Project Note Weston Solutions, Inc

Total Page:16

File Type:pdf, Size:1020Kb

Project Note Weston Solutions, Inc PROJECT NOTE WESTON SOLUTIONS, INC. To: Canadian Radium & Uranium Corp. Site File Date: June 5, 2014 W.O. No.: 20405.012.013.2222.00 From: Denise Breen, Weston Solutions, Inc. Subject: Determination of Significant Lead Concentrations in Sediment Samples References 1. New York State Department of Environmental Conservation. Technical Guidance for Screening Contaminated Sediments. March 1998. [45 pages] 2. U.S. Environmental Protection Agency (EPA) Office of Emergency Response. Establishing an Observed Release – Quick Reference Fact Sheet. Federal Register, Volume 55, No. 241. September 1995. [7 pages] 3. International Union of Pure and Applied Chemistry, Inorganic Chemistry Division Commission on Atomic Weights and Isotopic Abundances. Atomic Weights of Elements: Review 2000. 2003. [120 pages] WESTON personnel collected six sediment samples (including one environmental duplicate sample) from five locations along the surface water pathway of the Canadian Radium & Uranium Corp. (CRU) site in May 2014. The sediment samples were analyzed for Target Analyte List (TAL) Metals and Stable Lead Isotopes. 1. TAL Lead Interpretation: In order to quantify the significance for Lead, Thallium and Mercury the following was performed: 1. WESTON personnel tabulated all available TAL Metal data from the May 2014 Sediment Sampling event. 2. For each analyte of concern (Lead, Thallium, and Mercury), the highest background concentration was selected and then multiplied by three. This is the criteria to find the significance of site attributable release as per Hazard Ranking System guidelines. 3. One analytical lead result (2222-SD04) of 520 mg/kg (J) was qualified with an unknown bias. In accordance with US EPA document “Using Data to Document an Observed Release and Observed Contamination”, 2222-SD03 lead concentration was adjusted by dividing by the factor value for lead of 1.44 to equal 361 mg/kg. 4. Additionally, each lead result was then compared to the New York State Department of Environmental Conservation’s (NYSDEC) technical guidance for Screening Contaminated Sediments criteria of 110 ppm for severe effect level. WESTON personnel concluded that there are three release samples (2222-SD04, -SD03, and - SD06) which meet the HRS guideline criteria as an observed release of lead. Additionally, four Page 1 of 149 PROJECT NOTE WESTON SOLUTIONS, INC. release sample locations (2222-SD04, -SD03, -SD06, and -SD01) meet NYSDEC technical guidance for screening contaminated sediments criteria. There were no elevated concentrations of thallium or mercury which exceeded 3x the highest background concentrations within the May 2014 sediment sampling event. Complete validated analytical data, adjusted concentration for 2222-SD04 lead analyte, and significant analytical results, established in accordance with the aforementioned criteria, can be found on Table 1 of this Project Note. 2. Isotopic Lead Interpretation: In order to quantify the significance of the stable lead isotope analyses of Pb-204, Pb-206, Pb-207, and Pb-208, following was considered the relationship between mass percentages between all four