XRF Spectrometry

Total Page:16

File Type:pdf, Size:1020Kb

XRF Spectrometry XRF Spectrometry X Ray Fluorescence Spectrometry Lodovico Lappetito Theremino System – XRFSpec_ENG- 26/02/2016– Page 1 Table of Contents XRF Spectrometry .............................................................................................................................................. 5 Theory ............................................................................................................................................................ 5 K-level and L-level emission lines in KeV ....................................................................................................... 6 Equipment ..................................................................................................................................................... 8 Measurements Parameters ........................................................................................................................... 9 Spectrum of the XRF excitation source ....................................................................................................... 10 XRF spectrum of “light” materials such as wood ........................................................................................ 10 XRF spectrum of water ................................................................................................................................ 11 XRF Spectrometry of Chemical Elements ........................................................................................................ 12 Chromium (Z=24) ......................................................................................................................................... 12 Manganese (Z=25) (alkaline battery) .......................................................................................................... 13 Iron (Z=26) ................................................................................................................................................... 14 Cobalt (Z=27) ............................................................................................................................................... 15 Nickel (Z=28) ................................................................................................................................................ 16 Copper (Z=29) .............................................................................................................................................. 17 Zinc (Z=30) ................................................................................................................................................... 18 Gallium (Z=31) ............................................................................................................................................. 19 Germanium (Z=32)....................................................................................................................................... 20 Arsenic (Z=33) .............................................................................................................................................. 21 Selenium (Z=34) ........................................................................................................................................... 22 Bromine (Z=35) (Flame Retardant in PCB) ................................................................................................... 23 Krypton (Z=36) ............................................................................................................................................. 24 Rubidium (Z=37) .......................................................................................................................................... 25 Strontium (Z=38) (Strontium Aluminate) .................................................................................................... 26 Yttrium (Z=39) .............................................................................................................................................. 27 Zirconium (Z=40) .......................................................................................................................................... 29 Niobium (Z=41) ............................................................................................................................................ 31 Molybdenum (Z=42) .................................................................................................................................... 32 Technetium (Z=43) ...................................................................................................................................... 33 Ruthenium (Z=44) ........................................................................................................................................ 33 Rhodium (Z=45) ........................................................................................................................................... 34 Palladium (Z=46) .......................................................................................................................................... 36 Silver (Z=47) ................................................................................................................................................. 37 Theremino System – XRFSpec_ENG- 26/02/2016– Page 2 Cadmium (Z=48) .......................................................................................................................................... 38 Indium (Z=49) .............................................................................................................................................. 39 Tin (Z=50) (Soldering Alloy Tin + Lead) ........................................................................................................ 40 Antimony (Z=51) .......................................................................................................................................... 41 Tellurium (Z=52) .......................................................................................................................................... 42 Iodine (Z=53) ................................................................................................................................................ 43 Xenon (Z=54) ............................................................................................................................................... 44 Cesium (Z=55) .............................................................................................................................................. 45 Barium (Z=56) (Glass) .................................................................................................................................. 46 Lanthanum (Z=57) Cerium (Z=58) (Ferrocerium) ........................................................................................ 48 Praseodymium (Z=59).................................................................................................................................. 49 Neodymium (Z=60) ...................................................................................................................................... 50 Promethium (Z=61) ..................................................................................................................................... 51 Samarium (Z=62) ......................................................................................................................................... 51 Europium (Z=63) .......................................................................................................................................... 52 Gadolinium (Z=64) (X Ray Intensifying Screen) ........................................................................................... 53 Terbium (Z=65) ............................................................................................................................................ 55 Dysprosium (Z=66) ....................................................................................................................................... 56 Holmium (Z=67) ........................................................................................................................................... 57 Erbium (Z=68) .............................................................................................................................................. 58 Thulium (Z=69) ............................................................................................................................................. 59 Ytterbium (Z=70).......................................................................................................................................... 60 Lutetium (Z=71) ........................................................................................................................................... 61 Hafnium (Z=72) ............................................................................................................................................ 62 Tantalum (Z=73) .......................................................................................................................................... 63 Tungsten (Z=74) ........................................................................................................................................... 64 Rhenium (Z=75) ........................................................................................................................................... 65 Osmium (Z=76) ...........................................................................................................................................
