Crystal Systems and Example Minerals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mineral of the Month Club January 2016
Mineral of the Month Club January 2016 HALITE This month our featured mineral is halite, or common salt, from Searles Lake, California. Our write-up explains halite’s mineralogy and many uses, and how its high solubility accounts for its occurrence as an evaporite mineral and its distinctive taste. In the special section of our write-up we visit a European salt mine that is a world-class cultural and heritage site. OVERVIEW PHYSICAL PROPERTIES Chemistry: NaCl Sodium Chloride, often containing some potassium Class: Halides Group: Halite Crystal System: Isometric (Cubic) Crystal Habits: Cubic, rarely octahedral; usually occurs as masses of interlocking cubic crystals with corners sometimes truncated into small, octahedral faces; skeletal forms and receded hopper-type faces are common. Also occurs in massive, fibrous, granular, compact, stalactitic, and incrustation forms. Color: Most often light gray, colorless or white; also pale shades of yellow, red, pink, blue, and purple; blue and purple hues are sometimes intense. Luster: Vitreous Transparency: Transparent to translucent Streak: White Cleavage: Perfect in three directions Fracture/Tenacity: Conchoidal; brittle. Hardness: 2.0 Specific Gravity: 2.17 Luminescence: Often fluorescent Refractive Index: 1.544 Distinctive Features and Tests: Best field indicators are distinctive “table-salt” taste, cubic crystal form, perfect three-dimensional cleavage, and occurrence in evaporite- type deposits. Halite can be confused with sylvite [potassium chloride, KCl], which is similar in crystal form, but has a more astringent taste. Dana Classification Number: 9.1.1.1 NAME: The word “halite,” pronounced HAY-lite (rhymes with “daylight”), is derived from the Greek hals, meaning “salt,” and “lithos,” or stone. -
C:\Documents and Settings\Alan Smithee\My Documents\MOTM
I`mt`qx1/00Lhmdq`knesgdLnmsg9Rbnkdbhsd This month’s mineral, scolecite, is an uncommon zeolite from India. Our write-up explains its origin as a secondary mineral in volcanic host rocks, the difficulty of collecting this fragile mineral, the unusual properties of the zeolite-group minerals, and why mineralogists recently revised the system of zeolite classification and nomenclature. OVERVIEW PHYSICAL PROPERTIES Chemistry: Ca(Al2Si3O10)A3H2O Hydrous Calcium Aluminum Silicate (Hydrous Calcium Aluminosilicate), usually containing some potassium and sodium. Class: Silicates Subclass: Tectosilicates Group: Zeolites Crystal System: Monoclinic Crystal Habits: Usually as radiating sprays or clusters of thin, acicular crystals or Hairlike fibers; crystals are often flattened with tetragonal cross sections, lengthwise striations, and slanted terminations; also massive and fibrous. Twinning common. Color: Usually colorless, white, gray; rarely brown, pink, or yellow. Luster: Vitreous to silky Transparency: Transparent to translucent Streak: White Cleavage: Perfect in one direction Fracture: Uneven, brittle Hardness: 5.0-5.5 Specific Gravity: 2.16-2.40 (average 2.25) Figure 1. Scolecite. Luminescence: Often fluoresces yellow or brown in ultraviolet light. Refractive Index: 1.507-1.521 Distinctive Features and Tests: Best field-identification marks are acicular crystal habit; vitreous-to-silky luster; very low density; and association with other zeolite-group minerals, especially the closely- related minerals natrolite [Na2(Al2Si3O10)A2H2O] and mesolite [Na2Ca2(Al6Si9O30)A8H2O]. Laboratory tests are often needed to distinguish scolecite from other zeolite minerals. Dana Classification Number: 77.1.5.5 NAME The name “scolecite,” pronounced SKO-leh-site, is derived from the German Skolezit, which comes from the Greek sklx, meaning “worm,” an allusion to the tendency of its acicular crystals to curl when heated and dehydrated. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Types of Lattices
Types of Lattices Types of Lattices Lattices are either: 1. Primitive (or Simple): one lattice point per unit cell. 2. Non-primitive, (or Multiple) e.g. double, triple, etc.: more than one lattice point per unit cell. Double r2 cell r1 r2 Triple r1 cell r2 r1 Primitive cell N + e 4 Ne = number of lattice points on cell edges (shared by 4 cells) •When repeated by successive translations e =edge reproduce periodic pattern. •Multiple cells are usually selected to make obvious the higher symmetry (usually rotational symmetry) that is possessed by the 1 lattice, which may not be immediately evident from primitive cell. Lattice Points- Review 2 Arrangement of Lattice Points 3 Arrangement of Lattice Points (continued) •These are known as the basis vectors, which we will come back to. •These are not translation vectors (R) since they have non- integer values. The complexity of the system depends upon the symmetry requirements (is it lost or maintained?) by applying the symmetry operations (rotation, reflection, inversion and translation). 4 The Five 2-D Bravais Lattices •From the previous definitions of the four 2-D and seven 3-D crystal systems, we know that there are four and seven primitive unit cells (with 1 lattice point/unit cell), respectively. •We can then ask: can we add additional lattice points to the primitive lattices (or nets), in such a way that we still have a lattice (net) belonging to the same crystal system (with symmetry requirements)? •First illustrate this for 2-D nets, where we know that the surroundings of each lattice point must be identical. -
