The Molecular Regulation of Terpene Polymorphism in Thymus Vulgaris

Total Page:16

File Type:pdf, Size:1020Kb

The Molecular Regulation of Terpene Polymorphism in Thymus Vulgaris The molecular regulation of terpene polymorphism in Thymus vulgaris DISSERTATION zur Erlangung des akademischen Grades Doktor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena von Julia Nina Christina Asbach, Dipl. Biol. geboren am 03. Mai 1977 in Hamburg Gutachter: 1. Prof. Dr. Jonathan Gershenzon Max Planck Institut für Chemische Ökologie, Jena, Deutschland 2. Prof. Dr. Severin Sasso Friedrich-Schiller-Universität Jena, Deutschland 3. Prof. Dr. Bodil Ehlers Universität Aarhus, Dänemark Tag der öffentlichen Disputation: 17. November 2014 TABLE OF CONTENTS 1 General Introduction .......................................................................................................................... 1 Terpene biosynthesis in plants .................................................................................................................. 2 Thymus vulgaris – The system .................................................................................................................. 8 Questions addressed in this thesis ........................................................................................................... 14 2 Terpene composition of the Thymus vulgaris chemotypes investigated in this thesis ............ 15 Introduction ............................................................................................................................................. 15 Material and Methods ............................................................................................................................. 20 Results ..................................................................................................................................................... 22 Discussion ............................................................................................................................................... 27 3 Characterization of terpene biosynthetic genes of Thymus vulgaris ......................................... 31 Introduction ............................................................................................................................................. 31 Material and Methods ............................................................................................................................. 33 Results ..................................................................................................................................................... 40 Discussion ............................................................................................................................................... 65 4 Molecular control of the monoterpene polymorphism in Thymus vulgaris ............................. 83 Introduction ............................................................................................................................................. 83 Material and Methods ............................................................................................................................. 86 Results ..................................................................................................................................................... 89 Discussion ............................................................................................................................................... 99 5 Plant regeneration from Thymus vulgaris leaf explants ............................................................ 107 Introduction ........................................................................................................................................... 107 Material and Methods ........................................................................................................................... 109 Results ................................................................................................................................................... 111 Discussion ............................................................................................................................................. 117 6 General Discussion ........................................................................................................................ 131 7 Summary ......................................................................................................................................... 141 8 Zusammenfassung .......................................................................................................................... 143 9 References ....................................................................................................................................... 147 10 Acknowledgments .......................................................................................................................... 169 11 Supplementary Material ................................................................................................................ 173 12 Eigenständigkeitserklärung ........................................................................................................... 181 13 Curriculum Vitae ............................................................................................................................ 