Recommended publications
  • Lanthanides & Actinides Notes
    - 1 - LANTHANIDES & ACTINIDES NOTES General Background Mnemonics Lanthanides Lanthanide Chemistry Presents No Problems Since Everyone Goes To Doctor Heyes' Excruciatingly Thorough Yearly Lectures La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Actinides Although Theorists Prefer Unusual New Proofs Able Chemists Believe Careful Experiments Find More New Laws Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Principal Characteristics of the Rare Earth Elements 1. Occur together in nature, in minerals, e.g. monazite (a mixed rare earth phosphate). 2. Very similar chemical properties. Found combined with non-metals largely in the 3+ oxidation state, with little tendency to variable valence. 3. Small difference in solubility / complex formation etc. of M3+ are due to size effects. Traversing the series r(M3+) steadily decreases – the lanthanide contraction. Difficult to separate and differentiate, e.g. in 1911 James performed 15000 recrystallisations to get pure Tm(BrO3)3! f-Orbitals The Effective Electron Potential: • Large angular momentum for an f-orbital (l = 3). • Large centrifugal potential tends to keep the electron away from the nucleus. o Aufbau order. • Increased Z increases Coulombic attraction to a larger extent for smaller n due to a proportionately greater change in Zeff. o Reasserts Hydrogenic order. This can be viewed empirically as due to differing penetration effects. Radial Wavefunctions Pn,l2 for 4f, 5d, 6s in Ce 4f orbitals (and the atoms in general) steadily contract across the lanthanide series. Effective electron potential for the excited states of Ba {[Xe] 6s 4f} & La {[Xe] 6s 5d 4f} show a sudden change in the broadness & depth of the 4f "inner well".
    [Show full text]
  • Hendrickson SP.Pdf
    CHEMISTRY IN THE WORLD THIRD EDITION BY Dr. Kirstin Hendrickson ARIZONA STATE UNIVERSITY Bassim Hamadeh, CEO and Publisher Kassie Graves, Director of Acquisitions Jamie Giganti, Senior Managing Editor Jess Estrella, Senior Graphic Designer Bob Farrell, Senior Field Acquisitions Editor Natalie Lakosil, Licensing Manager Kaela Martin, Allie Kiekhofer, and Rachel Singer, Associate Editors Kat Ragudos, Interior Designer Copyright © 2017 by Cognella, Inc. All rights reserved. No part of this publication may be reprinted, reproduced, transmitted, or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information retrieval system without the written permission of Cognella, Inc. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Cover image copyright © Scott Lefler. copyright © Scott Lefler. copyright © Scott Lefler. copyright © 2011 Depositphotos/Nadezda Razvodovska. Printed in the United States of America ISBN: 978-1-63487-540-0 (pbk) / 978-1-63487-541-7 (br) For my students, from whom I have learned more than I could ever teach. DEDICATION CONTENTS Acknowledgments xi To the Student and the Instructor: xiii How to Use This Book UNIT 1: ALL AROUND US AND INSIDE OF US 1 Chapter 1: Chemistry Is Everywhere 3 1.1 Classifications of Matter 5 1.2 The Periodic Table 12 1.3 Thinking About Chemicals, Chemical 14 Reactions,
    [Show full text]
  • Package 'Ciaawconsensus'
    Package ‘CIAAWconsensus’ September 19, 2018 Type Package Title Isotope Ratio Meta-Analysis Version 1.3 Author Juris Meija and Antonio Possolo Maintainer Juris Meija <[email protected]> Description Calculation of consensus values for atomic weights, isotope amount ratios, and iso- topic abundances with the associated uncertainties using multivariate meta-regression ap- proach for consensus building. License Unlimited LazyData yes Imports mvtnorm, stringr, numDeriv, stats, Matrix NeedsCompilation no Repository CRAN Date/Publication 2018-09-19 13:30:12 UTC R topics documented: abundances2ratios . .2 at.weight . .3 ciaaw.mass.2003 . .4 ciaaw.mass.2012 . .5 ciaaw.mass.2016 . .6 iridium.data . .6 mmm ............................................7 normalize.ratios . .8 platinum.data . .9 Index 10 1 2 abundances2ratios abundances2ratios Isotope ratios of a chemical element from isotopic abundances Description This function calculates the isotope ratios of a chemical element from the given isotopic abundances and their uncertainties. The uncertainty evaluation is done using the propagation