The Vegetation Communities Dry Eucalypt Forest and Woodland

Total Page:16

File Type:pdf, Size:1020Kb

The Vegetation Communities Dry Eucalypt Forest and Woodland Edition 2 From Forest to Fjaeldmark The Vegetation Communities Dry eucalypt forest and woodland Eucalyptus amygdalina Edition 2 From Forest to Fjaeldmark 1 Dry eucalypt forest and woodland Community (Code) Page Eucalyptus amygdalina coastal forest and woodland (DAC) 11 Eucalyptus amygdalina forest and woodland on dolerite (DAD) 13 Eucalyptus amygdalina forest and woodland on sandstone (DAS) 15 Eucalyptus amygdalina forest on mudstone (DAM) 17 Eucalyptus amygdalina inland forest and woodland on Cainozoic deposits (DAZ) 19 Eucalyptus amygdalina–Eucalyptus obliqua damp sclerophyll forest (DSC) 22 Eucalyptus barberi forest and woodland (DBA) 24 Eucalyptus coccifera forest and woodland (DCO) 25 Eucalyptus cordata forest (DCR) 27 Eucalyptus dalrympleana–Eucalyptus pauciflora forest and woodland (DDP) 29 Eucalyptus delegatensis dry forest and woodland (DDE) 31 Eucalyptus globulus dry forest and woodland (DGL) 33 Eucalyptus gunnii woodland (DGW) 35 Eucalyptus morrisbyi forest and woodland (DMO) 37 Eucalyptus nitida dry forest and woodland (DNI) 39 Eucalyptus nitida Furneaux forest (DNF) 41 Eucalyptus obliqua dry forest (DOB) 43 Eucalyptus ovata forest and woodland (DOV) 45 Eucalyptus ovata heathy woodland (DOW) 48 Eucalyptus pauciflora forest and woodland not on dolerite (DPO) 50 Eucalyptus pauciflora forest and woodland on dolerite (DPD) 52 Eucalyptus perriniana forest and woodland (DPE) 54 Eucalyptus pulchella forest and woodland (DPU) 56 Eucalyptus risdonii forest and woodland (DRI) 58 Eucalyptus rodwayi forest and woodland (DRO) 60 Eucalyptus sieberi forest and woodland not on granite (DSO) 62 Eucalyptus sieberi forest and woodland on granite (DSG) 64 Eucalyptus tenuiramis forest and woodland on dolerite (DTD) 66 Eucalyptus tenuiramis forest and woodland on granite (DTG) 68 Eucalyptus tenuiramis forest and woodland on sediments (DTO) 70 Eucalyptus viminalis Furneaux forest and woodland (DVF) 72 Eucalyptus viminalis grassy forest and woodland (DVG) 74 Eucalyptus viminalis–Eucalyptus globulus coastal forest and woodland (DVC) 76 King Island eucalypt woodland (DKW) 78 Midlands woodland complex (DMW) 80 Edition 2 From Forest to Fjaeldmark (revised - April 2019) 1 General description this case allocation of vegetation to a TASVEG mapping unit on the basis of floristic composition Dry eucalypt forests and woodlands cover much of may be more appropriate. the central and eastern parts of the Tasmanian landscape, with the greatest diversity of eucalypt species in the south-east of the State. Changes since the first edition Two dry forest/woodland mapping units have been Most of the dry eucalypt forest mapping units used discontinued and the vegetation they mapped in TASVEG are adapted from the Tasmanian absorbed into other Eucalyptus dry forest mapping Regional Forest Agreement (1997). Additional units. mapping units have been added during subsequent mapping to better represent ecological vegetation Eucalyptus viminalis shrubby/heathy woodland communities. In many cases, the woodland versions (DVS) has been redistributed in coastal localities to of their forest counterparts are floristically similar; Eucalyptus viminalis - Eucalyptus globulus coastal only the tree density divides them. Where this is the forest and woodland (DVC) where it occurs on case, TASVEG maps woodland and forest as a single Holocene sands, and to Eucalyptus amygdalina unit. coastal forest and woodland (DAC) where it is mapped on other siliceous substrates. Elsewhere When using keys, users should be aware that DVS has been absorbed into the following broader mapping units may contain patches of other communities depending on geology; Eucalyptus plant communities, typically where those patches are amygdalina forest and woodland on dolerite (DAD), less than 1ha. For example, small patches of DVG Eucalyptus amygdalina inland forest and woodland may be found in larger blocks of Eucalyptus pulchella on Cainozoic deposits (DAZ), Eucalyptus amygdalina or E. amygdalina forest. The issue of scale also affects forest and woodland on sandstone (DAS) and Eucalyptus amygdalina – Eucalyptus obliqua damp Eucalyptus amygdalina forest and woodland on sclerophyll forest (DSC). It is a complex that is often mudstone (DAM). distinguished on the ground, but some core elements of DSC are hard to allocate, and as a result Eucalyptus amygdalina inland forest (DAI) has now patches of DSC may be mapped as the surrounding been fully differentiated into Eucalyptus amygdalina community. While Eucalyptus gunnii woodland is forest and woodland on mudstone (DAM) and now mapped separately as DGW, TASVEG 3.0 still Eucalyptus amygdalina inland forest and woodland maps Eucalyptus archeri within Eucalyptus