183 General Introduction 1 General Introduction Plant secondary metabolites constitute a large group of structurally diverse compounds that are also referred to as specialized metabolites or natural products. Traditionally secondary metabolites are defined as compounds that, unlike primary metabolites, are not required for basic survival but which none the less provide a competitive advantage to the organism (Theis and Lerdau 2003). Biochemically, secondary metabolites can be divided into three major groups: terpenoids, phenolic compounds, and nitrogen- containing compounds, of which the latter can be further subdivided into glucosinolates, cyanogenic glucosides, and alkaloids. Of the more than 200.000 plant secondary metabolites, many have been found to be of ecological importance to plants, serving as attractants for pollinators or seed dispersers, defenses against herbivores and pathogens, or as allelochemicals against competitors. The functional diversity of secondary metabolites may be demonstrated best by terpenes. Terpenoids, also called isoprenoids or terpenes, constitute the largest and most diverse class of secondary metabolites, and conservative estimates suggested that at least 65.000 different terpenoids exist in nature, of which 43.000 have already been described (Bohlmann and Keeling 2008, Oldfield and Lin 2012, Hamberger and Bak 2013). While the majority has been isolated from plants, they appear to be almost ubiquitous in nature, occurring also in bacteria, fungi, marine organisms, mollusks or even fish, insects, and mammals (Gershenzon and Dudareva 2007). Given their wide distribution and diversity and the fact that most have no apparent function in the basic processes of growth and development, it is not surprising that they have been historically referred to as secondary metabolites. Their biological roles, however, are as manifold as their structures are diverse, and include physiological, structural and ecological functions. A few specialized groups of terpenes with well-characterized functions include (i) the carotenoids, such as xanthophylls, carotenes, lycopene, all-trans-retinal, and retinol (a vitamin A), which play important roles in photosynthetic light-harvesting, photoprotection, photoreception, cell proliferation and differentiation, as well as visual attraction, (ii) the steroids, such as cholesterol, an important component of cell membranes and the different steroid hormones, like testosterone, estrogens, progesterones, cortisol, and vitamin D and analogs (e.g. calcitriol), (iii) ubiquinone, a proton- and electron carrier of the respiratory chain, (iv) phytol, the side chain 1 General Introduction of the photosynthetic light-harvesting pigment chlorophyll, (v) diverse plant hormones such as abscisic acid, gibberellins, and strigolactones which regulate plant growth and influence various developmental processes, and other vitamins, such as (vi) α-tocopherol (a vitamin E) (Figure 1-1). Furthermore there are several proteins, such as heme A or G proteins, which are bound to the cell membrane by isoprenoid anchors. Besides their preeminent ecological and physiological roles, terpenoids have also been of interest to humankind since antiquity as flavors and fragrances as well as pharmaceuticals. Figure 1-1: A selection of terpenoids with well-known physiological and biological activities. Terpene biosynthesis in plants The structural diversity exhibited by terpenoids and the related wide range of physiological activities might lead one to believe that these secondary metabolites originate from complex precursors. However, terpenoids are derived from two universal five-carbon precursors, isopentenyl diphosphate (IPP) and its allylic isomer, dimethylallyl diphosphate (DMAPP). In plants, two independent and spatially separated pathways – the methylerythritol phosphate (MEP) pathway and the mevalonic acid (MVA) pathway – are responsible for the formation of these C5-isoprene building blocks (Figure 1-2). The C5 units of the MEP pathway give rise principally to hemiterpenes (C5), monoterpenes (C10), diterpenes (C20), and carotenoids (C40), while the C5 units of the MVA pathway lead to sesquiterpenes (C15), triterpenes (C30), and sterols. The MEP pathway
Recommended publications
  • Morphological, Chemical, and Genetic Characteristics of Korean Native Thyme Bak-Ri-Hyang (Thymus Quinquecostatus Celak.)
    antibiotics Article Morphological, Chemical, and Genetic Characteristics of Korean Native Thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.) Minju Kim 1, Jun-Cheol Moon 2, Songmun Kim 1,* and Kandhasamy Sowndhararajan 3,* 1 School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; [email protected] 2 Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; [email protected] 3 Department of Botany, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India * Correspondence: [email protected] (S.K.); [email protected] (K.S.); Tel.: +82-33-250-6447 (S.K.); +91-422-2642095 (K.S.) Received: 27 April 2020; Accepted: 25 May 2020; Published: 28 May 2020 Abstract: Bak-ri-hyang (Thymus quinquecostatus Celak.) is an important medicinal and aromatic plant in Korea. T. quinquecostatus population and is always mixed with other thyme cultivars during cultivation and marketing. Hence, this study aimed to determine the genetic variability and the essential oil composition of three Korean native thyme, T. quinquecostatus cultivars collected from the Wolchul, Jiri, and Odae mountains, in comparison with six commercial thyme cultivars (T. vulgaris), to distinguish Bak-ri-hyang from other thyme cultivars. The composition of essential oils obtained from nine individuals was analyzed by gas chromatography–mass spectrometry (GC–MS). The random amplified polymorphic DNA (RAPD) analysis was accomplished using 16 different primers. The GC–MS analysis revealed that Wolchul, creeping, golden, and orange cultivars belong to the geraniol chemotype. Whereas the Odae, lemon, and silver cultivars belong to the thymol chemotype. Further, linalool was the most abundant component in carpet and Jiri cultivars.