of uncertainty and the missing correlations between the isotopic abundances are reconstructed using Monte Carlo methods. Usage abundances2ratios(x, ux, ref=1, iterations=1e4) Arguments x A vector of isotopic abundances of an element ux Standard uncertainties of x ref Index to specify the desired reference isotope for isotope amount ratios iterations Number of iterations for isotopic abundance correlation mapping Details Situations are often encountered where isotopic abundances are reported but not the isotope ratios. In such cases we reconstruct the isotope ratios that are consistent with the abundances and their uncertainties. Given only the abundances and their uncertainties, for elements with four or more isotopes one cannot unambiguously infer the uncertainties of the ratios due to the unknown correla- tions between isotopic abundances.
    [Show full text]
  • Why Do Transition Metals Have Similar Properties
    Why Do Transition Metals Have Similar Properties Saturnalian Haydon never reek so round-the-clock or spruik any explanations in-flight. Cerebrovascular Elisha parries his weasands delaminating disproportionably. Dan divulgate her ohm ought, randy and grouchy. Based on the coinage metals do have low electronegativity The similar properties do transition have similar. However, the trends in these values show the usual discontinuity half way along the series. This chapter on contact, why do transition have similar properties, why does it has both of! What is the major use today cadmium also extend across the oxidizing agent in the row of exceptions to accept varying numbers exhibit so that have similar. Oh, sorry I apologize on that. The more highly charged the ion, the more electrons you have to remove and the more ionisation energy you will have to provide. Transition metals in everything from hand is more rapidly when you would you typically, why do transition have similar properties identified in ionisation energy as inner electrons can be reduced, including superconducting magnets. Here is a result, why transition metals are heated, as is still others, can ask that attack dcp molecules. Density and malleable, why do transition metals have similar properties because cobalt atom of energy for you can be determined by consuming concentrated sulfuric acid with pyrolusite. Make sure to remember your password. It has the symbol Rh. We expect to the new york: he devised the needs no difference between two electrons go now what do transition have similar properties. Also, we do not collect or ask for personally identifiable information on any of our sites.
    [Show full text]
  • Aluminum-Bronze Alloy Coinage: Basic Data and History
    ALUMINUM-BRONZE ALLOY COINAGE: BASIC DATA AND HISTORY compiled and edited by: Mr. Gary S. Dykes September, 2015 The aluminum-bronze alloy is a modern introduction. The combination of copper and aluminum first took place in the mid 1800s. It was very expensive to produce and consequently, other than being an object of investigation for metallurgists, was not much used. In the early 21st century the U.S., Mint evaluated various metals and alloys to replace the copper coinage in circulation. However, not evaluated were the aluminum-bronze types, probably because they also contain large amounts of copper. As for pure aluminum coins, these are first seen in 1907. [East Africa 1/2 cent]. In the 1865 Annual of the National Academy of Sciences, the U.S. Mint assayer (J. P. Eckfeldt) evaluated aluminum-bronze alloy for the production of coins. He determined that an aluminum-bronze coin alloy was unfavorable (his tests alloys were generally, nine parts of Cu to one part of Al): unacceptable as the coins tarnished quickly in the closed hand. [data from the 1865 Annual, tests were done in June 8, 1864, pages 139-142, Appendix C of the 1865 Annual]. [NOTE: Eckfeldt had heat treated and shaped the metal before testing, which probably accounts for the tarnish he observed]. Modern methods and alloy improvements, provide aluminum-bronze ingots/coins with no tarnish problems. P. H. G. Durville of France has a patent (US 1007548A) involving the making of aluminum bronze alloys via the addition of the proper amounts of manganese for reducing the aluminum oxides occurring during the making of the alloy.