coccifera on Cainozoic deposits (DAZ); DAI is no longer forest. available for mapping. The eucalypt communities are relatively easily In 2017 a minor update was made to the description distinguished by the dominant eucalypt or eucalypts of Eucalyptus pulchella forest and woodland (DPU) in the canopy, usually in combination with a to include a facies occurring on mudstone, rather description of the type of understorey and the than on dolerite, within the Redgate Section of the characteristics the of environment occupied. While Meehan Range NRA. the key to the section directs the user to an Other revisions include a change to the Sectional appropriate mapping unit based on the above, key and relevant descriptions to improve the exceptions may occur and field validation, based on differentiation of Eucalyptus ovata forest and the more explicatory information in the unit woodland (DOV) and King Island eucalypt description, is normally required for a definitive woodland (DKW) in light of the debate surrounding allocation of vegetation code. An example of where the taxonomy of Eucalyptus brookeriana and reliance on a ruleset alone is compromised is ‘the E. ovata on King Island (Barnes et al 2002). Minor mosaic of DAS (Eucalyptus amygdalina forest and changes to the descriptions of Eucalyptus amygdalina woodland on sandstone) and DAC (Eucalyptus forest and woodland on sandstone (DAS) and amygdalina coastal forest and woodland) reflecting Eucalyptus amygdalina coastal forest and woodland subtle differences in topography and substrate’ at (DAC) were made to accommodate the situation the Coal Mines Historic Site on the Tasman where presence of loose sands overlying bedrock Peninsula (ECOTas, 2015). Here, the reliance of the can modify the typical influence of underlying key on geology for separation of DAS and DAC geology (ECOtas, 2015). appears to be compromised by the ubiquitous presence of loose sands overlying the bedrock. In Edition 2 From Forest to Fjaeldmark (revised - April 2019) 2 General management issues Tasmanian households are estimated to use over half a million tons of firewood annually, almost Dry sclerophyll eucalypt communities are highly exclusively from dry forest (Todd et al. 1989; Millar adapted to fire, the composition and structure of 2001). E. amygdalina is extensively targeted for these communities largely dependent on the firewood harvesting throughout the drier parts of intensity and frequency of fire events. Fire regime Tasmania (Millar 2001) with some habitat effects and characteristics influence changes in floristic possible local changes in eucalypt composition composition and structure and local extinctions (Driscoll & Milkovits 2000; Millar 2001). (Williams 1991). High-frequency, low- intensity fires in particular may result in one, or a combination, of Crown dieback in the canopy of some forest and impacts. These include low species diversity; low woodlands may occur naturally during drought but ground cover; domination by bracken, tussock grass can be exacerbated by impacts such as grazing and or sedge; erosion; reduction in terrestrial burning pressure. The understorey of some heathy invertebrate diversity; loss of obligate seed dry sclerophyll communities has been identified as regenerators; and loss of soil-stored seed (Duncan moderately susceptible to degradation by the plant 1988; Neyland & Askey- Doran 1996; Gill et al. pathogen Phytophthora cinnamomi. Infection by the 1999). Specific outcomes are closely dependent on pathogen can result in a general decrease in plant substrate and soil types (Duncan 1988). diversity. Species from the families Dilleniaceae, Epacridaceae, Fabaceae, Proteaceae and Rutaceae DSO and DSG have been subjected to frequent are particularly susceptible (Schahinger et al. 2003). low-intensity fire regimes in recent history (Neyland Closing access to infected areas is crucial to & Askey-Doran 1994). This has resulted in the loss restricting the pathogen. Avoiding the creation of of organic soils in many areas. Obligate seed new tracks through the bush reduces the regenerators have been disadvantaged, possibly opportunities for infection (Kirkpatrick & Harris resulting in a loss of species diversity. 1999). Bush-run sheep grazing may be beneficial for plant diversity in dry grassy bush at some stocking rates References and further reading and regimes, but is not ubiquitously so. Frequent Barnes, R.W., Duncan, F. & Todd, C. S. (2002) The Native sheep grazing with or without low-intensity burning Vegetation of King Island, Bass Strait. Nature Conservation may have such consequences as establishing open Report 02/6. Nature Conservation Branch, Resource grassy forest where it had not occurred before, and Management and Conservation, Department of Primary conversion of multi-aged forests to single-aged Industries, Water and Environment, Hobart.