    [Show full text]
  • Pinturas Antiincrustantes Derivadas De Plantas Terrestres: Una Solución Segura Para El Ambiente En El Control De La Bioincrustación
    ISSN 1688-6593 INNOTEC 2021, No. 22 (e559) https://doi.org/10.26461/22.01 REVISTA DEL LABORATORIO TECNOLÓGICO DEL URUGUAY Revisiones Pinturas antiincrustantes derivadas de plantas terrestres: una solución segura para el ambiente en el control de la bioincrustación Antifouling paints derived from terrestrial plants: a safe solution for the environment in the control of biofouling Tintas anti-incrustantes derivadas de plantas terrestres: uma solução segura para o meio ambiente no controle da bioincrustação Vanessa Ochi Agostini 1,* https://orcid.org/0000-0002-8325-254X Grasiela Lopes Leães Pinho1 https://orcid.org/0000-0001-7951-0334 Erik Muxagata2 http://orcid.org/0000-0002-4210-5252 Alexandre José Macedo3 https://orcid.org/0000-0002-8951-4029 Fabiana Rey Bentos4 https://orcid.org/0000-0001-5931-5902 Lucía Boccardi4 https://orcid.org/0000-0002-5391-2308 María Jesús Dabezies5 https://orcid.org/0000-0001-9909-3427 Ernesto Brugnoli6 https://orcid.org/0000-0001-7304-1856 *Autor de contacto: [email protected] 1 Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática – Programa de Pós-Graduação em Oceanologia – Instituto de Oceanografia – Universidade Federal do Rio Grande, Rio Grande do Sul, Brasil 2 Laboratório de Zooplâncton – Programa de Pós-Graduação em Oceanografia Biológica – Instituto de Oceanografia – Universidade Federal do Rio Grande, Rio Grande do Sul, Brasil 3 Laboratório de Biofilmes e Diversidade Bacteriana – Centro de Biotecnologia – Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brasil 4 Latitud–Fundación LATU, Montevideo, Uruguay 5 Laboratorio Tecnológico del Uruguay (LATU), Montevideo, Uruguay 6 Oceanografía y Ecología Marina, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay Recepción: 14 Agosto 2020 Aprobación: 15 Enero 2021 Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
    [Show full text]
  • Eucalyptus Rubida Subsp. Rubida
    Plants of South Eastern New South Wales Flower buds on leafy stem. Australian Plant Image Index, photographer Peter Ormay, Canberra, ACT Juvenile leaves. Australian Plant Image Index, photographer Peter Ormay, Canberra, ACT Line drawings. e. juvenile (right) and adult (left) Tree. Photographer Jackie Miles leaves; buds and gumnuts. KR Thiele, Australian National Herbarium, © 2021 Royal Botanic Gardens Board, Melbourne, Vic Common name Candlebark, Ribbon gum, White gum Family Myrtaceae Where found Dry forest, woodland, and grassy areas, usually on cold flats. Western Slopes, Kosciuszko National Park, the mountains to the north, ACT, and tablelands. Occasionally in the ranges. Notes Tree to 40 m tall. Bark smooth throughout or with some patches of rough, greyish bark at the base. Rough bark shortly fibrous, platy, at times shedding irregularly, grey to grey-black. Smooth bark shedding in long ribbons, with horizontal black scars, often powdery. Branchlets glaucous or non-glaucous. Juvenile stems rounded in cross section, glaucous. Juvenile leaves opposite each other for many pairs, stalkless, 2-6 cm long, 25-65 mm wide, glaucous. Adult leaves alternating up the stems, 6.8-17.5 cm long, 8-34 mm wide, glossy or dull, green, grey-green, or glaucous. Flowers white, with 0 petals. Flower clusters 3- or 7- flowered. Mature flower buds 4–9 mm long, caps as long as or shorter than the base. Flowers Spring-Autumn. Gumnuts 4-8 mm in diameter. Gumnuts that have dropped their seed have protruding valves or valves that are not very noticeable. Hybridises with Eucalyptus aggregata and Eucalyptus nortonii. May hybridise with Eucalyptus parvula.
