The Electrical Resistivity of Galena, Pyrite, and Chalcopyrite

Total Page:16

File Type:pdf, Size:1020Kb

The Electrical Resistivity of Galena, Pyrite, and Chalcopyrite American Mineralogist, Volume61, pages248-259, 1976 The electricalresistivity of galena,pyrite, and chalcopyrite Doneln F. PnlorrronreNn RnlpH T. Suurv Departmentof Geologyand Geophysics,Uniuersity of Utah Salt Lake Cily, Utah 84112 Abstract. The sulfidesgalena, chalcopyrite, and pyrite are semiconductorswhose electrical resistivity and type are controlled by deviationsfrom stoichiometryand impurity content,and henceby their geochemicalenvironment. We measuredelectrical resistivity,type, and the impurity content (emissionspectrograph and microprobe) on small volumesof sample.Our results, together with those obtained from a comprehensiveliterature analysis, are usedto construct histogramsof the natural variability in carrier density and resistivity. Sulfur deficiency is the dominant defect in chalcopyrite and hence almost all natural samplesare n-type. lt appearsthat the copper/iron ratio is also important electrically,the copper-richsamples being the more resistive. lmportant donor deiectsin galena(z-type samples)are antimony and bismuth impurities, and sulfur vacancies;acceptor defects(p-type samples) include silver impurities and lead 'Mississippi vacancies.P-type samplesappear to be restrictedto Valley' and argentiferous deposits. In pyrite, electricallyactive impurities include cobalt, nickel, and copper as donors, and arsenicas an acceptor.Deviations from stoichiometry,in the same senseas galena,may be important. Pyritesfrom sedimentaryand epithermaldeposits are usuallyp-type if cupriferous sulfidesare not present.Samples from hypothermaldeposits are usuallyz-type if there are no arsenicminerals in the assemblaee. Introduction pyrite, chalcopyrite,and galena;in particular to iden- The sulfidesgalena, chalcopyrite, and pyrite are tify the dominant donors and acceptors,and under- semiconductors.The semiconductivityis due to free stand the geologic factors which may control their charge carriers, for which three sources may be concentrations.Our experimental method consisted distinguished:(l) deviation from stoichiometry, (2) of measuringthe resistivityand thermoelectricvolt- traceelements in solid solution, and (3) thermal exci- age on a suite of specimensof diverse geological tation across the energy gap. The energy gaps of origin. The resistivityis proportional to the product galena,chalcopyrite, and pyrite are 0.4,0.6, and 0.9 of the carrier concentration and mobility, while the electron volts, respectively (for referencessee Shuey, thermoelectric voltage gives carrier type and some 1975,Chapters ll, 13, l6); therefore,the contribu- information about the carrier concentration.On the tion of the last source is negligible at room temper- basis of thesemeasurements, representative samples ature. The crystal defectswhich produce the carriers were selectedfor chemicalanalysis (spectrograph and in thesesulfides can be classifiedas either donors or microprobe) to identify the electricallyactive impu- acceptors,depending on whether they "donate" elec- rities. trons to the conduction band or "accept" electrons In recent years there have been numerous pub- from the valence band, leaving a hole. Unless the lished measurementsof resistivity,thermoelectricity concentrationsof donors and acceptorsare almost and impurity, particularly in pyrite (e.9.,Fischer and exactly equal, the carriers are of predominantly one Hiller, 1956,Favorov et al., 1972).Rarely have all type. The semiconductionis termed n-type or p-type three kinds of data beencollected on the samespeci- according to whether electrons or holes are domi- men. As we report our experimentalresults, we in- nant. dicatewhen a similar result has beenpreviously pub- The main objectiveof the researchreported in this lished. For our interpretations we draw upon all paper was to determinethe sourcesof free carriersin available data, our own and that already published. ELECTRICAL CONDUCTIVITY OF GALENA. PYRITE, AND CHALCOPYRITE 249 Electrical measurementprocedure Spurious thermoelectricvoltages on polished sur- The thermoelectric and resistivity.measurements faces of galena, due to the polishing process, have were made with a linear, four-needleprobe (Signa- beendocumented by Granville and Hogarth (1951). tone Co.). The steel needleswere spaced 0.63 mm Tauc (1953) suggestedthat thesewere due to electri- apart, with tip radius 2.54 p"m,and loaded to 80 gm cally charged mechanicaldamage