lead analyses (Pb-204, Pb-206, Pb-207, and Pb-208) and the comparison to the numbers of natural abundance. Average natural abundance according to International Union of Pure and Applied Chemistry (IUPAC): 204 – 1.4% 206 – 24.1% 207 – 22.1% 208 – 52.4% For the sediment samples, all of the samples are slightly elevated (approximately 1.25% - 1.75%) for Pb-206 above the average natural abundance and slightly depressed for Pb-204, Pb-207, and Pb-208. This might suggest that the parent material is richer than average in U-238/Ra-226. However, this is the case for all samples, including background samples. The highest percentage of Pb-206 is from sample location 2222-SD05, which is closest to the site. This anomaly may be due to the closer proximity to the site, even though it is located upstream of the probable point of entry (PPE). This might indicate greater relative impact to this “background” location, but the numbers show greater absolute impact at the PPE and at 2222-SD03 (i.e., more discharge through the storm sewers and ditch than overland runoff across/under the RR tracks). Complete analytical data can be found on Table 2 of this Project Note. The stable lead isotope concentrations and mass percentages along with the TAL lead concentrations support the conclusion that there is an observed release to the perennial drainage ditch that is at least partially attributable to the site. Denise Breen Assistant Project Scientist Page 2 of 149 Canadian Radium Uranium Corp. site - May 2014 Table 1. Complete TAL Metal Results for Sediment Samples 3x the Maximum Maximum Location ID 2222-SD02 (Background) 2222-SD05 (Background) 2222-SD01 2222-SD03 2222-SD06 (Duplicate of -SD03) 2222-SD04 Background Background Report Report Report Report Report Report Result Qualifier Limit Unit Result Qualifier Limit Unit Result Qualifier Limit Unit Result Qualifier Limit Unit Result Qualifier Limit Unit Result Qualifier Limit Unit Aluminum 5000 240 mg/kg 4200 260 mg/kg 10000 270 mg/kg 11000 350 mg/kg 10000 310 mg/kg 9100 J 690 mg/kg 5000 15000 Antimony 3.7 UJ 12 mg/kg 4 UJ 13 mg/kg 4.1 UJ 13 mg/kg 5.7 J 18 mg/kg 5.3 J 15 mg/kg 11 UJ 35 mg/kg 4 12 Arsenic 2.8 U 12 mg/kg 3.1 U 13 mg/kg 4.2 J 13 mg/kg 5.7 J 18 mg/kg 5.6 J 15 mg/kg 26 J 35 mg/kg 3.1 9.3 Barium 41 J 60 mg/kg 16 J 65 mg/kg 150 J 66 mg/kg 100 J 89 mg/kg 99 J 77 mg/kg 100 J 170 mg/kg 41 123 Beryllium 0.89 U 6 mg/kg 0.97 U 6.5 mg/kg 1 U 6.6 mg/kg 1.3 U 8.9 mg/kg 1.2 U 7.7 mg/kg 2.6 UJ 17 mg/kg 0.97 2.91 Cadmium 0.4 U 6 mg/kg 0.44 U 6.5 mg/kg 0.8 U 6.6 mg/kg 1.2 J 8.9 mg/kg 2 J 7.7 mg/kg 3.5 J 17 mg/kg 0.44 1.32 Calcium 26000 3000 mg/kg 16000 3200 mg/kg 5200 3300 mg/kg 17000 J 4400 mg/kg 29000 J 3900 mg/kg 17000 J 8600 mg/kg 26000 78000 Chromium 26 12 mg/kg 18 13 mg/kg 44 13 mg/kg 610 18 mg/kg 510 15 mg/kg 70 J 35 mg/kg 26 78 Cobalt 8.3 J 60 mg/kg 9 J 65 mg/kg 10 J 66 mg/kg 16 J 89 mg/kg 18 J 77 mg/kg 19 J 170 mg/kg 9 27 Copper 42 30 mg/kg 38 32 mg/kg 41 33 mg/kg 140 44 mg/kg 180 39 mg/kg 210 J 86 mg/kg 42 126 Iron 12000 120 mg/kg 15000 130 mg/kg 16000 130 mg/kg 23000 180 mg/kg 22000 150 mg/kg 28000 J 350 mg/kg 15000 45000 Lead 71 12 mg/kg 42 13 mg/kg 120 13 mg/kg 290 18 mg/kg 390 15 mg/kg 520* J* 35 mg/kg 71 213 Magnesium 10000 1200 mg/kg 6500 1300 mg/kg 5000 