Recommended publications
  • Eucalyptus Gunnii Subsp. Divaricata (Mcaulay & Brett) B.M
    Listing StatementEucalyptus for Eucalyptus gunnii gunnii subsp. subsp. divaricata (miena divaricata cider gum) miena cider gum T A S M A N I A N T H R E A T E N E D S P E C I E S L I S T I N G S T A T E M E N T Image by B. Potts Scientific name: Eucalyptus gunnii subsp. divaricata (McAulay & Brett) B.M. Potts, Pap. Proc. R. Soc. Tasm . 135: 57 (2001) Common name: miena cider gum (Wapstra et al. 2005) Group: vascular plant, dicotyledon, family Myrtaceae Status: Threatened Species Protection Act 1995 : endangered Environment Protection and Biodiversity Conservation Act 1999 : Endangered Distribution Endemic status: Endemic to Tasmania Tasmanian NRM Region: South Figure 1. Distribution of specimens attributed to Plate 1 . Eucalyptus gunnii subsp. divaricata Eucalyptus gunnii subsp. divaricata . The northern and (Image by J. Calder) western most records require verification. 1 Threatened Species Section – Department of Primary Industries, Parks, Water and Environment Listing Statement for Eucalyptus gunnii subsp. divaricata (miena cider gum) IDENTIFICATION AND ECOLOGY in drought conditions or in stands disturbed by Eucalyptus gunnii subsp. divaricata is a small to stock grazing. While Eucalyptus gunnii subsp. medium sized tree in the Myrtaceae family divaricata is highly frost resistant, it is the first (Plate 1). It is endemic to Tasmania’s Central eucalypt in the area to display symptoms Plateau where it mostly grows on the edges of following drought, leading to the death of frost hollows (Potts et al. 2001). Eucalyptus gunnii mature trees in relatively large patches since the subsp.
    [Show full text]
  • Paropsisterna Selmani
    Plant Pest Factsheet Tasmanian Eucalyptus Beetle Paropsisterna selmani Figure 1. Adult Tasmanian Eucalyptus beetle, pre -hibernation, London © ZooTaxa, Paula French Background In 2007, an exotic leaf beetle was found damaging cultivated Eucalyptus species in County Kerry, Republic of Ireland. The same beetle had been previously found damaging Eucalyptus plantations in Tasmania, Australia, and in 2012 a single adult was photographed in a garden in London. The beetle was tentatively identified as Paropsisterna gloriosa (Blackburn) (Coleoptera: Chrysomelidae) but subsequently described in 2013 as a new species P. selmani Reid & de Little. In June 2015 larvae of P. selmani were found causing severe defoliation to Eucalyptus plants at a public garden in Surrey; and in August 2015 a single adult was found in West Sussex. Geographical Distribution Paropsisterna selmani appears to be native to Tasmania, Australia, and has been introduced to the Republic of Ireland where it occurs widely in the south. Paropsisterna selmani has been found in three localities in South East England and is likely to become established in the UK. Host Plants Paropsisterna selmani feeds exclusively on Eucalyptus species (Myrtaceae), preferentially on glaucous-foliaged eucalypt species of the subgenus Symphyomyrtus, particularly the plantation tree E. nitens. Other hosts include: Eucalyptus brookeriana, E. dalrympleana, E. rubida, E. glaucesens, E. globulus, E. gunnii, E. johnstonii, E. moorei, E. nicholii, E. parvula, E. pauciflora ssp. niphophila, E. perriniana, E. pulverulenta, E. vernicosa and E. viminalis. Description Adult P. selmani are hemispherical (Figs. 1 and 4), oval (Figs. 2-3), and about 9 mm in length with the females being slightly larger than the males.