    [Show full text]
  • Genetic Diversity Among Thymus Spp. Using Rapd and Issr Markers
    6 Egyptian J. Desert Res., 69, Special Issue, 91-106 (2019) GENETIC DIVERSITY AMONG THYMUS SPP. USING RAPD AND ISSR MARKERS Esraa A. El Sherbeny*, El-Shaimaa S. El-Demerdash, Yasser A.M. Salama and Mohamed Z.S. Ahmed 1Department of Genetic Resources, Desert Research Center, El-Matareya, Cairo, Egypt *E-mail: [email protected] his investigation was carried out to assess the relationships among three Thymus species; two wild species (Thymus T capitatus and Thymus decussatus) and a cultivar (Thymus vulgaris). Two molecular markers were used to determine the genetic relationships among them; random amplified polymorphic DNA (RAPD) and the inter-simple sequence repeats (ISSR) markers techniques. The results suggest that RAPD marker is the best choice for the evaluation of diversity and the genetic relationships between two wild Thymus species with high accuracy, which revealed 224 DNA bands detected across 15 primers with high polymorphism than ISSR, which revealed 336 DNA bands. The genetic relationship among Thymus species based on molecular data was developed using a dendrogram constructed by UPGMA cluster analysis. Conservationist may use the information of the present study to make effective decisions regarding the global protection and management of Thymus species in Egypt. Keywords: Thymus, genetic relationships, RAPD-PCR, ISSR The genus Thymus belongs to the family Lamiaceae and includes several hundreds of species distributed over the world (Akcin, 2006). The systematics of species remains difficult because of the interspecific hybridization, polyploidy and morphological similarities among species (Morales, 1996 and Tzakow and Constantinidis, 2005). The genus Thymus is known in several countries as a spice and food preservative, as well as a st The 1 Scientific Conference of Plant Genetic Resources Department, Ecology and Dry Lands Agriculture Division, Desert Research Center “Plant Genetic Resources and Sustainable Development Under Egyptian Desert Conditions” 13-16 November, 2019, Sharm El-Sheikh, South Sinai, Egypt 92 Esraa A.
    [Show full text]
  • Morphological, Molecular and Phytochemical Variation in Some Thyme Genotypes
    Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 5 [11] October 2016: 25-35 ©2015 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal’s URL:http://www.bepls.com CODEN: BEPLAD Global Impact Factor 0.533 Universal Impact Factor 0.9804 ORIGINAL ARTICLE OPEN ACCESS Morphological, Molecular and phytochemical Variation in Some Thyme Genotypes Marzieh Dalir1 and Abbas Safarnejad* 1MSc, Biotechnology,Mashhad Branch, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran. Email:[email protected] 2*Corresponding author, Associate Professor, Faculty member of Khorasan Razavi Agricultural and Natural Resources Research Center or Mashhad Branch, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran Email: [email protected], ABSTRACT Thyme is an important medicinal plant in cosmetic, pharmaceutical and food industries. The first step for breeding of thyme is evaluating of genetic variation and relationship between thyme’s accessions. Thirteen accessions of Thyme medicinal plant were studied in the aspect of morphology, chemical and molecular variation. ANOVA showed significant differences between accessions for total characterization tested. The dendrogram constructed on the basis of morphology similarities showed two major clusters. In order to evaluate the genetic variation, the genomic DNA extracted using modified medicinal CTAB protocol. The evaluation of the quality of DNA was examined with electrophoresis. Twenty primers were used for PCR analysis and only 9 primers showed clear bands. Out of 149 bands, 83/22% were the polymorphism. The data were analyzed with SPSS and POPGENE programs and the dendrogram was drawn based on UPGMA and showed three major clusters.