    [Show full text]
  • The Cyclotron Production and Cyclometalation Chemistry of 192-Ir
    The Cyclotron Production and Cyclometalation Chemistry of 192-Ir by Graeme Langille B.Sc., Simon Fraser University, 2012 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Chemistry Faculty of Science c Graeme Langille 2014 SIMON FRASER UNIVERSITY Fall 2014 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced without authorization under the conditions for "Fair Dealing". Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. APPROVAL Name: Graeme Langille Degree: Master of Science (Chemistry) Title: The Cyclotron Production and Cyclometalation Chemistry of 192-Ir Examining Committee: Chair: Dr. Hua-Zhong Yu Professor Dr. Corina Andreoiu Senior Supervisor Associate Professor Dr. Paul Schaffer Co-Supervisor Adjunct Professor Dr. Tim Storr Supervisor Associate Professor Dr. Krzysztof Starosta Supervisor Associate Professor Dr. Robert Young Internal Examiner Professor Date Defended/Approved: December 11, 2014 ii Partial Copyright Licence iii Abstract The goal of this thesis is to demonstrate the cyclotron production, radiochemical isola- tion, and cyclometalate chemistry of radio-iridium isotopes. In recent work, Luminescence Cell Imaging (LCI) has been combined with radioisotopes, leading to compounds that can be imaged with both optical microscopy and nuclear techniques. Radiometals excel in this multifunctional setting, providing ideal chemical and nuclear properties for luminescence, bi- ological targeting, nuclear diagnostics, and therapy. Iridium cyclometalate compounds have demonstrated potential in LCI with excellent photophysical properties. Independently, low specific activity 192Ir has been successfully applied in brachytherapy as a high-intensity β− emitter.
    [Show full text]
  • Circular of the Bureau of Standards No. 562: Bibliography of Research on Deuterium and Tritium Compounds 1945 and 1952
    NBS CIRCULAR 562 Bibliography of Research on Deuterium and Tritium Compounds 1945 to 1952 UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS PERIODICALS OF THE NATIONAL BUREAU OF STANDARDS (Published monthly) The National Bureau of Standards is engaged in fundamental and applied research in physics, chemistry, mathematics, and engineering. Projects are conducted in fifteen fields: electricity and electronics, optics and metrology, heat and power, atomic and radiation physics, chemistry, mechanics, organic and fibrous materials, metallurgy, mineral products, building technology, applied mathematics, data process¬ ing systems, cryogenic engineering, radio propagation, and radio standards. The Bureau has custody of the national standards of measurement and conducts research leading to the improvement of scientific and engineering standards and of techniques and methods of measurement. Testing methods and in¬ struments are developed; physical constants and properties of materials are determined; and technical processes are investigated. Journal of Research The Journal presents research papers by authorities in the specialized fields of physics, mathematics, chemistry, and engineering. Complete details of the work are presented, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Annual subscription: domestic, $4.00; 25 cents additional for foreign mailing. Technical News Bulletin Summaries of current research at the National Bureau of Standards are published each month in the Technical News Bulletin. The articles are brief, with emphasis on the results of research, chosen on the basis of their scientific or technologic importance. Lists of all Bureau publications during the preceding month are given, including Research Papers, Handbooks, Applied Mathematics Series, Building Mate¬ rials and Structures Reports, Miscellaneous Publications, and Circulars.