1300 mg/kg 7900 1800 mg/kg 8500 1500 mg/kg 7000 J 3500 mg/kg 10000 30000 Manganese 150 12 mg/kg 130 13 mg/kg 220 13 mg/kg 300 18 mg/kg 260 15 mg/kg 320 J 35 mg/kg 150 450 Nickel 16 J 48 mg/kg 17 J 52 mg/kg 20 J 53 mg/kg 40 J 71 mg/kg 38 J 62 mg/kg 58 J 140 mg/kg 17 51 Potassium 1000 J 6000 mg/kg 940 U 6500 mg/kg 1100 J 6600 mg/kg 1800 J 8900 mg/kg 1600 J 7700 mg/kg 2500 UJ 17000 mg/kg 1000 3000 Selenium 2.5 U 18 mg/kg 2.7 U 19 mg/kg 2.7 U 20 mg/kg 3.7 U 27 mg/kg 3.2 U 23 mg/kg 7.1 UJ 52 mg/kg 2.7 8.1 Silver 0.83 U 12 mg/kg 0.91 U 13 mg/kg 0.93 U 13 mg/kg 1.2 U 18 mg/kg 1.1 U 15 mg/kg 2.4 UJ 35 mg/kg 0.91 2.73 Sodium 140 J 1200 mg/kg 110 J 1300 mg/kg 150 J 1300 mg/kg 180 J 1800 mg/kg 170 J 1500 mg/kg 900 J 3500 mg/kg 140 420 Thallium 2.3 U 24 mg/kg 2.5 U 26 mg/kg 2.5 U 27 mg/kg 3.4 U 35 mg/kg 2.9 U 31 mg/kg 6.6 UJ 69 mg/kg 2.5 7.5 Vanadium 14 J 60 mg/kg 13 J 65 mg/kg 24 J 66 mg/kg 33 J 89 mg/kg 31 J 77 mg/kg 23 J 170 mg/kg 14 42 Zinc 140 60 mg/kg 130 65 mg/kg 170 66 mg/kg 430 89 mg/kg 550 77 mg/kg 760 J 170 mg/kg 140 420 Mercury 0.043 J 0.05 mg/kg 0.11 0.038 mg/kg 0.097 0.041 mg/kg 0.18 0.061 mg/kg 0.24 0.056 mg/kg 0.045 J 0.1 mg/kg 0.11 0.33 Reference 42 p. 13 p. 17 p. 12 p. 14 p. 18 pp. 15-16 U = The substance or analyte was analyzed for, but no quantifiable concentration was found at or above the CRQL.
Recommended publications
  • Almost Forgotten Anniversaries in 2019 Introduction
    Almost Forgotten Anniversaries in 2019 Katharina Lodders Department of Earth and Planetary Sciences and Mc Donnell Center for the Space Sciences, Campus Box 1169, Washington University, Saint Louis MO 63130, USA Keywords: history, chemical elements, abundances Abstract: As we celebrate the International Year of the Periodic Table, the 50th anniversary of Apollo 11 and the meteorite falls of Allende and Murchison in 1969, other noteworthy science events with round birthdays seem to be overlooked and almost forgotten Several scientific organizations celebrate the birthdays of their foundation; and key events and discoveries related to meteoritics, astronomy, geo- and cosmochemistry, and nuclear sciences can be commemorated this year, including the anniversaries of the discoveries of eleven chemical elements, and the advancements of our knowledge of the elemental and isotopic abundances. Introduction. Introduction The 150th anniversary of the discovery of the periodic system of the elements by Dmitri Ivanovich Mendeleev (8 Feb. 1834 – 2 Feb. 1907) and independently by Julius Lothar Meyer (19 August 1830 – 11 April 1895) is the reason for celebrating the International Year of the Periodic Table in 2019. Not only that, but several scientific organizations celebrate the birthdays of their foundation: The Astronomical Society of the Pacific (1889), The American Astronomical Society (1899), the American Geophysical Union (1919), the Mineralogical Society of America (1919), and the International Astronomical Union IAU (1919). The anniversaries in 2019 give us reasons to reflect on the major impacts of space exploration. In 1969, the first men landed on the moon and Apollo 11 safely returned with lunar rocks for study. The same year was blessed by the fall of the important carbonaceous chondrites Allende and Murchison.