in a surfacelayer. per needle.Sulfide hand specimenswere preparedfor We found no evidenceof such a surfacelayer effect, measurementby grinding and polishing a cut face possibly becauseour probe load was an order of down to a 6 pm diamond lap. The probe did not magnitude greater than theirs. mark the pyrite surfaces,but left pits of diameter20 to 70 pm and depth I to 30 trrmin galena and chal- 'point' Resistivity distributions copyrite. In addition to the contacts on the polishedsurface, we useda largearea contact fixed to The three sulfidesbeing consideredhave a variable the rough surfaceof the specimenby a silver impreg- resistivity, due to variations in composition. To in- nated silicone paste (Eccobond 59C from Emerson vestigatethe statistical distribution of resistivity in and Cuming Inc.) each case,we combined our data with all the pre- Current for the measurement(0. I to l0 mA) was viously publisheddata we could find. In this way we supplied by batteries,and the voltage was measured reduced the statistical fluctuations due to limited with a Hewlett Packard 419A. A.C. pickup was re- sample number, and also averagedover many more duced to about 4 pV by floating all circuitry and localities.The histograms(Figs. 1,2, and 3) include grounding the specimenthrough the large area con- only resistivity measurementson natural specimens tact. for which type was also determined and for which The reported resistivity measurements(Table I ) ancillary information indicatedthe measurementsre- wereobtained by passingcurrent through the outside ferred to a region of electrical and mineralogical two needle electrodes and measuring the voltage homogeneity.Thus we excludedresistivity measure- acrossthe inner two electrodes(Wenner array). Lin- ments on grains of mixed type and on polymineralic earity and reciprocity were routinely checked. To ores. monitor sample homogeneity, adjacent electrodes Figures I and 2 show that for both pyrite and were usedfor current and voltage(Dipole array), the galena p-type samples have a higher averageresis- probe was raised and lowered severaltimes, and the tivity than n-typesamples, although the distributions sample was displacedseveral times transverseto the overlap considerably. For pyrite (Fig. 2) the resis- array, by a distanceabout equal to the array spacing. tivity distributions seemsto be log-normal, while for We considered the resistivity to be homogeneous galena (Fig. l) they are curiously flat, i.e., have a when the resultsfrom all thesemeasurements varied negative kurtosis. The individual collections com- by lessthan a factor of 2. In many casesthe variation bined for Figures I and 2 do not differ significantly was lessthan a fourth of the allowed range. from the total resistivitydistribution for given min- Thermoelectricvoltage was measuredbetween one eral and type. However, individual collections do of the needleelectrodes and the large area baseelec- differ significantly in the relative proportions of n- trode. We usedthe convention that the thermopower type andp-type.No homogeneousp-typegalena sam- (Seebeckcoefficient) is positivewhen the gradientsof ples were present in our collection, but in Figure I voltage and temperature are in opposite directions, about one quarter of the galena samplesarc p-type. i.e., when the hot electrode is electrically negative. For chalcopyrite all measurementsmeeting the The point electrode was heated by passingcurrent given criteria were on t?-typesamples. However, p- through a fine wire wrapped around it. The valuesin type CuFeS, is known. Some of the syntheticspeci- Table I are for 40 mA current in 10 turns of 138wire. mensof Donovan and Reichenbaum(1958) were p- From the magnitude of the voltage,the temperature type, while Austin et al. (1956)and Olhoeft (personal differencewas of the order of 1'C. The valuesgiven communication, 1974) eachreport one naturalp-type are strictly relativeto the thermopower of steel( l0 to chalcopyrite.The individual collectionsused in Fig- 15 p,Y/"C), but this is small enough to be neglected. ure 3 do show significantlydifferent resistivitydistri- In a few cases only a sign is reported because the butions. More specifically,our values are distinctly samples were used for other experiments before the higher than thosereported by Parasnis(1956,p.270). quantitative thermoelectric measurements were The respectivemodes are 3 X l0-3 ohm-m and 4 X made. l0-o ohm-m. We attributed this to a differencein ore 250 D. F. PRIDMORE AND R. T. SHUEY Tnnr-sl. Sampledescriptions and electrical data Theroo- Reslst- electllc ivtty qu Deposlt voltage ole Locatlod type* (yV) meters* ComeDts EAIENA 114,1 Edvards 3100 level D-7M Met. Var. Coarse to fine gralned talena, BaI@t, New York nl.nor pyrite, slllcates. ).L7,L 5767 Bench, Berkeley HvP var.- 3.4xI0-'1 }tediuo grained galena, Dinor ?it, Butte, Montana py!ite, 6lllcatesi varlable themo- rr7 ,2 Var. - 2.6xIO-2 electrlc voltage probably due to lncluded phasee. 118 Baxter Sprlngs, Kansas L.L.Z. -403 9.6x10-t Coarse trained galena. 1L9,1 7100-7500 level, llecla HVR -490 t.5xIO-2 Fine gralned galena, silicates. SEar Mlne, l{allace LL9,2 Coeur D'Alene HVR -480 ).)xru _ rt9,3