    [Show full text]
  • République Algérienne Démocratique Et Populaire Ministère De L’Enseignement Superieur Et De La Recherche Scientifique
    RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITÉ ABOU BEKR BELKAID-TLEMCEN Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de l’Univers Département de Biologie Laboratoire « Produits Naturels » de l’Université de Tlemcen Laboratoire de l’équipe « Chimie et Biomasse » de l’Université de Corse-CNRS THÈSE En vue de l’obtention du diplôme de DOCTORAT En Biologie Option : Nutrition et Santé Présentée par : M. MALTI Charaf Eddine Watheq Thème Etude des activités biologiques et de la composition chimique des huiles essentielles de trois plantes aromatiques d’Algérie : Pituranthos scoparius (Guezzah), Santolina africana (EL Djouada) et Cymbopogon schoenanthus (El Lemad) » Soutenue le : 04 / 09 / 2019 Devant le jury composé de : Président : Mme ATIK-BEKKARA Fewzia | Professeur | Université de Tlemcen Examinateurs : M. BIGHELLI Ange | Professeur | Université de Corse M. LAZOUNI Hamadi Abderrahmane | Professeur | Université de Tlemcen Co-directeur de thèse : M. TOMI Félix | Professeur | Université de Corse Directeur de thèse : Mme BEKHECHI Chahrazed | Professeur | Université de Tlemcen Année Universitaire 2018 – 2019 REMERCIEMENTS Ce travail a été réalisé au département de Biologie, laboratoire des « Produits Naturels », au sein de l’équipe « Activité Antimicrobienne des Substances Naturelles et Ecologie Microbienne », sous la direction de Madame BEKHECHI Chahrazed, en collaboration avec le laboratoire de l’équipe « Chimie et Biomasse » de l’université de Corse-CNRS, UMR 6134 SPE, sous la direction de Monsieur TOMI Félix. Tout d’abord, j’adresse mes plus vifs remerciements à mon directeur de thèse Madame BEKHECHI Chahrazed, Professeur à l’université de Tlemcen, dont l’expérience et le dévouement sans faille ont permis la réalisation de cette thèse.
    [Show full text]
  • Syntenic Gene and Genome Duplication Drives Diversification of Plant Secondary Metabolism and Innate Immunity in Flowering Plants
    Genomics 4.0 - Syntenic Gene and Genome Duplication Drives Diversification of Plant Secondary Metabolism and Innate Immunity in Flowering Plants - Advanced Pattern Analytics in Duplicate Genomes - Johannes A. Hofberger Thesis committee Promotor Prof. Dr M. Eric Schranz Professor of Experimental Biosystematics Wageningen University Other members Prof. Dr Bart P.H.J. Thomma, Wageningen University Prof. Dr Berend Snel, Utrecht University Dr Klaas Vrieling, Leiden University Dr Gabino F. Sanchez, Wageningen University This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. Genomics 4.0 - Syntenic Gene and Genome Duplication Drives Diversification of Plant Secondary Metabolism and Innate Immunity in Flowering Plants - Advanced Pattern Analytics in Duplicate Genomes - Johannes A. Hofberger Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 18 May 2015 at 4 p.m. in the Aula. Johannes A. Hofberger Genomics 4.0 - Syntenic Gene and Genome Duplication Drives Diversification of Plant Secondary Metabolism and Innate Immunity in Flowering Plants 83 pages. PhD thesis, Wageningen University, Wageningen, NL (2015) With references, with summaries in Dutch and English ISBN: 978-94-6257-314-7 PROPOSITIONS 1. Ohnolog over-retention following ancient polyploidy facilitated diversification of the glucosinolate biosynthetic inventory in the mustard family. (this thesis) 2. Resistance protein conserved in structurally stable parts of plant genomes confer pleiotropic effects and expanded functions in plant innate immunity. (this thesis) 3.