    [Show full text]
  • Determination of D003 by Capillary Gas Chromatography
    Rev. CENIC Cienc. Quím.; vol. 51. (no.2): 325-368. Año. 2020. e-ISSN: 2221-2442. BIBLIOGRAPHIC REWIEW THE FAMOUS FINNISH CHEMIST JOHAN GADOLIN (1760-1852) IN THE LITERATURE BETWEEN THE 19TH AND 21TH CENTURIES El famoso químico finlandés Johan Gadolin (1760-1852) en la literatura entre los siglos XIX y XXI Aleksander Sztejnberga,* a,* Professor Emeritus, University of Opole, Oleska 48, 45-052 Opole, Poland [email protected] Recibido: 19 de octubre de 2020. Aceptado: 10 de diciembre de 2020. ABSTRACT Johan Gadolin (1760-1852), considered the father of Finnish chemistry, was one of the leading chemists of the second half of the 18th century and the first half of the 19th century. His life and scientific achievements were described in the literature published between the 19th and 21st centuries. The purpose of this paper is to familiarize readers with the important events in the life of Gadolin and his research activities, in particular some of his research results, as well as his selected publications. In addition, the names of authors of biographical notes or biographies about Gadolin, published in 1839-2017 are presented. Keywords: J. Gadolin; Analytical chemistry; Yttrium; Chemical elements; Finnland & Sverige – XVIII-XIX centuries RESUMEN Johan Gadolin (1760-1852), considerado el padre de la química finlandesa, fue uno de los principales químicos de la segunda mitad del siglo XVIII y la primera mitad del XIX. Su vida y sus logros científicos fueron descritos en la literatura publicada entre los siglos XIX y XXI. El propósito de este artículo es familiarizar a los lectores con los acontecimientos importantes en la vida de Gadolin y sus actividades de investigación, en particular algunos de sus resultados de investigación, así como sus publicaciones seleccionadas.
    [Show full text]
  • Mineral of the Month Club January 2016
    Mineral of the Month Club January 2016 HALITE This month our featured mineral is halite, or common salt, from Searles Lake, California. Our write-up explains halite’s mineralogy and many uses, and how its high solubility accounts for its occurrence as an evaporite mineral and its distinctive taste. In the special section of our write-up we visit a European salt mine that is a world-class cultural and heritage site. OVERVIEW PHYSICAL PROPERTIES Chemistry: NaCl Sodium Chloride, often containing some potassium Class: Halides Group: Halite Crystal System: Isometric (Cubic) Crystal Habits: Cubic, rarely octahedral; usually occurs as masses of interlocking cubic crystals with corners sometimes truncated into small, octahedral faces; skeletal forms and receded hopper-type faces are common. Also occurs in massive, fibrous, granular, compact, stalactitic, and incrustation forms. Color: Most often light gray, colorless or white; also pale shades of yellow, red, pink, blue, and purple; blue and purple hues are sometimes intense. Luster: Vitreous Transparency: Transparent to translucent Streak: White Cleavage: Perfect in three directions Fracture/Tenacity: Conchoidal; brittle. Hardness: 2.0 Specific Gravity: 2.17 Luminescence: Often fluorescent Refractive Index: 1.544 Distinctive Features and Tests: Best field indicators are distinctive “table-salt” taste, cubic crystal form, perfect three-dimensional cleavage, and occurrence in evaporite- type deposits. Halite can be confused with sylvite [potassium chloride, KCl], which is similar in crystal form, but has a more astringent taste. Dana Classification Number: 9.1.1.1 NAME: The word “halite,” pronounced HAY-lite (rhymes with “daylight”), is derived from the Greek hals, meaning “salt,” and “lithos,” or stone.