Recommended publications
  • Fundamental Flotation Behaviors of Chalcopyrite and Galena Using O-Isopropyl-N-Ethyl Thionocarbamate As a Collector
    minerals Article Fundamental Flotation Behaviors of Chalcopyrite and Galena Using O-Isopropyl-N-Ethyl Thionocarbamate as a Collector Yongjie Bu ID , Yuehua Hu *, Wei Sun *, Zhiyong Gao ID and Runqing Liu School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, China; [email protected] (Y.B.); [email protected] (Z.G.); [email protected] (R.L.) * Correspondence: [email protected] (Y.H.); [email protected] (W.S.); Tel.: +86-731-8830-482 (Y.H.); +86-0731-8883-6873 (W.S.) Received: 31 January 2018; Accepted: 12 March 2018; Published: 13 March 2018 Abstract: Copper and lead are two important and widely used metals in industry. Chalcopyrite (CuFeS2) is associated with galena (PbS) in ore, and it has been a research hotspot in separating galena from chalcopyrite by flotation. In this study, the flotation behaviors of chalcopyrite and galena were studied through flotation tests, adsorption measurements, solution chemistry calculation, Fourier transform infrared spectroscopy (FTIR) and molecular dynamics (MD) simulations. The results show that the floatability of chalcopyrite is better than that of galena in the presence of O-isopropyl-N-ethyl thionocarbamate (IPETC), and the recovery difference between chalcopyrite and galena is about 20% when IPETC is 7 × 10−4 mol/L at pH 9.5, while the floatability difference between the two minerals is significant. Competitive adsorption of OH− and IPETC on mineral surfaces leads to lower floatability of galena than that of chalcopyrite. IPETC is able to remove the hydration layer on mineral surfaces and then adsorb on active sites. The floatability of minerals is enhanced with the increase of their hydrophobicity.
    [Show full text]
  • A Column Leaching Model of Low-Grade Chalcopyrite Ore: Mineral Preferences and Chemical Reactivity
    minerals Article A Column Leaching Model of Low-Grade Chalcopyrite Ore: Mineral Preferences and Chemical Reactivity Heike Bostelmann and Gordon Southam * School of Earth and Environmental Sciences, The University of Queensland, St Lucia 4072, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-07-3365-8505 Received: 16 November 2020; Accepted: 8 December 2020; Published: 17 December 2020 Abstract: Bioleaching models to examine copper extraction from low-grade chalcopyrite ores were set up to identify the influence of pyrite on leaching efficacy. A combination of scanning electron microscopy and geochemical analysis showed that extraction was marginally enhanced by the addition of pyrite when using a combination of Leptospirillum ferrooxidans, an iron oxidiser, Acidithiobacillus thiooxidans, a sulphur oxidising species and Acidithiobacillus ferrooxidans, an iron and sulphur oxidiser. Extensive biofilms formed on the pyrite surfaces (>106 cells/mm2) but were severely limited on chalcopyrite, possessing approximately the same number of cells as quartz grains, an internal non-nutrient control “substrate” (with ca. 2 103 cells/mm2). The presence of dissolved copper did × not inhibit the growth of this consortium. Indirect “bioleaching” of chalcopyrite appears to be limited by proton activity at the chalcopyrite surface. Keywords: bioleaching; chalcopyrite; pyrite; low-grade ore 1. Introduction Economic processing of chalcopyrite ores through bioleaching, i.e., the mobilisation of metals from ore by microorganisms, has not been as successful as secondary copper sulphide leaching operations [1]. This chalcopyrite “problem” needs to be solved, as it is the dominant copper mineral in many low-grade copper deposits. This has resulted in large quantities of low-grade waste material being stockpiled or discarded in mining operations, as they are not economic to process, though they do contain massive quantities of metals (i.e., copper) simply due to their combined volume [1–3].