    [Show full text]
  • The Natural Distribution of Eucalyptus Species in Tasmania
    The natural distribution of Eucalyptus species in Tasmania K.J. Williams and B.M. Potts Cooperative Research Centre for Temperate Hardwood Forestry, Department of Plant Science, University of Tasmania, GPO Box 252–55, Hobart 7001 email: [email protected]./[email protected] Abstract dispersed (E. cordata) or disjunct (E. archeri) occurrences. Most species that are rare in A summary is provided of the natural geographic Tasmania are endemics, with the exception of distributions of the 29 Tasmanian Eucalyptus E. perriniana and E. aff. radiata, although species. The work is based on over 60 000 the taxonomic status of the latter requires observations from numerous data sources. A map investigation. Unresolved issues relating to the on a 10 km x 10 km grid-cell scale is presented for natural distribution and taxonomic affinities of each species and is accompanied by graphs of the the Tasmanian eucalypt species are summarised. altitudinal range and flowering times, as well as descriptive notes on distribution and ecology, supplemented with a list of key references. The Introduction geographic pattern of species richness is examined at generic, subgeneric and series levels. Total In Tasmania and the Bass Strait islands, species richness is greater in the drier, eastern 29 native eucalypt species (one of which has regions compared to the wet, western regions of two subspecies) are recognised by Buchanan Tasmania, with highest concentrations of species (1995), from two informal subgenera, occurring mainly in the central east coast and Monocalyptus and Symphyomyrtus (Pryor and south-eastern regions. Monocalyptus species Johnson 1971).
    [Show full text]
  • Critical Revision of the Genus Eucalyptus Volume 3: Parts 21-30
    Critical revision of the genus eucalyptus Volume 3: Parts 21-30 Maiden, J. H. (Joseph Henry) (1859-1925) University of Sydney Library Sydney 2002 http://setis.library.usyd.edu.au/oztexts © University of Sydney Library. The texts and images are not to be used for commercial purposes without permission Source Text: Prepared from the print edition of Parts 21-30 Critical revision of the genus eucalyptus, published by William Applegate Gullick Sydney 1917. 223pp. All quotation marks are retained as data. First Published: 1917 583.42 Australian Etext Collections at botany prose nonfiction 1910-1939 Critical revision of the genus eucalyptus volume 3 (Government Botanist of New South Wales and Director of the Botanic Gardens, Sydney) “Ages are spent in collecting materials, ages more in separating and combining them. Even when a system has been formed, there is still something to add, to alter, or to reject. Every generation enjoys the use of a vast hoard bequeathed to it by antiquity, and transmits that hoard, augmented by fresh acquisitions, to future ages. In these pursuits, therefore, the first speculators lie under great disadvantages, and, even when they fail, are entitled to praise.” Macaulay's “Essay on Milton” Sydney William Applegate Gullick, Government Printer 1917 Part 21 CXIII. E. cinerea F.v.M. In Bentham's Flora Australiensis iii, 239 (1866). FOLLOWING is the original description:— A moderate-sized tree, with a whitish-brown persistent bark, somewhat fibrous, the foliage more or less glaucous or mealy white. Leaves opposite, sessile, cordate ovate or ovate-lanceolate, obtuse or acute, mostly 2 to 4 inches long (or narrow lanceolate, which are alternate and much longer.—J.H.M.).
    [Show full text]
  • Molecular Identification and Phylogenetic Relationship of Some Origanum and Thymus Species Based on ITS Regions
    IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB) ISSN: 2455-264X, Volume 6, Issue 6 (Nov. – Dec. 2020), PP 12-23 www.iosrjournals.org Molecular Identification and Phylogenetic Relationship of some Origanum and Thymus Species Based on ITS Regions Mohamed Zoelfakar Sayed Ahmed1, El-Shaimaa Saad El-Demerdash1 and Shafik Darwish Ibrahim2 1(Genetic Resources Department, Desert Research Center (DRC), 1, Mathaf El-Matariya Street, El-Matariya B.O.P 11753 El-Matariya, Cairo, Egypt.) 2(Molecular Genetics and Genome Mapping Lab., AGERI, ARC, 9 Gamma St., Giza – Cairo 12619, Egypt.) Abstract: Background: Lamiaceae or Labiatae family is one of the major important plant families of multiple usesin aromatic purposes, medicine and food. Oregano (Origanum) and thyme (Thymus) the scope of our study are belonging to familyLamiaceae. Butin spite of their importance, they are poorly identified on the basis of molecular levels three Thymus species (T. vulgaris, T. capitatus and T. decussatus)and two Origanum species (O. vulgareand O. syriacum L., subsp. sinaicum) were chosen for the preset study. Molecular identification and characterization studies based on DNA molecular marker (ITS region) are more precise, reliable and powerful tool to assess the phylogenetic relationships between studied plant species with 17 genera in Lamiaceae family. Materials and Methods:Specific one fragment ofPCR product about 710±15 bp from was produced using the universal primer (ITS1 and ITS4) with highly conserved of ITS regions of rDNA through the 5 samples under study and sequencing of the obtained fragment was conducted. Results:The sequence lengths of the ITS region of three Thymus species were 685bp, 681bp and 680bp with T.