    [Show full text]
  • Phytothérapie Anti-Infectieuse Springer Paris Berlin Heidelberg New York Hong Kong Londres Milan Tokyo Paul Goetz Kamel Ghedira
    Phytothérapie anti-infectieuse Springer Paris Berlin Heidelberg New York Hong Kong Londres Milan Tokyo Paul Goetz Kamel Ghedira Phytothérapie anti-infectieuse Paul Goetz Docteur en médecine Enseignant en phytothérapie Faculté de médecine Paris XIII-Bobigny 58, route des Romains 67200 Strasbourg Kamel Ghedira Professeur à la faculté de pharmacie Université de Monastir Laboratoire de Pharmacognosie Rue Avicenne 5000 Monastir-Tunisie ISBN : 978-2-8178-0057-8 Springer Paris Berlin Heidelberg New York © Springer-Verlag France, Paris, 2012 Springer-Verlag est membre du groupe Springer Science + Business Media Cet ouvrage est soumis au copyright. Tous droits réservés, notamment la reproduction et la repré- sentation, la traduction, la réimpression, l’exposé, la reproduction des illustrations et des tableaux, la transmission par voie d’enregistrement sonore ou visuel, la reproduction par microfilm ou tout autre moyen ainsi que la conservation des banques de données. La loi française sur le copyright du 9 septembre 1965 dans la version en vigueur n’autorise une reproduction intégrale ou partielle que dans certains cas, et en principe moyennant le paiement des droits. Toutes représentation, reproduction, contrefaçon ou conservation dans une banque de données par quelques procédé que ce soit est sanctionnée par la loi pénale sur le copyright. L’utilisation dans cet ouvrage de désignations, dénominations commerciales, marques de fabrique, etc. même sans spécification ne signifie pas que ces termes soient libres de la législation sur les marques de fabrique et la protection des marques et qu’ils puissent être utilisés par chacun. La maison d’édition décline toute responsabilité quant à l’exactitude des indications de dosage et des modes d’emplois.
    [Show full text]
  • Edition 2 from Forest to Fjaeldmark the Vegetation Communities Highland Treeless Vegetation
    Edition 2 From Forest to Fjaeldmark The Vegetation Communities Highland treeless vegetation Richea scoparia Edition 2 From Forest to Fjaeldmark 1 Highland treeless vegetation Community (Code) Page Alpine coniferous heathland (HCH) 4 Cushion moorland (HCM) 6 Eastern alpine heathland (HHE) 8 Eastern alpine sedgeland (HSE) 10 Eastern alpine vegetation (undifferentiated) (HUE) 12 Western alpine heathland (HHW) 13 Western alpine sedgeland/herbland (HSW) 15 General description Rainforest and related scrub, Dry eucalypt forest and woodland, Scrub, heathland and coastal complexes. Highland treeless vegetation communities occur Likewise, some non-forest communities with wide within the alpine zone where the growth of trees is environmental amplitudes, such as wetlands, may be impeded by climatic factors. The altitude above found in alpine areas. which trees cannot survive varies between approximately 700 m in the south-west to over The boundaries between alpine vegetation communities are usually well defined, but 1 400 m in the north-east highlands; its exact location depends on a number of factors. In many communities may occur in a tight mosaic. In these parts of Tasmania the boundary is not well defined. situations, mapping community boundaries at Sometimes tree lines are inverted due to exposure 1:25 000 may not be feasible. This is particularly the or frost hollows. problem in the eastern highlands; the class Eastern alpine vegetation (undifferentiated) (HUE) is used in There are seven specific highland heathland, those areas where remote sensing does not provide sedgeland and moorland mapping communities, sufficient resolution. including one undifferentiated class. Other highland treeless vegetation such as grasslands, herbfields, A minor revision in 2017 added information on the grassy sedgelands and wetlands are described in occurrence of peatland pool complexes, and other sections.
