8 Apollo-Soyuz Soyuz TM-11 Valentina Tereshkova Lodewijk van den Berg Igor Volk Vostok 6 STS 51B Soyuz T-12 Charles Walker Donald Williams Boris Yegorov STS 41D, STS 51D, STS 61B STS 51D, STS 34 Voskhod 1 Vyacheslav Zhudov Soyuz 23 This poster commemorates the 7th Planetary Congress of the Association of Space Explorers (ASE).
    [Show full text]
  • Gram, No In-Depth Cross-Correlation of the Voluminous Multidisciplinary Data Has Been Possible
    SKYLAB: A BEGINNING NationaZ Aeronautics and Space Ahinistration I Lyndon B. Johnson Space Center "The Eagle has landed; Tranquillity Base here." This simple and now historic message of July 20, 1969, marked the attainment of perhaps the greatest peacetime goal in the history of man. It fulfilled President Kennedy's directive issued some 8 short, hectic years earlier, when he proclaimed on May 25, 1961 : "I bel ieve we should go to the moon . before this decade is out." It marked the culmination of a technically complex engineering accomplishment that began with Mercury and continued uninterrupted through Gemini and prelunar Apollo. The ultimate goal of these efforts was a manned lunar landing. None of these programs had as a major objective the detailed study of man's biomedical responses to the space environment, except in the broadest sense of survival and the ability to live and work effectively in that environment. Nevertheless, throughout each program, information con- cerning man and his new surroundings was obtained wherever possible and whenever practicable, ever mindful of the time constraints imposed by the lunar landing goal and the weight limitations of the launch vehicles. In these few days, the preliminary biomedical results of NASA's Skylab effort have been presented to you. A major goal of Skylab was to learn more about man and his responses to the space environment for missions lasting up to 84 days. The results are necessarily prelimin- ary, for in the short time which has elapsed since the end of the pro- gram, no in-depth cross-correlation of the voluminous multidisciplinary data has been possible.
    [Show full text]
  • 2015 the Future Ira A
    looking towards ANNUAL REPORT 2015 the future Ira A. Fulton Schools Of Engineering Dean Transcending Focusing on the Inspiring Pursuing Attracting Kyle Squires the student experience future use-inspired top traditional and student success engineers research faculty school of school of school of electrical, school for school of biological polytechnic campus sustainable computing, computer and engineering of and health systems School Director engineering informatics, and energy engineering matter, transport engineering Ann McKenna and the built decision systems School Director and energy School Director Air Traffic Management environment engineering Stephen M. Phillips School Director Marco Santello Air Transportation School Director School Director Photovoltaics Lenore Dai Medical diagnostics Management G. Edward Gibson, Jr. Ronald G. Askin Power and energy systems Personalized learning Rehabilitation Applied Science Biofuels Personalized learning Biosignatures discovery Engineering education Neuroengineering Environmental Resource Waste conversion to Educational gaming automation K-12 STEM Biomaterials and Management energy Energy-efficient data Wireless implantable Electrical energy storage therapeutics delivery Graphic Information Technology Public health-technology- storage and computing devices Thermal energy storage Synthetic and systems environment interactions Health informatics Sensors and signal and conversion biology Industrial and Organizational Psychology Microorganism-human Haptic interfaces processing Energy production Healthcare
    [Show full text]