    [Show full text]
  • A Framework for the Static and Dynamic Analysis of Interaction Graphs
    A Framework for the Static and Dynamic Analysis of Interaction Graphs DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Sitaram Asur, B.E., M.Sc. * * * * * The Ohio State University 2009 Dissertation Committee: Approved by Prof. Srinivasan Parthasarathy, Adviser Prof. Gagan Agrawal Adviser Prof. P. Sadayappan Graduate Program in Computer Science and Engineering c Copyright by Sitaram Asur 2009 ABSTRACT Data originating from many different real-world domains can be represented mean- ingfully as interaction networks. Examples abound, ranging from gene expression networks to social networks, and from the World Wide Web to protein-protein inter- action networks. The study of these complex networks can result in the discovery of meaningful patterns and can potentially afford insight into the structure, properties and behavior of these networks. Hence, there is a need to design suitable algorithms to extract or infer meaningful information from these networks. However, the challenges involved are daunting. First, most of these real-world networks have specific topological constraints that make the task of extracting useful patterns using traditional data mining techniques difficult. Additionally, these networks can be noisy (containing unreliable interac- tions), which makes the process of knowledge discovery difficult. Second, these net- works are usually dynamic in nature. Identifying the portions of the network that are changing, characterizing and modeling the evolution, and inferring or predict- ing future trends are critical challenges that need to be addressed in the context of understanding the evolutionary behavior of such networks. To address these challenges, we propose a framework of algorithms designed to detect, analyze and reason about the structure, behavior and evolution of real-world interaction networks.
    [Show full text]
  • Rediscovery of the Elements — a Historical Sketch of the Discoveries
    REDISCOVERY OF THE ELEMENTS — A HISTORICAL SKETCH OF THE DISCOVERIES TABLE OF CONTENTS incantations. The ancient Greeks were the first to Introduction ........................1 address the question of what these principles 1. The Ancients .....................3 might be. Water was the obvious basic 2. The Alchemists ...................9 essence, and Aristotle expanded the Greek 3. The Miners ......................14 philosophy to encompass a obscure mixture of 4. Lavoisier and Phlogiston ...........23 four elements — fire, earth, water, and air — 5. Halogens from Salts ...............30 as being responsible for the makeup of all 6. Humphry Davy and the Voltaic Pile ..35 materials of the earth. As late as 1777, scien- 7. Using Davy's Metals ..............41 tific texts embraced these four elements, even 8. Platinum and the Noble Metals ......46 though a over-whelming body of evidence 9. The Periodic Table ................52 pointed out many contradictions. It was taking 10. The Bunsen Burner Shows its Colors 57 thousands of years for mankind to evolve his 11. The Rare Earths .................61 thinking from Principles — which were 12. The Inert Gases .................68 ethereal notions describing the perceptions of 13. The Radioactive Elements .........73 this material world — to Elements — real, 14. Moseley and Atomic Numbers .....81 concrete basic stuff of this universe. 15. The Artificial Elements ...........85 The alchemists, who devoted untold Epilogue ..........................94 grueling hours to transmute metals into gold, Figs. 1-3. Mendeleev's Periodic Tables 95-97 believed that in addition to the four Aristo- Fig. 4. Brauner's 1902 Periodic Table ...98 telian elements, two principles gave rise to all Fig. 5. Periodic Table, 1925 ...........99 natural substances: mercury and sulfur.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life
    Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life Item Type text; Electronic Dissertation Authors Pasek, Matthew Adam Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 06:16:37 Link to Item http://hdl.handle.net/10150/194288 PHOSPHORUS AND SULFUR COSMOCHEMISTRY: IMPLICATIONS FOR THE ORIGINS OF LIFE by Matthew Adam Pasek ________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College UNIVERSITY OF ARIZONA 2 0 0 6 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Matthew Adam Pasek entitled Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 04/11/2006 Dante Lauretta _______________________________________________________________________ Date: 04/11/2006 Timothy Swindle _______________________________________________________________________ Date: 04/11/2006
    [Show full text]
  • Potion Making by Sam Gayton I Hope You Find These Resources and Activities Useful
    Potion Making by Sam Gayton I hope you find these resources and activities useful. There are two different activities that I’ve included here. You’re welcome to use or adapt them in any way you see fit. All of the resources are linked to my book The Snow Merchant, which is a story that features alchemy. You might like to read about alchemy in the All About Alchemy sheet — or you could read the first few chapters of Potion Making The Snow Merchant. by Sam Gayton Suitable for: 7 years and above. Type of activity: art, storytelling, writing Aim: to increase pupils’ confidence around hands-on activities, story-telling and writing. Activity 1: Potion Making Watch the video, and get ready to become an alchemist! Once you’ve made your potions, there are all sorts of extension activities you could try: writing down a recipe, or even trying to create a story that begins with someone drinking your potions — either on purpose, or accidentally! Activity 2: Using Music To Inspire Writing Choose a track from the list provided, sit back and listen, then listen to it again while writing with the accompanying writing prompt. Happy potion-brewing! Sam. Sam Gayton Sam is the writer of fantasy-filled children’s books, including Hercufleas and The Last Zoo. He delivers workshops for schools as part of Pop Up Festival. Find out more about Sam here: www.samgayton.com POTION MAKING BY SAM GAYTON PAGE 1 / 10 Activity 1 Potion Making. All About Alchemy What exactly is alchemy, anyway? Well… like Dr John Dee, the court astronomer and adviser to Elizabeth I.