    [Show full text]
  • The Place of Zinc, Cadmium, and Mercury in the Periodic Table
    Information • Textbooks • Media • Resources The Place of Zinc, Cadmium, and Mercury in the Periodic Table William B. Jensen Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172; [email protected] One of the few facts that I can remember from my un- a quarter of the more recent introductory inorganic texts. In dergraduate inorganic course was my instructor’s insistence all cases, the Zn group was incorrectly labeled as being a mem- that zinc, cadmium, and mercury should be classified as main- ber of the d block or transition block. Those introductory block elements rather than as transition-block or d-block el- inorganic texts that presented some sort of systematic survey ements. Though I have always assumed that the evidence for of descriptive chemistry usually contradicted this assignment this statement was unambiguous, I have also noticed the ap- in their later discussions of the chemistry of these elements. pearance over the last decade of an increasing number of gen- On the other hand, the surveys of descriptive chemistry found eral chemistry texts, inorganic texts, and advanced inorganic in most of the general chemistry texts were so superficial that monographs that either explicitly or implicitly contradict this the existence of this inconsistency seldom became explicit. assignment. The inorganic textbook by Cotton and In light of these trends, I thought it might be of interest Wilkinson, which has served as the American standard for to summarize the evidence relating to the proper placement nearly 40 years, has always been firm in its treatment of the of the Zn group within the periodic table.
    [Show full text]
  • Properties of Carbon the Atomic Element Carbon Has Very Diverse
    Properties of Carbon The atomic element carbon has very diverse physical and chemical properties due to the nature of its bonding and atomic arrangement. fig. 1 Allotropes of Carbon Some allotropes of carbon: (a) diamond, (b) graphite, (c) lonsdaleite, (d–f) fullerenes (C60, C540, C70), (g) amorphous carbon, and (h) carbon nanotube. Carbon has several allotropes, or different forms in which it can exist. These allotropes include graphite and diamond, whose properties span a range of extremes. Despite carbon's ability to make 4 bonds and its presence in many compounds, it is highly unreactive under normal conditions. Carbon exists in 2 main isotopes: 12C and 13C. There are many other known isotopes, but they tend to be short-lived and have extremely short half-lives. Allotropes The different forms of a chemical element. Cabon is the chemical element with the symbol C and atomic number 6. As a member of group 14 on the periodic table, it is nonmetallic and tetravalent—making four electrons available to form covalent chemical bonds. Carbon has 6 protons and 6 Source URL: https://www.boundless.com/chemistry/nonmetallic-elements/carbon/properties-carbon/ Saylor URL: http://www.saylor.org/courses/chem102#6.1 Attributed to: Boundless www.saylor.org Page 1 of 2 neutrons, and has a standard atomic weight of 12.0107 amu. Its electron configuration is denoted as 1s22s22p2. It is a solid, and sublimes at 3,642 °C. It's oxidation state ranges from 4 to -4, and it has an electronegativity rating of 2.55 on the Pauling scale. Carbon has several allotropes, or different forms in which it exists.
    [Show full text]
  • Largest Mixed Transition Metal/Actinide Cluster: a Bimetallic Mn/Th Complex with A
    Inorg. Chem. 2006, 45, 2364−2366 Largest Mixed Transition Metal/Actinide Cluster: A Bimetallic Mn/Th 18+ Complex with a [Mn10Th6O22(OH)2] Core Abhudaya Mishra, Khalil A. Abboud, and George Christou* Department of Chemistry, UniVersity of Florida, GainesVille, Florida 32611-7200 Received December 6, 2005 A high-nuclearity mixed transition metal/actinide complex has been well-characterized transition metal/actinide complexes, among III - - prepared from the reaction of a Mn 4 complex with Th(NO3)4 in which are the dinuclear metal metal bonded M An orga- ) ) 6a MeCN/MeOH. The complex [Th6Mn10O22(OH)2(O2CPh)16(NO3)2- nometallic complexes (M Fe, Ru and An Th, U) and the family of linear trimetallic M IIUIV (M ) Co, Ni, Cu, (H2O)8] is the largest such complex to date and the first Th/Mn 2 6b species. It is rich in oxide groups, which stabilize all of the metals Zn) complexes containing a hexadentate Schiff base. in the high ThIV and MnIV oxidation levels. Magnetic characterization However, only one of these contains Mn, trinuclear [MnU O L (py) ](L- ) 1,7-diphenyl-1,3,5,7-heptanetetro- establishes that the complex has an S ) 3 ground-state spin value. 2 2 2 4 nato).7 Although Th is used in a wide array of products and processes, the cluster chemistry of Th is poorly developed compared to transition metals: Currently, there - 8a We have had a longstanding interest in the development are metal organic frameworks and organically templated 8b of manganese carboxylate cluster chemistry, mainly because Th complexes known, and the largest molecular Th 9 of its relevance to a variety of areas, including bioinorganic complex is Th6.