    [Show full text]
  • Introduction Methods Results
    Papers and Proceedings Royal Society ofTasmania, Volume 1999 103 THE CHARACTERISTICS AND MANAGEMENT PROBLEMS OF THE VEGETATION AND FLORA OF THE HUNTINGFIELD AREA, SOUTHERN TASMANIA by J.B. Kirkpatrick (with two tables, four text-figures and one appendix) KIRKPATRICK, J.B., 1999 (31:x): The characteristics and management problems of the vegetation and flora of the Huntingfield area, southern Tasmania. Pap. Proc. R. Soc. Tasm. 133(1): 103-113. ISSN 0080-4703. School of Geography and Environmental Studies, University ofTasmania, GPO Box 252-78, Hobart, Tasmania, Australia 7001. The Huntingfield area has a varied vegetation, including substantial areas ofEucalyptus amygdalina heathy woodland, heath, buttongrass moorland and E. amygdalina shrubbyforest, with smaller areas ofwetland, grassland and E. ovata shrubbyforest. Six floristic communities are described for the area. Two hundred and one native vascular plant taxa, 26 moss species and ten liverworts are known from the area, which is particularly rich in orchids, two ofwhich are rare in Tasmania. Four other plant species are known to be rare and/or unreserved inTasmania. Sixty-four exotic plantspecies have been observed in the area, most ofwhich do not threaten the native biodiversity. However, a group offire-adapted shrubs are potentially serious invaders. Management problems in the area include the maintenance ofopen areas, weed invasion, pathogen invasion, introduced animals, fire, mechanised recreation, drainage from houses and roads, rubbish dumping and the gathering offirewood, sand and plants. Key Words: flora, forest, heath, Huntingfield, management, Tasmania, vegetation, wetland, woodland. INTRODUCTION species with the most cover in the shrub stratum (dominant species) was noted. If another species had more than half The Huntingfield Estate, approximately 400 ha of forest, the cover ofthe dominant one it was noted as a codominant.
    [Show full text]
  • TASMANIAN HIGH MOUNTAIN VEGETATION II - ROCKY HILL and PYRAMID MOUNTAIN by J.B
    Papers and Proceedings of the Royal Society of Tasmania, Volume 118, 1984 (ms. received 10.VI.1983) TASMANIAN HIGH MOUNTAIN VEGETATION II - ROCKY HILL AND PYRAMID MOUNTAIN by J.B. Kirkpatrick Department of Geography, University of Tasmania (with two tables, three text-figures and four plates) ABSTRACT KIRKPATRICK, J.B., 1984 (31 viii): Tasmanian high mountain vegetation II - Rocky Hill and Pyramid Mountain. Pap. Proc. R. Soc. Tasm., ll8: 5-20, pls 1-4. https://doi.org/10.26749/rstpp.118.5 ISSN 0080-4703. Department of Geography, University of Tasmania, Hobart, Tasmania, Australia. Rocky Hill and Pyramid Mountain are composed of horizontally bedded Permian to Upper Carboniferous sedimentary rocks, the nature of which has encouraged the development of fjaeldmark and nonsorted stone steps and stripes. Buried A throtax1:s logs in the present alpine zone, the patterns of distribution of fire-susceptible species and other evidence suggest that the area has been subject to at least two severe and extensive fires, which have resulted in landscape instability. Nevertheless, the present vegetation of the area is varied, lacking only deciduous heath and tussock grassland of the alpine subformations and having a full range from sedgeland to closed-forest in the subalpine vegetation. The species composition of the vegetation of the two mountains is most similar to that of Cradle Mountain. INTRODUCTION The Tasmanian high mountains possess varied floras and vegetation complexes, these variations most strongly relating to precipitation and soil characteristics (Kirkpatrick 1980, 1982, 1983). Most of the mountains with alpine vegetation (sensu Kirkpatrick 1982) consist of dolerite or highly siliceous quartzites and quartzitic conglomerates.
    [Show full text]
  • Genetic Diversity and Adaptation in Eucalyptus Pauciflora
    Genetic diversity and adaptation in Eucalyptus pauciflora Archana Gauli (M.Sc.) A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Biological Sciences, University of Tasmania June, 2014 Declarations This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Archana Gauli Date Authority of access This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Archana Gauli Date Statement regarding published work contained in thesis The publishers of the paper comprising Chapter 2 and Chapter 3 hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non-published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Archana Gauli Date i Statement of publication Chapter 2 has been published as: Gauli A, Vaillancourt RE, Steane DA, Bailey TG, Potts BM (2014) The effect of forest fragmentation and altitude on the mating system of Eucalyptus pauciflora (Myrtaceae). Australian Journal of Botany 61, 622-632. Chapter 3 has been accepted for publication as: Gauli A, Steane DA, Vaillancourt RE, Potts BM (in press) Molecular genetic diversity and population structure in Eucalyptus pauciflora subsp.