    [Show full text]
  • Patterns of Hybridization and Asymmetrical Gene Flow in Hybrid
    Heredity (2010), 1–13 & 2010 Macmillan Publishers Limited All rights reserved 0018-067X/10 $32.00 www.nature.com/hdy ORIGINAL ARTICLE Patterns of hybridization and asymmetrical gene flow in hybrid zones of the rare Eucalyptus aggregata and common E. rubida DL Field1, DJ Ayre2, RJ Whelan2 and AG Young3 1Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada; 2Institute for Conservation Biology, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia and 3CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia The patterns of hybridization and asymmetrical gene flow of long-term migration rates also indicate asymmetric gene among species are important for understanding the pro- flow, with higher migration rates from E. aggregata to hybrids cesses that maintain distinct species. We examined the compared with E. rubida. Taken together, these results potential for asymmetrical gene flow in sympatric populations indicate a greater genetic input from E. aggregata into the of Eucalyptus aggregata and Eucalyptus rubida, both long- hybrid populations. This asymmetry probably reflects differ- lived trees of southern Australia. A total of 421 adults from ences in style lengths (E. rubida: B7 mm, E. aggregata: three hybrid zones were genotyped with six microsatellite B4 mm), which can prevent pollen tubes of smaller-flowered markers. We used genealogical assignments, admixture species from fertilizing larger-flowered species. However, analysis and analyses of spatial genetic structure and spatial analyses of fine-scale genetic structure suggest that localized distribution of individuals, to assess patterns of interspecific seed dispersal (o40 m) and greater clustering between gene flow within populations.
    [Show full text]
  • 2011 PBRG Report
    ANNUAL REPORT 2011 PBRG | PLANT BIOTECHNOLOGY RESEARCH GROUP PBRG Plant Biotechnology Research Group Institute for Biotechnology and Bioengineering Departamento de Biologia Vegetal Faculdade de Ciências de Lisboa Campo Grande 1749-016 Lisbon Portugal http://cbv.fc.ul.pt Plant Biotechnology Research Group 8. Identification of the catabolic products of β- PBRG myrcene used as sole carbon source by Pseu- domonas sp. M1 and their correlation with bacterial gene expression. Major Achievements Objectives Pursuing our studies in the Plectranthus ge- The Plant Biotechnology Research Group nus, it was demonstrated that P. barbatus (PBRG) is a research unit on plant sciences herbal tea and its main constituent also involved in advanced education on bio- (rosmarinic acid), administered intra- technology. The main research goals, on a plu- gastrically or intraperitoneally to rats, can riannual basis, are the in vivo and in vitro sec- cross the intestinal barrier, as well as the ondary metabolites production, aiming the as- Plant Biotechnology Research Group blood brain barrier and be detected in the sessment of the National endemic aromatic/ brain, where it inhibits the enzyme acetyl- medicinal flora potentialities, the molecular cholinesterase. It was also showed that the characterization of aromatic species, focusing metabolization and bioavailability of the tea on the terpene synthase genes, the study of 7. a) Assessment of essential oils, and their components is different from the administra- plant secretory structures and the prospecting Bursaphlenchus xylophilus (Pine Wilt Nema- fractions, for their potential nematicidal proper- tion of pure compounds. In addition, protein of bioactive components. Briefly, the following tode) and Solanum tuberosum hairy roots/ ties, namely in the control of the pine wood intrinsic fluorescence analysis proved that P.
    [Show full text]