    [Show full text]
  • Modeling the Shape of Ions in Pyrite-Type Crystals
    Crystals 2014, 4, 390-403; doi:10.3390/cryst4030390 OPEN ACCESS crystals ISSN 2073-4352 www.mdpi.com/journal/crystals Article Modeling the Shape of Ions in Pyrite-Type Crystals Mario Birkholz IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany; E-Mail: [email protected]; Tel.: +49-335-56250 Received: 13 April 2014; in revised form: 22 August 2014 / Accepted: 26 August 2014 / Published: 3 September 2014 Abstract: The geometrical shape of ions in crystals and the concept of ionic radii are re-considered. The re-investigation is motivated by the fact that a spherical modelling is justified for p valence shell ions on cubic lattice sites only. For the majority of point groups, however, the ionic radius must be assumed to be an anisotropic quantity. An appropriate modelling of p valence ions then has to be performed by ellipsoids. The approach is tested for pyrite-structured dichalcogenides MX2, with chalcogen ions X = O, S, Se and Te. The latter are found to exhibit the shape of ellipsoids being compressed along the <111> symmetry axes, with two radii r|| and describing their spatial extension. Based on this ansatz, accurate interatomic M–X distances can be derived and a consistent geometrical model emerges for pyrite-structured compounds. Remarkably, the volumes of chalcogen ions are found to vary only little in different MX2 compounds, suggesting the ionic volume rather than the ionic radius to behave as a crystal-chemical constant. Keywords: ionic radius; ionic shape; bonding distance; ionic volume; pyrite-type compounds; di-chalcogenides; di-oxides; di-sulfides; di-selenides; di-tellurides 1.
    [Show full text]
  • Pyrite Roasting, an Alternative to Sulphur Burning
    The Southern African Institute of Mining and Metallurgy Sulphur and Sulphuric Acid Conference 2009 M Runkel and P Sturm PYRITE ROASTING, AN ALTERNATIVE TO SULPHUR BURNING M Runkel and P Sturm Outotec GmbH, Oberursel GERMANY Abstract The roasting of sulphide ores and concentrates is often the first step in the production of metals or chemicals. In many processes, the production of sulphuric acid is viewed as a by-product, while in some plants production is an important economic factor. Regardless of the purpose, a pyrite roasting plant consists of mainly three plant sections: roasting, gas cleaning and sulphuric acid. With the addition of air, the pyrite concentrates are transformed into solid oxides and gaseous sulphur dioxide at temperatures of 600 - 1000° C. After cleaning and cooling, the sulphur dioxide in the roasting gas is further processed to sulphuric acid. Two types of reactors are used depending on the application: stationary or circulating fluid bed . For over 60 years, Outotec has progressively been developing the principle of fluidised bed technology in several different reactor types for a multitude of process applications. The versatility of the fluidised bed reactor system has manifested itself in the treatment of minerals, including solid fuels, and for metallurgical processes both in the ferrous and non-ferrous fields. Process applications have included roasting, calcining, combustion and charring of coals, as well as off-gas treatment. This paper provides a summary of the pyrite roasting technology currently used along with a simple cost comparison of pyrite roasting and sulphur burning processes. Introduction Pyrite roasting and sulphur burning plants are built for the production of sulphuric acid.
    [Show full text]
  • Ultrafast Band-Gap Oscillations in Iron Pyrite
    Ultrafast band-gap oscillations in iron pyrite The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kolb, Brian, and Alexie Kolpak. “Ultrafast Band-Gap Oscillations in Iron Pyrite.” Phys. Rev. B 88, no. 23 (December 2013). © 2013 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevB.88.235208 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/88761 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PHYSICAL REVIEW B 88, 235208 (2013) Ultrafast band-gap oscillations in iron pyrite Brian Kolb and Alexie M. Kolpak Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 7 August 2013; revised manuscript received 17 October 2013; published 20 December 2013) With its combination of favorable band gap, high absorption coefficient, material abundance, and low cost, iron pyrite, FeS2, has received a great deal of attention over the past decades as a promising material for photovoltaic applications such as solar cells and photoelectrochemical cells. Devices made from pyrite, however, exhibit open circuit voltages significantly lower than predicted, and despite a recent resurgence of interest in the material, there currently exists no widely accepted explanation for this disappointing behavior. In this paper, we show that phonons, which have been largely overlooked in previous efforts, may play a significant role. Using fully self-consistent GW calculations, we demonstrate that a phonon mode related to the oscillation of the sulfur-sulfur bond distance in the pyrite structure is strongly coupled to the energy of the conduction-band minimum, leading to an ultrafast (≈100 fs) oscillation in the band gap.