Modeling the Shape of Ions in Pyrite-Type Crystals
Crystals 2014, 4, 390-403; doi:10.3390/cryst4030390 OPEN ACCESS crystals ISSN 2073-4352 www.mdpi.com/journal/crystals Article Modeling the Shape of Ions in Pyrite-Type Crystals Mario Birkholz IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany; E-Mail: [email protected]; Tel.: +49-335-56250 Received: 13 April 2014; in revised form: 22 August 2014 / Accepted: 26 August 2014 / Published: 3 September 2014 Abstract: The geometrical shape of ions in crystals and the concept of ionic radii are re-considered. The re-investigation is motivated by the fact that a spherical modelling is justified for p valence shell ions on cubic lattice sites only. For the majority of point groups, however, the ionic radius must be assumed to be an anisotropic quantity. An appropriate modelling of p valence ions then has to be performed by ellipsoids. The approach is tested for pyrite-structured dichalcogenides MX2, with chalcogen ions X = O, S, Se and Te. The latter are found to exhibit the shape of ellipsoids being compressed along the <111> symmetry axes, with two radii r|| and describing their spatial extension. Based on this ansatz, accurate interatomic M–X distances can be derived and a consistent geometrical model emerges for pyrite-structured compounds. Remarkably, the volumes of chalcogen ions are found to vary only little in different MX2 compounds, suggesting the ionic volume rather than the ionic radius to behave as a crystal-chemical constant. Keywords: ionic radius; ionic shape; bonding distance; ionic volume; pyrite-type compounds; di-chalcogenides; di-oxides; di-sulfides; di-selenides; di-tellurides 1. -
Pyrite Roasting, an Alternative to Sulphur Burning
The Southern African Institute of Mining and Metallurgy Sulphur and Sulphuric Acid Conference 2009 M Runkel and P Sturm PYRITE ROASTING, AN ALTERNATIVE TO SULPHUR BURNING M Runkel and P Sturm Outotec GmbH, Oberursel GERMANY Abstract The roasting of sulphide ores and concentrates is often the first step in the production of metals or chemicals. In many processes, the production of sulphuric acid is viewed as a by-product, while in some plants production is an important economic factor. Regardless of the purpose, a pyrite roasting plant consists of mainly three plant sections: roasting, gas cleaning and sulphuric acid. With the addition of air, the pyrite concentrates are transformed into solid oxides and gaseous sulphur dioxide at temperatures of 600 - 1000° C. After cleaning and cooling, the sulphur dioxide in the roasting gas is further processed to sulphuric acid. Two types of reactors are used depending on the application: stationary or circulating fluid bed . For over 60 years, Outotec has progressively been developing the principle of fluidised bed technology in several different reactor types for a multitude of process applications. The versatility of the fluidised bed reactor system has manifested itself in the treatment of minerals, including solid fuels, and for metallurgical processes both in the ferrous and non-ferrous fields. Process applications have included roasting, calcining, combustion and charring of coals, as well as off-gas treatment. This paper provides a summary of the pyrite roasting technology currently used along with a simple cost comparison of pyrite roasting and sulphur burning processes. Introduction Pyrite roasting and sulphur burning plants are built for the production of sulphuric acid. -
Ultrafast Band-Gap Oscillations in Iron Pyrite