    [Show full text]
  • The Periodic Table of the Elements
    The Periodic Table of the Elements The president of the Inorganic Chemistry Division, atomic number was the same as the number of protons Gerd Rosenblatt, recognizing that the periodic table in each element. of the elements found in the “Red Book” A problem for Mendeleev’s table was the position- (Nomenclature of Inorganic Chemistry, published in ing of the rare earth or lanthanoid* elements. These 1985) needed some updating—particularly elements elements had properties and atomic weight values above 103, including element 110 (darmstadtium)— similar to one another but that did not follow the reg- made a formal request to Norman Holden and Tyler ularities of the table. Eventually, they were placed in a Coplen to prepare an updated table. This table can be separate area below the main table. found below, on the IUPAC Web site, and as a tear-off The Danish physicist Niels Henrik David Bohr pro- on the inside back cover of this issue. posed his electronic orbital structure of the atom in 1921, which explained the problem of the rare earth by Norman Holden and Ty Coplen elements. The electrons in the outermost and the penultimate orbits are called valence electrons since generally their actions account for the valence of the he Russian chemist Dmitri Ivanovich Mendeleev element (i.e., electrons capable of taking part in the constructed his original periodic table in 1869 links between atoms). Chemical behavior of an ele- Tusing as its organizing principle his formulation ment depends on its valence electrons, so that when of the periodic law: if the chemical elements are only inner orbit electrons are changing from one ele- arranged in the ascending order of their atomic ment to another, there is not much difference in the weights, then at certain regular intervals (periods) chemical properties between the elements.
    [Show full text]
  • Toxic Metals in the Environment: the Role of Surfaces
    Toxic Metals in the Environment: The Role of Surfaces Donald L. Sparks1 etals are prevalent in the environment. They are derived from both such as density, weight, atomic number, and degree of toxicity natural and anthropogenic sources. Certain metals are essential for (Roberts et al. 2005). Certain met- Mplant growth and for animal and human health. However, if present als and metalloids are essential for in excessive concentrations they become toxic. Metals undergo an array of plant growth and for animal and human health. With respect to biogeochemical processes at reactive natural surfaces, including surfaces of plants, these are referred to as clay minerals, metal oxides and oxyhydroxides, humic substances, plant roots, micronutrients and include B, Cu, and microbes. These processes control the solubility, mobility, bioavailability, Fe, Zn, Mn, and Mo. In addition, and toxicity of metals in the environment. The use of advanced analytical As, Co, Cr, Ni, Se, Sn, and V are essential in animal nutrition. techniques has furthered our understanding of the reactivity and mobility Micronutrients are also referred to of metals in the near-surface environment. as trace elements since they are required in only small quantities, Keywords: critical zone, metals, sorption, surface complexation, biogeochemical processes unlike major nutrients such as N, P, and K. In excess, trace elements INTRODUCTION can be toxic to plants, microbes, animals, and humans. Metals comprise about 75% of the known elements and can Problems also arise when there is a deficiency in essential form alloys with each other and with nonmetals (Morris elements. 1992). Metals have useful properties such as strength, mal- Important trace elements in the environment are As, Ag, B, leability, and conductivity of heat and electricity.
    [Show full text]