    [Show full text]
  • Banded Iron Formations
    Banded Iron Formations Cover Slide 1 What are Banded Iron Formations (BIFs)? • Large sedimentary structures Kalmina gorge banded iron (Gypsy Denise 2013, Creative Commons) BIFs were deposited in shallow marine troughs or basins. Deposits are tens of km long, several km wide and 150 – 600 m thick. Photo is of Kalmina gorge in the Pilbara (Karijini National Park, Hamersley Ranges) 2 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock Iron rich bands: hematite (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). Iron poor bands: chert (fine‐grained quartz) and low iron oxide levels Rock sample from a BIF (Woudloper 2009, Creative Commons 1.0) Iron rich bands are composed of hematitie (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). The iron poor bands contain chert (fine‐grained quartz) with lesser amounts of iron oxide. 3 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock • Archaean and Proterozoic in age BIF formation through time (KG Budge 2020, public domain) BIFs were deposited for 2 billion years during the Archaean and Proterozoic. There was another short time of deposition during a Snowball Earth event. 4 Why are BIFs important? • Iron ore exports are Australia’s top earner, worth $61 billion in 2017‐2018 • Iron ore comes from enriched BIF deposits Rio Tinto iron ore shiploader in the Pilbara (C Hargrave, CSIRO Science Image) Australia is consistently the leading iron ore exporter in the world. We have large deposits where the iron‐poor chert bands have been leached away, leaving 40%‐60% iron.
    [Show full text]
  • A Sulfur Isotope Study of Pyrite Genesis: the Mid-Proterozoic Newland Formation, Belt Supergroup, Montana
    A sulfur isotope study of pyrite genesis: The Mid-Proterozoic Newland Formation, Belt Supergroup, Montana HARALD STRAUSS' and JORGEN SCHIEBER 2 'Ruhr-Universitat Bochum, Institut fur Geologie, Postfach 102148, 4630 Bochum 1, FRG 2University of Texas at Arlington, Department of Geology, Arlington, TX 76019, USA Abstract-Different generations of sedimentary pyrite from the Mid-Proterozoic Newland Formation, USA, have been analysed for their sulfur isotopic compositions. The results indicate bacterial sulfate reduction as the pyrite forming process. The V'S values for early diagenetic pyrite, around -14%o, are in contrast to dominantly more positive values for many other Middle Proterozoic units. A progressive reduction of sulfate availability during diagenesis can be recognized by an increase in 34S content (Rayleigh Distillation) as well as through detailed petrographic observations. Contemporaneous seawater had a sulfur isotopic ratio between +14 and +18%o as measured from sedimentary barite within the unit. INTRODUCTION deposited between 1450 and 850 Ma ago (HARRISON, 1972), and the Newland Formation accumulated early in basin history. OBRADOVICH and PETERMAN THE MID-PROTEROZOIC Newland Formation (Belt Supergroup) contains (1968) defined a 1325 Ma Rb-Sr isochron in Belt rocks (including the Newland horizons of pyritic shale. These and surrounding sediments have been Formation) of the Big Belt and Little Belt Mountains. Because the whole Lower investigated in detail by SCHIEBER (1985) and a continuous spectrum of pyrite Beltian sequence shows the 1325 Ma age, it is likely that this age represents the types from early diagenetic fine crystalline to late diagenetic eudedral and approximate time of diagenetic smectite-illite trans concretionary pyrite has been distinguished.