Ultrafast band-gap oscillations in iron pyrite The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kolb, Brian, and Alexie Kolpak. “Ultrafast Band-Gap Oscillations in Iron Pyrite.” Phys. Rev. B 88, no. 23 (December 2013). © 2013 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevB.88.235208 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/88761 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PHYSICAL REVIEW B 88, 235208 (2013) Ultrafast band-gap oscillations in iron pyrite Brian Kolb and Alexie M. Kolpak Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 7 August 2013; revised manuscript received 17 October 2013; published 20 December 2013) With its combination of favorable band gap, high absorption coefficient, material abundance, and low cost, iron pyrite, FeS2, has received a great deal of attention over the past decades as a promising material for photovoltaic applications such as solar cells and photoelectrochemical cells. Devices made from pyrite, however, exhibit open circuit voltages significantly lower than predicted, and despite a recent resurgence of interest in the material, there currently exists no widely accepted explanation for this disappointing behavior. In this paper, we show that phonons, which have been largely overlooked in previous efforts, may play a significant role. Using fully self-consistent GW calculations, we demonstrate that a phonon mode related to the oscillation of the sulfur-sulfur bond distance in the pyrite structure is strongly coupled to the energy of the conduction-band minimum, leading to an ultrafast (≈100 fs) oscillation in the band gap. -
The Electrical Resistivity of Galena, Pyrite, and Chalcopyrite
American Mineralogist, Volume61, pages248-259, 1976 The electricalresistivity of galena,pyrite, and chalcopyrite Doneln F. PnlorrronreNn RnlpH T. Suurv Departmentof Geologyand Geophysics,Uniuersity of Utah Salt Lake Cily, Utah 84112 Abstract. The sulfidesgalena, chalcopyrite, and pyrite are semiconductorswhose electrical resistivity and type are controlled by deviationsfrom stoichiometryand impurity content,and henceby their geochemicalenvironment. We measuredelectrical resistivity,type, and the impurity content (emissionspectrograph and microprobe) on small volumesof sample.Our results, together with those obtained from a comprehensiveliterature analysis, are usedto construct histogramsof the natural variability in carrier density and resistivity. Sulfur deficiency is the dominant defect in chalcopyrite and hence almost all natural samplesare n-type. lt appearsthat the copper/iron ratio is also important electrically,the copper-richsamples being the more resistive. lmportant donor deiectsin galena(z-type samples)are antimony and bismuth impurities, and sulfur vacancies;acceptor defects(p-type samples) include silver impurities and lead 'Mississippi vacancies.P-type samplesappear to be restrictedto Valley' and argentiferous deposits. In pyrite, electricallyactive impurities include cobalt, nickel, and copper as donors, and arsenicas an acceptor.Deviations from stoichiometry,in the same senseas galena,may be important. Pyritesfrom sedimentaryand epithermaldeposits are usuallyp-type if cupriferous sulfidesare not present.Samples from hypothermaldeposits -
Banded Iron Formations
Banded Iron Formations Cover Slide 1 What are Banded Iron Formations (BIFs)? • Large sedimentary structures Kalmina gorge banded iron (Gypsy Denise 2013, Creative Commons) BIFs were deposited in shallow marine troughs or basins. Deposits are tens of km long, several km wide and 150 – 600 m thick. Photo is of Kalmina gorge in the Pilbara (Karijini National Park, Hamersley Ranges) 2 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock Iron rich bands: hematite (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). Iron poor bands: chert (fine‐grained quartz) and low iron oxide levels Rock sample from a BIF (Woudloper 2009, Creative Commons 1.0) Iron rich bands are composed of hematitie (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). The iron poor bands contain chert (fine‐grained quartz) with lesser amounts of iron oxide. 3 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock • Archaean and Proterozoic in age BIF formation through time (KG Budge 2020, public domain) BIFs were deposited for 2 billion years during the Archaean and Proterozoic. There was another short time of deposition during a Snowball Earth event. 4 Why are BIFs important? • Iron ore exports are Australia’s top earner, worth $61 billion in 2017‐2018 • Iron ore comes from enriched BIF deposits Rio Tinto iron ore shiploader in the Pilbara (C Hargrave, CSIRO Science Image) Australia is consistently the leading iron ore exporter in the world. We have large deposits where the iron‐poor chert bands have been leached away, leaving 40%‐60% iron. -
Space Symmetry, Space Groups
