The Molecular Regulation of Terpene Polymorphism in Thymus Vulgaris
Total Page:16
File Type:pdf, Size:1020Kb
The molecular regulation of terpene polymorphism in Thymus vulgaris DISSERTATION zur Erlangung des akademischen Grades Doktor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena von Julia Nina Christina Asbach, Dipl. Biol. geboren am 03. Mai 1977 in Hamburg Gutachter: 1. Prof. Dr. Jonathan Gershenzon Max Planck Institut für Chemische Ökologie, Jena, Deutschland 2. Prof. Dr. Severin Sasso Friedrich-Schiller-Universität Jena, Deutschland 3. Prof. Dr. Bodil Ehlers Universität Aarhus, Dänemark Tag der öffentlichen Disputation: 17. November 2014 TABLE OF CONTENTS 1 General Introduction .......................................................................................................................... 1 Terpene biosynthesis in plants .................................................................................................................. 2 Thymus vulgaris – The system .................................................................................................................. 8 Questions addressed in this thesis ........................................................................................................... 14 2 Terpene composition of the Thymus vulgaris chemotypes investigated in this thesis ............ 15 Introduction ............................................................................................................................................. 15 Material and Methods ............................................................................................................................. 20 Results ..................................................................................................................................................... 22 Discussion ............................................................................................................................................... 27 3 Characterization of terpene biosynthetic genes of Thymus vulgaris ......................................... 31 Introduction ............................................................................................................................................. 31 Material and Methods ............................................................................................................................. 33 Results ..................................................................................................................................................... 40 Discussion ............................................................................................................................................... 65 4 Molecular control of the monoterpene polymorphism in Thymus vulgaris ............................. 83 Introduction ............................................................................................................................................. 83 Material and Methods ............................................................................................................................. 86 Results ..................................................................................................................................................... 89 Discussion ............................................................................................................................................... 99 5 Plant regeneration from Thymus vulgaris leaf explants ............................................................ 107 Introduction ........................................................................................................................................... 107 Material and Methods ........................................................................................................................... 109 Results ................................................................................................................................................... 111 Discussion ............................................................................................................................................. 117 6 General Discussion ........................................................................................................................ 131 7 Summary ......................................................................................................................................... 141 8 Zusammenfassung .......................................................................................................................... 143 9 References ....................................................................................................................................... 147 10 Acknowledgments .......................................................................................................................... 169 11 Supplementary Material ................................................................................................................ 173 12 Eigenständigkeitserklärung ........................................................................................................... 181 13 Curriculum Vitae ............................................................................................................................ 183 General Introduction 1 General Introduction Plant secondary metabolites constitute a large group of structurally diverse compounds that are also referred to as specialized metabolites or natural products. Traditionally secondary metabolites are defined as compounds that, unlike primary metabolites, are not required for basic survival but which none the less provide a competitive advantage to the organism (Theis and Lerdau 2003). Biochemically, secondary metabolites can be divided into three major groups: terpenoids, phenolic compounds, and nitrogen- containing compounds, of which the latter can be further subdivided into glucosinolates, cyanogenic glucosides, and alkaloids. Of the more than 200.000 plant secondary metabolites, many have been found to be of ecological importance to plants, serving as attractants for pollinators or seed dispersers, defenses against herbivores and pathogens, or as allelochemicals against competitors. The functional diversity of secondary metabolites may be demonstrated best by terpenes. Terpenoids, also called isoprenoids or terpenes, constitute the largest and most diverse class of secondary metabolites, and conservative estimates suggested that at least 65.000 different terpenoids exist in nature, of which 43.000 have already been described (Bohlmann and Keeling 2008, Oldfield and Lin 2012, Hamberger and Bak 2013). While the majority has been isolated from plants, they appear to be almost ubiquitous in nature, occurring also in bacteria, fungi, marine organisms, mollusks or even fish, insects, and mammals (Gershenzon and Dudareva 2007). Given their wide distribution and diversity and the fact that most have no apparent function in the basic processes of growth and development, it is not surprising that they have been historically referred to as secondary metabolites. Their biological roles, however, are as manifold as their structures are diverse, and include physiological, structural and ecological functions. A few specialized groups of terpenes with well-characterized functions include (i) the carotenoids, such as xanthophylls, carotenes, lycopene, all-trans-retinal, and retinol (a vitamin A), which play important roles in photosynthetic light-harvesting, photoprotection, photoreception, cell proliferation and differentiation, as well as visual attraction, (ii) the steroids, such as cholesterol, an important component of cell membranes and the different steroid hormones, like testosterone, estrogens, progesterones, cortisol, and vitamin D and analogs (e.g. calcitriol), (iii) ubiquinone, a proton- and electron carrier of the respiratory chain, (iv) phytol, the side chain 1 General Introduction of the photosynthetic light-harvesting pigment chlorophyll, (v) diverse plant hormones such as abscisic acid, gibberellins, and strigolactones which regulate plant growth and influence various developmental processes, and other vitamins, such as (vi) α-tocopherol (a vitamin E) (Figure 1-1). Furthermore there are several proteins, such as heme A or G proteins, which are bound to the cell membrane by isoprenoid anchors. Besides their preeminent ecological and physiological roles, terpenoids have also been of interest to humankind since antiquity as flavors and fragrances as well as pharmaceuticals. Figure 1-1: A selection of terpenoids with well-known physiological and biological activities. Terpene biosynthesis in plants The structural diversity exhibited by terpenoids and the related wide range of physiological activities might lead one to believe that these secondary metabolites originate from complex precursors. However, terpenoids are derived from two universal five-carbon precursors, isopentenyl diphosphate (IPP) and its allylic isomer, dimethylallyl diphosphate (DMAPP). In plants, two independent and spatially separated pathways – the methylerythritol phosphate (MEP) pathway and the mevalonic acid (MVA) pathway – are responsible for the formation of these C5-isoprene building blocks (Figure 1-2). The C5 units of the MEP pathway give rise principally to hemiterpenes (C5), monoterpenes (C10), diterpenes (C20), and carotenoids (C40), while the C5 units of the MVA pathway lead to sesquiterpenes (C15), triterpenes (C30), and sterols. The MEP pathway