    [Show full text]
  • Selective Separation of Chalcopyrite from Galena Using a Green Reagent Scheme
    minerals Article Selective Separation of Chalcopyrite from Galena Using a Green Reagent Scheme Kaile Zhao 1,2,3, Chao Ma 1,4, Guohua Gu 1,* and Zhiyong Gao 1,* 1 School of Minerals Processing and Bio-Engineering, Central South University, Changsha 410083, China; [email protected] (K.Z.); [email protected] (C.M.) 2 State Key Laboratory of Mineral Processing, Beijing 100162, China 3 Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, China 4 Hunan Research Academy of Environmental Sciences, Changsha 410004, China * Correspondence: [email protected] (G.G.); [email protected] (Z.G.) Abstract: The study of the depression effect of non-toxic depressants on the flotation separation of chalcopyrite from galena is of great importance for both industrial applications and theoretical research. The mixed depressant (DFinal) of four common inhibitors—sodium carboxymethyl cellulose, sodium silicate, sodium sulfite, and zinc sulfate—exhibited high selectivity during the separation of chalcopyrite from galena. Flotation tests on an industrial copper–lead bulk concentrate showed that using this depressant mixture can achieve highly efficient separation of chalcopyrite from galena at the natural pH of the pulp. Copper and lead concentrates were produced at grades of 21.88% (Cu) and 75.53% (Pb), with recoveries of 89.07% (Cu) and 98.26% (Pb). This showed a similar performance of DFinal with dichromate, which is a depressant that is widely used in industry, but without the environmental risks or the need for pH control. Zeta potential and Fourier transform infrared (FT-IR) results showed that interaction between the surface of the chalcopyrite and the mixed depressant Citation: Zhao, K.; Ma, C.; Gu, G.; was prevented by pre-treatment with a composite thiophosphate collector (CSU11), while the mixed Gao, Z.
    [Show full text]
  • CHALCOPYRITE Visiting
    communication, 2000). The quarry is privately owned and permission must be obtained before CHALCOPYRITE visiting. 13. Groveland mine, near Felch. CuFeS2 Common as attractive microcrystals (DeMark, A widespread and common copper ore mineral 2000). occurring in veins, disseminations, or as replacement deposits. Northern Peninsula. Alpena County: 1. Lafarge Corporation, Great Lakes Region (formerly National Gypsum Company) quarry, Alpena: Rare, with calcite, dolomite, barite, sphalerite, marcasite, pyrite, and strontianite (Morris, 1983). 2. Paxton quarry, Paxton: With calcite, dolomite, quartz, sphalerite, pyrite, and marcasite (Morris, 1983). Baraga County: Ohio mines (Webster and Imperial mines), Imperial Heights near Michigamme: Associates are apatite, goethite, grunerite, graphite, palygorskite, carbonates, and Figure 56: A 1.3 mm chalcopyrite crystal on dolomite other sulfides (Morris, 1983; DeMark, 2000). from the Groveland mine, Dickinson County. Ramon Crystals on calcite rhombohedra. DeMark specimen, Dan Behnke photograph. Dickinson County: 1. Metronite quarry, 4 km east-northeast of Felch: In tremolite marble Gogebic County: 1. Eureka mine near Ramsay, (Randville Dolomite) along contact of aplite- sections 12 and 13, T47N, R46W: With pyrite and pegmatite dike and in marginal parts of the dike gold in quartz veins at contact between granite and itself (Heinrich, 1962b). 2. Rian’s quarry southeast the Palms slate (Dickey and Young, 1938). 2. of Felch: Similar occurrence (Pratt, 1954). 3. In Copp’s mine 10 km north of Marenisco: With iron formation of the Menominee iron range and galena, sphalerite, pyrite, and dolomite (Dana, also just north of Felch: Rare, usually associated 1892). 3. Roadside exposure on south side of with secondary pyrite (Pratt, 1954; Brower, 1968).
    [Show full text]
  • Eg9601814 Supergene Alteration of Magnetite And
    EG9601814 SUPERGENE ALTERATION OF MAGNETITE AND PYRITE AND THE ROLE OF THEIR ALTERATION PRODUCTS IN THE FIXATION OF URANIUM FROM THE CIRCULATING MEDIA. BY MA EL GEMMIZI Nuclear Materials A uthority Cairo- Egypt. ABSTRACT. In most of the Egyptian altered radioactive granites, highly magnetic heavy particles were found to be radioactive. They are a mixture of several iron oxide minerals which are products of supergene alteration of the pre-existing hypogene iron-bearing minerals especially magnetite and pyrite. The end products of this supergene alteration are mainly hydrated iron oxide minerals limonite hematite and geothite. During the alteration, deformation and defects in the minerals structure took place , thereby promoting diffusion of the substitutional and interstitial ions (uranium) to words these sites The mechanism of the alteration of the hypogene iron-bearing minerals; magnetite and pyrite to form the secondary minerals hematite, limonite and geothite; the role of these minerals in fixing uranium from the ciculating media as well as the applicability of these minerals as indicators to the radioactivity of the host rocks were discussed. INTRODUCTION It is quite common that in all the altered rocks magnetite and to some extent pyrite which are present as accessories are suffering from some degrees of alteration. Magnetite and pyrite in the altered granite of Wadi Nugrus, El Missikat and £1 Aradyia, Eastern Desert was found by (1 & 2) to possess several degrees of alteration and crystal deformation. This means that both minerals are sensitive to postdepositional environmental changes. The granites of the present study were described as altered granites overlained by metasediments and underlained by magmatic bodies which invaded the granites itself by sills.