Space symmetry, Space groups - Space groups are the product of possible combinations of symmetry operations including translations. - There exist 230 different space groups in 3-dimensional space - Comparing to point groups, space groups have 2 more symmetry operations (table 1). These operations include translations. Therefore they describe not only the lattice but also the crystal structure. Table 1: Additional symmetry operations in space symmetry, their description, symmetry elements and Hermann-Mauguin symbols. symmetry H-M description symmetry element operation symbol screw 1. rotation by 360°/N screw axis NM (Schraubung) 2. translation along the axis (Schraubenachse) 1. reflection across the plane glide glide plane 2. translation parallel to the a,b,c,n,d (Gleitspiegelung) (Gleitspiegelebene) glide plane Glide directions for the different gilde planes: a (b,c): translation along ½ a or ½ b or ½ c, respectively) (with ,, cba = vectors of the unit cell) n: translation e.g. along ½ (a + b) d: translation e.g. along ¼ (a + b), d from diamond, because this glide plane occurs in the diamond structure Screw axis example: 21 (N = 2, M = 1) 1) rotation by 180° (= 360°/2) 2) translation parallel to the axis by ½ unit (M/N) Only 21, (31, 32), (41, 43), 42, (61, 65) (62, 64), 63 screw axes exist in parenthesis: right, left hand screw axis Space group symbol: The space group symbol begins with a capital letter (P: primitive; A, B, C: base centred I, body centred R rhombohedral, F face centred), which represents the Bravais lattice type, followed by the short form of symmetry elements, as known from the point group symbols. -
A Sulfur Isotope Study of Pyrite Genesis: the Mid-Proterozoic Newland Formation, Belt Supergroup, Montana
A sulfur isotope study of pyrite genesis: The Mid-Proterozoic Newland Formation, Belt Supergroup, Montana HARALD STRAUSS' and JORGEN SCHIEBER 2 'Ruhr-Universitat Bochum, Institut fur Geologie, Postfach 102148, 4630 Bochum 1, FRG 2University of Texas at Arlington, Department of Geology, Arlington, TX 76019, USA Abstract-Different generations of sedimentary pyrite from the Mid-Proterozoic Newland Formation, USA, have been analysed for their sulfur isotopic compositions. The results indicate bacterial sulfate reduction as the pyrite forming process. The V'S values for early diagenetic pyrite, around -14%o, are in contrast to dominantly more positive values for many other Middle Proterozoic units. A progressive reduction of sulfate availability during diagenesis can be recognized by an increase in 34S content (Rayleigh Distillation) as well as through detailed petrographic observations. Contemporaneous seawater had a sulfur isotopic ratio between +14 and +18%o as measured from sedimentary barite within the unit. INTRODUCTION deposited between 1450 and 850 Ma ago (HARRISON, 1972), and the Newland Formation accumulated early in basin history. OBRADOVICH and PETERMAN THE MID-PROTEROZOIC Newland Formation (Belt Supergroup) contains (1968) defined a 1325 Ma Rb-Sr isochron in Belt rocks (including the Newland horizons of pyritic shale. These and surrounding sediments have been Formation) of the Big Belt and Little Belt Mountains. Because the whole Lower investigated in detail by SCHIEBER (1985) and a continuous spectrum of pyrite Beltian sequence shows the 1325 Ma age, it is likely that this age represents the types from early diagenetic fine crystalline to late diagenetic eudedral and approximate time of diagenetic smectite-illite trans concretionary pyrite has been distinguished. -
Apophyllite-(Kf)
December 2013 Mineral of the Month APOPHYLLITE-(KF) Apophyllite-(KF) is a complex mineral with the unusual tendency to “leaf apart” when heated. It is a favorite among collectors because of its extraordinary transparency, bright luster, well- developed crystal habits, and occurrence in composite specimens with various zeolite minerals. OVERVIEW PHYSICAL PROPERTIES Chemistry: KCa4Si8O20(F,OH)·8H20 Basic Hydrous Potassium Calcium Fluorosilicate (Basic Potassium Calcium Silicate Fluoride Hydrate), often containing some sodium and trace amounts of iron and nickel. Class: Silicates Subclass: Phyllosilicates (Sheet Silicates) Group: Apophyllite Crystal System: Tetragonal Crystal Habits: Usually well-formed, cube-like or tabular crystals with rectangular, longitudinally striated prisms, square cross sections, and steep, diamond-shaped, pyramidal termination faces; pseudo-cubic prisms usually have flat terminations with beveled, distinctly triangular corners; also granular, lamellar, and compact. Color: Usually colorless or white; sometimes pale shades of green; occasionally pale shades of yellow, red, blue, or violet. Luster: Vitreous to pearly on crystal faces, pearly on cleavage surfaces with occasional iridescence. Transparency: Transparent to translucent Streak: White Cleavage: Perfect in one direction Fracture: Uneven, brittle. Hardness: 4.5-5.0 Specific Gravity: 2.3-2.4 Luminescence: Often fluoresces pale yellow-green. Refractive Index: 1.535-1.537 Distinctive Features and Tests: Pseudo-cubic crystals with pearly luster on cleavage surfaces; longitudinal striations; and occurrence as a secondary mineral in association with various zeolite minerals. Laboratory analysis is necessary to differentiate apophyllite-(KF) from closely-related apophyllite-(KOH). Can be confused with such zeolite minerals as stilbite-Ca [hydrous calcium sodium potassium aluminum silicate, Ca0.5,K,Na)9(Al9Si27O72)·28H2O], which forms tabular, wheat-sheaf-like, monoclinic crystals.