    [Show full text]
  • A Review of Natural Values Within the 2013 Extension to the Tasmanian Wilderness World Heritage Area
    A review of natural values within the 2013 extension to the Tasmanian Wilderness World Heritage Area Nature Conservation Report 2017/6 Department of Primary Industries, Parks, Water and Environment Hobart A review of natural values within the 2013 extension to the Tasmanian Wilderness World Heritage Area Jayne Balmer, Jason Bradbury, Karen Richards, Tim Rudman, Micah Visoiu, Shannon Troy and Naomi Lawrence. Department of Primary Industries, Parks, Water and Environment Nature Conservation Report 2017/6, September 2017 This report was prepared under the direction of the Department of Primary Industries, Parks, Water and Environment (World Heritage Program). Australian Government funds were contributed to the project through the World Heritage Area program. The views and opinions expressed in this report are those of the authors and do not necessarily reflect those of the Tasmanian or Australian Governments. ISSN 1441-0680 Copyright 2017 Crown in right of State of Tasmania Apart from fair dealing for the purposes of private study, research, criticism or review, as permitted under the Copyright act, no part may be reproduced by any means without permission from the Department of Primary Industries, Parks, Water and Environment. Published by Natural Values Conservation Branch Department of Primary Industries, Parks, Water and Environment GPO Box 44 Hobart, Tasmania, 7001 Front Cover Photograph of Eucalyptus regnans tall forest in the Styx Valley: Rob Blakers Cite as: Balmer, J., Bradbury, J., Richards, K., Rudman, T., Visoiu, M., Troy, S. and Lawrence, N. 2017. A review of natural values within the 2013 extension to the Tasmanian Wilderness World Heritage Area. Nature Conservation Report 2017/6, Department of Primary Industries, Parks, Water and Environment, Hobart.
    [Show full text]
  • Eucalyptus That Are Ideal for British Gardens
    Barks, shoots and leaves Grafton Nursery grows hardy forms of Antipodean Eucalyptus that are ideal for British gardens WORDS JOHN HOYLAND PHOTOGRAPHS JASON INGRAM Gower Hilary Collins checks the growth on a selection of the hardy eucalyptus grown at Grafton Nursery. Nearby assistant grower Adam Barnes keeps the more mature trees in check with some careful pruning. 68 FOR CUTTING 1 Eucalyptus ‘Shannon Blue’ VERY FEW TREES ARE AS FASCINATING A hybrid bred for the floristry trade, this vigorous plant has stems of rounded, glaucous, silver AS EUCALYPTS: THEY ARE HIGHLY leaves. It can be grown as a hedge and retains EVOLVED AND EXTREMELY VARIED its colour through the winter. Unpruned height 10m. RHS H5†. 2 Eucalyptus nicholii An airy tree with narrow, almost feathery, sage- green leaves. Its common name – narrow-leaved black peppermint – references its strongly aromatic foliage. Unpruned height 12m. RHS H5. 3 Eucalyptus pulverulenta ‘Baby Blue’ ardeners can be blinkered, disregarding a whole A compact, bushy cultivar that can be grown in a pot. The silvery-grey stems are long-lasting genus because of the faults of a few members. when cut for flower arrangements. Unpruned Eucalyptus has suffered this fate, largely because of height 5m. RHS H5. the thuggish behaviour of Eucalyptus gunnii, the most widely available species, which will grow to huge 4 Eucalyptus gunnii proportions in a very short time. “There are far better The most widely grown species in the UK. It has peeling cream and brown bark, rounded, species,” says grower Hilary Collins. “Beautiful glaucous-blue juvenile leaves and elliptic or eucalypts for small terraces or large pots, those for sickle-shaped, grey-green adult leaves.