    [Show full text]
  • Pyrite's Evil Twin Marcasite and Pyrite Are Two Common Minerals. Both Fes2 Chemically, Making Them Polymorphs. Polym
    Marcasite - Pyrite's Evil Twin Marcasite and pyrite are two common minerals. Both FeS2 chemically, making them polymorphs. Polymorphs are minerals with the same chemical composition but different crystal structures. Diamond and graphite are polymorphs, both minerals being pure carbon. In diamond and graphite the different arrangement of carbon atoms gives these two minerals of very different physical properties. Pyrite and marcasite, on the other hand, have almost identical physical properties, making them tough to tell from each other. Let's go through their properties. Both are metallic and pale yellow to brassy yellow. Both can tarnish and be iridescent. Both are 6-6.5 on the Mohs' hardness scale. Neither have a particularly prominent cleavage, although marcasite does have one that occasionally shows up. Both have densities of about 5 grams per cubic centimeter (pyrite is a bit denser, but not enough to be detectible without delicate measurements). They can even be found together in the same rock. Fortunately these minerals often show good outer crystal shapes that are quite different. Pyrite crystals are generally equant, and dominated by cubes, octahedrons and 12-sided pyritohedrons. Marcasite crystals are usually rectangular (tabular) with wedge-shaped ends and tend to form in star shaped, radiating or cockscomb groups. Marcasite is also much more restricted in occurrence than pyrite, forming only in low temperature, near surface, very acidic environments. It is found in some ore deposits, in sediments formed under somewhat stagnant conditions and as ground water precipitates in rocks such as in limestone and shale. Although pyrite can also be found in many of these same environments, the crystal shapes are diagnostic.
    [Show full text]
  • Skarn Related Mineralization in the Magnetite-Pyrite-Hematite Deposit of Brosso (Ivrea, Italy)
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Verh. Geol. B-A. Jahrgang 1978 Heft3 S. 321-346 Wien, Dezember 1979 Proceed. 3 rd ISMIDA (Leoben, Oct. 7-10, 1977) S. 147-172 Wien, Dezember 1979 Skarn Related Mineralization in the Magnetite-Pyrite-Hematite Deposit of Brosso (Ivrea, Italy) By ALBERTO GIUSSANI*] With 8 figures Italien: Aostatal: Brosso skarnähnlicbe Vererzungen Magnetit-Pyrit-Hämetit- Erzlagerstätten Traversella Pluton Sesia-Lauro Zone 3 Metallogenese Index Introduction , 323 (149) Regional geological setting 323 (149) Geology of the mining area 324 (150) a) Structural setting 324 (150) b) Igneous rocks 326 (152) c) Metamorphic rocks 328 (154) d) Contact aureola 328 (154) The ore deposit 330 (156) a) Quartz-arsenopyrite veins 330 (156) b) Hematite-pyrite lenses : 331 (157) c) Skarn related mineralization 332 (158) • The first mineralizing stage 332 (158) • The second mineralizing stage 335 (161) • The third mineralizing stage 337 (163) Ore genesis in relation to orogeny and to magmatic evolution 340 (166) Conclusion 344 (170) Acknowledgements 344 (170) Riassunto La miniera di Brosso, situata alio sbocco della Valle di Aosta, ё stata coltivata in passato per galena argentife ra poi per ossidi di ferro ed infine per pirite. Le mineralizzazioni si trovano lungo il margine Orientale del plutone di Traversella intruso nelle formazioni metamorfiche della zona Sesia Lanzo, sub­ ito a nord della linea del Canavese. L'intrusione, di etä Alpina, ha ripiegato e metamorfosa to per contatto sia le metamorfiti della Zona Sesia-Lanzo che i filoni di porfirite, intrusi negli scisti. *) Author's address: MONTEDISON S. p. A., Divisione Prodotti per l'Industria Attivitä Minerana.
    [Show full text]