    [Show full text]
  • The Rare Earths II
    Redis co very of the Elements The Ra re Earth s–The Con fusing Years I A gallery of rare earth scientists and a timeline of their research I I James L. Marshall, Beta Eta 1971 , and Virginia R. Marshall, Beta Eta 2003 , Department of Chemistry, University of North Texas, Denton, TX 76203-5070, [email protected] The rare earths after Mosander. In the pre - vi ou s HEXAGON “Rediscovery” article, 1p we were introduced to the 17 rare earths, found in the f-block and the Group III chemical family of Figure 1. Important scientists dealing with rare earths through the nineteenth century. Johan Gadolin the Periodic Table. Because of a common (1760 –1852) 1g —discovered yttrium (1794). Jöns Jacob Berzelius (1779 –1848) and Martin Heinrich valence electron configuration, the rare earths Klaproth (1743 –1817) 1d —discovered cerium (1803). Carl Gustaf Mosander (1787 –1858) 1p —discovered have similar chemical properties, and their lanthanum (1839), didymium (1840), terbium, and erbium (1843). Jean-Charles deGalissard Marignac chemical separation from one another can be (1817 –1894) 1o —discovered ytterbium (1878) and gadolinium (1880). Per Teodor Cleve (1840 –1905) 1n — difficult. From preparations of the first two rare discovered holmium and thulium (1879). Lars Fredrik Nilson (1840 –1899) 1n —discovered scandium earth element s—yttrium and ceriu m—the (1879). Paul-Émile Lecoq de Boisbaudran (1838 –1912) —discovered samarium (1879) and dysprosium Swedish chemist Carl Gustaf Mosander (Figure (1886). 1b Carl Auer von Welsbach (1858 –1929) 1c —discovered praseodymium and neodymium (1885); 1, 2) was able to separate four additional ele - co-discovered lutetium (1907).
    [Show full text]
  • The Riches of Uranium Uranium Is Best Known, and Feared, for Its Involvement in Nuclear Energy
    in your element The riches of uranium Uranium is best known, and feared, for its involvement in nuclear energy. Marisa J. Monreal and Paula L. Diaconescu take a look at how its unique combination of properties is now increasingly attracting the attention of chemists. t is nearly impossible to find an uplifting, and can be arrested by the skin, making found about uranium’s superior catalytic funny, or otherwise endearing quote on depleted uranium (composed mainly of 238U) activity may not be an isolated event. The Iuranium — the following dark wisecrack1 safe to work with as long as it is not inhaled organometallic chemistry of uranium was reflects people’s sinister feelings about this or ingested. born during the ‘Manhattan project’ — code element: “For years uranium cost only a few Studying the fundamental chemistry of name of the development of the first nuclear dollars a ton until scientists discovered you uranium is an exotic endeavour, but those who weapon during the Second World War. This could kill people with it”. But, in the spirit of embrace it will reap its benefits. Haber and field truly began to attract interest in 1956 rebranding, it is interesting to note that the Bosch found that uranium was a better catalyst when Reynolds and Wilkinson reported the main source of Earth’s internal heat comes than iron for making ammonia2. The preparation of the first cyclopentadienyl from the radioactive decay of uranium, isolation of an η1-OCO complex derivatives6. The discovery of thorium and potassium-40 that keeps the of uranium3 also showed uranocene electrified the field outer core liquid, induces mantle convection that, even though it is as much as that of ferrocene and, subsequently, drives plate tectonics.