    [Show full text]
  • World Heritage Values and to Identify New Values
    FLORISTIC VALUES OF THE TASMANIAN WILDERNESS WORLD HERITAGE AREA J. Balmer, J. Whinam, J. Kelman, J.B. Kirkpatrick & E. Lazarus Nature Conservation Branch Report October 2004 This report was prepared under the direction of the Department of Primary Industries, Water and Environment (World Heritage Area Vegetation Program). Commonwealth Government funds were contributed to the project through the World Heritage Area program. The views and opinions expressed in this report are those of the authors and do not necessarily reflect those of the Department of Primary Industries, Water and Environment or those of the Department of the Environment and Heritage. ISSN 1441–0680 Copyright 2003 Crown in right of State of Tasmania Apart from fair dealing for the purposes of private study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any means without permission from the Department of Primary Industries, Water and Environment. Published by Nature Conservation Branch Department of Primary Industries, Water and Environment GPO Box 44 Hobart Tasmania, 7001 Front Cover Photograph: Alpine bolster heath (1050 metres) at Mt Anne. Stunted Nothofagus cunninghamii is shrouded in mist with Richea pandanifolia scattered throughout and Astelia alpina in the foreground. Photograph taken by Grant Dixon Back Cover Photograph: Nothofagus gunnii leaf with fossil imprint in deposits dating from 35-40 million years ago: Photograph taken by Greg Jordan Cite as: Balmer J., Whinam J., Kelman J., Kirkpatrick J.B. & Lazarus E. (2004) A review of the floristic values of the Tasmanian Wilderness World Heritage Area. Nature Conservation Report 2004/3. Department of Primary Industries Water and Environment, Tasmania, Australia T ABLE OF C ONTENTS ACKNOWLEDGMENTS .................................................................................................................................................................................1 1.
    [Show full text]
  • Plant Communities of Mt Barrow & Mt Barrow Falls
    PLANT COMMUNITIES OF MT BARROW & MT BARROW FALLS John B. Davies Margaret J. Davies Consultant Queen Victoria and Art and Plomley Foundation II Mt Barrow J.B. & M.J. (1990) of Mt Barrow and Mt Barrow No.2 © Queen Victoria and Art Wellington St., Launceston,Tasmania 1990 CONTENTS ACKNOWLEDGEMENTS 3 BACKGROUND 4 SURVEY MT BARROW 11 OF MT BARROW PLANT COMMUNITIES 14 AND THEIR RESERVATION COMPARISON THE VEGETATION AT 30 BARROW AND LOMOND BOTANICAL OF MT BARROW RESERVE 31 DESCRIPTION THE COMMUNITIES BARROW FALLS THEIR APPENDIX 1 36 APPENDIX 2­ MAP 3 39 APPENDIX 4 APPENDIX 5 APPENDIX 6­ SPECIES 49 ACKNOWLEDGEMENTS Thanks are due to a number of people for assistance with this project. Firstly administrative assistance was by the Director of the Victoria Museum and Art Gallery, Mr Chris TasselL assistance was Michael Body, Kath Craig Reid and Mary Cameron. crt>''Y'it>,nt" are also due to Telecom for providing a key to the on the plateau, the Department of Lands, Parks and for providing a transparency base map of the area, and to Mr Mike Brouder and Mr John Harris Commission), for the use of 1 :20,000 colour aerial photographs of the area. Taxonomic was provided by Cameron (Honorary Research Associate, Queen Victoria Museum and Art Gallery) who also mounted all the plant collected, and various staff of the Tasmanian Herbarium particularly Mr Alex Dr Tony Orchard, Mr D. 1. Morris and Dr Winifred Curtis. thanks are due to Dr Brad Potts (Botany Department, of Tasmania) for assistance with data and table production and to Prof Kirkpatrick and Environmental ..J'U'U'~;'" of Tasmania) for the use and word-processing.
    [Show full text]
  • Avifaunal Ecology and Responses to Post-Fire Succession of Buttongrass Moorlands in the Tasmanian Wilderness World Heritage Area
    Avifaunal ecology and responses to post-fire succession of buttongrass moorlands in the Tasmanian Wilderness World Heritage Area Todd Aaron Chaudhry Environmental Sciences and Policy, BA Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Zoology University of Tasmania September 2010 ii Declaration of originality This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person, except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Signed: Date: Todd A. Chaudhry Authority of access This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. Signed: Date: Todd A. Chaudhry iii Statement of ethical conduct The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government’s Office of the Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University. This research was approved by the Animal Ethics Committee of the University of Tasmania (Permit # A0007591 and # A0008676), and by the Biodiversity Conservation Branch to take Wildlife (Permit # FA 03171 and # FA 05282) and Plants (Permit # FL 05036) for Scientific Purposes. Funding This research was funded by the Birds Australia Stuart Leslie Bird Research Awards (2003- 2004) and the Biodiversity Conservation Branch, Department of Primary Industries, Parks, Water and Environment, Tasmanian Wilderness World Heritage Area Fauna Conservation Research Grants (2003-2006).
    [Show full text]