    [Show full text]
  • Nov07 NUCLEUS Aa4b
    DED UN 18 O 98 F http://www.nesacs.org N Y O T R E I T H C E N O A E S S S L T A E A C R C I N S M S E E H C C TI N O CA February 2009 Vol. LXXXVII, No. 6 N • AMERI Monthly Meeting Professor Wilton L. Virgo of Wellesley College to Speak at Simmons College Tips for Job Seekers By Megan Driscoll Summer Scholar Report Identification of Genes Regulated by Transcriptional Regulator, p8 By Derek Kong This Month in Chemical History By Harold Goldwhite, California State University, Los Angeles February Historical Events in Chemistry by Leopold May, The Catholic University of America, Washington, DC February 1, 1905 methods for the determination of ing and used it against pellagra and Fifty years ago, Emilio Segré shared crystal structures, was born on this pursued the idea that diseases such the Nobel Prize in Physics (1959) day. as beriberi, scurvy, rickets and pella- with Owen Chamberlain for their gra were caused by lack of vital sub- discovery of the antiproton. He co- February 16, 1955 stances in the diet. discovered technetium with C. Per- F. P. Bundy, H. T. Hall, H. M. Strong rier in 1937, and astatine with D. R. and R. H. O. Wentoff announced the February 25, 1880 Corson and R. MacKenzie in 1940, synthesis of diamonds at General Arthur B. Lamb, who was the editor and demonstrated the existence of Electric Research Laboratories on of the Journal of the American the antiproton in 1955.
    [Show full text]
  • Planetary Science : a Lunar Perspective
    APPENDICES APPENDIX I Reference Abbreviations AJS: American Journal of Science Ancient Sun: The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites (Eds. R. 0.Pepin, et al.), Pergamon Press (1980) Geochim. Cosmochim. Acta Suppl. 13 Ap. J.: Astrophysical Journal Apollo 15: The Apollo 1.5 Lunar Samples, Lunar Science Insti- tute, Houston, Texas (1972) Apollo 16 Workshop: Workshop on Apollo 16, LPI Technical Report 81- 01, Lunar and Planetary Institute, Houston (1981) Basaltic Volcanism: Basaltic Volcanism on the Terrestrial Planets, Per- gamon Press (1981) Bull. GSA: Bulletin of the Geological Society of America EOS: EOS, Transactions of the American Geophysical Union EPSL: Earth and Planetary Science Letters GCA: Geochimica et Cosmochimica Acta GRL: Geophysical Research Letters Impact Cratering: Impact and Explosion Cratering (Eds. D. J. Roddy, et al.), 1301 pp., Pergamon Press (1977) JGR: Journal of Geophysical Research LS 111: Lunar Science III (Lunar Science Institute) see extended abstract of Lunar Science Conferences Appendix I1 LS IV: Lunar Science IV (Lunar Science Institute) LS V: Lunar Science V (Lunar Science Institute) LS VI: Lunar Science VI (Lunar Science Institute) LS VII: Lunar Science VII (Lunar Science Institute) LS VIII: Lunar Science VIII (Lunar Science Institute LPS IX: Lunar and Planetary Science IX (Lunar and Plane- tary Institute LPS X: Lunar and Planetary Science X (Lunar and Plane- tary Institute) LPS XI: Lunar and Planetary Science XI (Lunar and Plane- tary Institute) LPS XII: Lunar and Planetary Science XII (Lunar and Planetary Institute) 444 Appendix I Lunar Highlands Crust: Proceedings of the Conference in the Lunar High- lands Crust, 505 pp., Pergamon Press (1980) Geo- chim.
    [Show full text]