Molecular Identification and Phylogenetic Relationship of Some Origanum and Thymus Species Based on ITS Regions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphological, Chemical, and Genetic Characteristics of Korean Native Thyme Bak-Ri-Hyang (Thymus Quinquecostatus Celak.)
antibiotics Article Morphological, Chemical, and Genetic Characteristics of Korean Native Thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.) Minju Kim 1, Jun-Cheol Moon 2, Songmun Kim 1,* and Kandhasamy Sowndhararajan 3,* 1 School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; [email protected] 2 Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; [email protected] 3 Department of Botany, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India * Correspondence: [email protected] (S.K.); [email protected] (K.S.); Tel.: +82-33-250-6447 (S.K.); +91-422-2642095 (K.S.) Received: 27 April 2020; Accepted: 25 May 2020; Published: 28 May 2020 Abstract: Bak-ri-hyang (Thymus quinquecostatus Celak.) is an important medicinal and aromatic plant in Korea. T. quinquecostatus population and is always mixed with other thyme cultivars during cultivation and marketing. Hence, this study aimed to determine the genetic variability and the essential oil composition of three Korean native thyme, T. quinquecostatus cultivars collected from the Wolchul, Jiri, and Odae mountains, in comparison with six commercial thyme cultivars (T. vulgaris), to distinguish Bak-ri-hyang from other thyme cultivars. The composition of essential oils obtained from nine individuals was analyzed by gas chromatography–mass spectrometry (GC–MS). The random amplified polymorphic DNA (RAPD) analysis was accomplished using 16 different primers. The GC–MS analysis revealed that Wolchul, creeping, golden, and orange cultivars belong to the geraniol chemotype. Whereas the Odae, lemon, and silver cultivars belong to the thymol chemotype. Further, linalool was the most abundant component in carpet and Jiri cultivars. -
Scrub Mint Dicerandra Frutescens Shinners
Scrub Mint Dicerandra frutescens Shinners he scrub mint is a small, fragrant shrub that inhabits Federal Status: Endangered (Nov. 1, 1985) the scrub of central peninsular Florida. It bears a Critical Habitat: None Designated Tstrong resemblance to another Dicerandra species, Florida Status: Endangered Garretts mint, but can be differentiated by its scent, the Recovery Plan Status: Revision (May 18, 1999) color of its flowers, and the size of its leaves. Loss of habitat due to residential and agricultural development (particularly Geographic Coverage: Rangewide for citrus groves), as well as fire suppression in tracts of remaining habitat, are the principle threats to this plant. This account represents a revision of the existing Figure 1. County distribution of scrub mint. recovery plan for the scrub mint (FWS 1987). Description The scrub mint is a dense or straggly, low-growing shrub (Kral, 1983). It reaches 50 cm in height and grows from a deep, stout, spreading-branching taproot. Its branches are mostly spreading, and sometimes are prostrate. Its shoots have two forms, one which is strictly leafy and overwintering, and another which is flowering and dies back after fruiting. The leaves vary in shape. They can be narrowly oblong- elliptic, linear-elliptic, or linear-oblanceolate (Kral 1983). The upper surface of the leaves is dark green, with the midrib slightly impressed. The lower surface is slightly paler, with the midrib slightly raised. They are 1.5 to 2.5 cm long, 2 to 3 mm wide, subsessile, flattish but somewhat fleshy, narrowly or broadly rounded at the apical end, have entire margins, and are not revolute. -
Approaches and Limitations of Species Level Diagnostics in Flowering Plants
Genetic Food Diagnostics Approaches and Limitations of Species Level Diagnostics in Flowering Plants Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) - Universitätsbereich genehmigte DISSERTATION von Dipl. Biologe Thomas Horn aus 77709 Wolfach Dekan: Prof. Dr. Peter Roesky Referent: Prof. Dr. Peter Nick Korreferent: Prof. Dr. Horst Taraschewski Tag der mündlichen Prüfung: 17.04.2014 Parts of this work are derived from the following publications: Horn T, Völker J, Rühle M, Häser A, Jürges G, Nick P; 2013; Genetic authentication by RFLP versus ARMS? The case of Moldavian Dragonhead (Dracocephalum moldavica L.). European Food Research and Technology, doi 10.1007/s00217-013-2089-4 Horn T, Barth A, Rühle M, Häser A, Jürges G, Nick P; 2012; Molecular Diagnostics of Lemon Myrtle (Backhousia citriodora versus Leptospermum citratum). European Food Research and Technology, doi 10.1007/s00217-012-1688-9 Also included are works from the following teaching projects: RAPD Analysis and SCAR design in the TCM complex Clematis Armandii Caulis (chuān mù tōng), F2 Plant Evolution, 2011 Effects of highly fragmented DNA on PCR, F3, Lidija Krebs, 2012 1 I. Acknowledgement “Nothing is permanent except change” Heraclitus of Ephesus Entering adolescence – approximately 24 years ago – many aspects of life pretty much escaped my understanding. After a period of turmoil and subsequent experience of a life as laborer lacking an education, I realized that I did not want to settle for this kind of life. I wanted to change. With this work I would like to thank all people that ever bothered trying to explain the world to me, that allowed me to find my way and nurtured my desire to change. -
10 Easy Wildflowers for Butterflies and Bees Tips and Terms
10 Easy Wildflowers for Butterflies and Bees Tips and Terms Selection Glossary of helpful terms It may take a while to understand your landscape’s soil and drainage conditions. If Anther: pollen-bearing part of the stamen your wildflowers don’t succeed, try again, maybe with different species. Remember, Axil: upper angle between the stem and success depends on using the right plant in the right place. leaf or other plant part Water Basal: forming or attached at the base Water plants thoroughly when planting, then water as needed until they are established Bract: modified leaf at the base of a flower and putting out new foliage. Once plants are established, irrigation should be needed Calyx: collective term for the sepals of a only during extended dry periods. Learn to recognize when plants look wilted and flower; typically a whorl that encloses water them then. Over-irrigation can cause fungus and rot, which can kill your the petals and protects the flower bud wildflowers. It can also cause them to grow too quickly, becoming more susceptible to pests and diseases, or too tall, requiring staking. Corolla: collective term for the petals of a flower Fertilizer Corona: petal-like structures arising from Native wildflowers should not need fertilizer. Applying fertilizer can produce plants that the corolla of some flowers to form a grow too quickly, which can lead them to become pest and disease prone, and too tall, crownlike ring requiring staking. Fertilizing also encourages weeds, which can easily out-compete Cultivar: horticultural variety of a wildflowers. naturally occurring species produced in cultivation by selective breeding Sustaining wildflowers If you want wildflowers to persist on their own in your landscape, you’ll need to allow for Deciduous: seasonal shedding of leaves; self-seeding, especially for annual or short-lived species. -
Genetic Diversity Among Thymus Spp. Using Rapd and Issr Markers
6 Egyptian J. Desert Res., 69, Special Issue, 91-106 (2019) GENETIC DIVERSITY AMONG THYMUS SPP. USING RAPD AND ISSR MARKERS Esraa A. El Sherbeny*, El-Shaimaa S. El-Demerdash, Yasser A.M. Salama and Mohamed Z.S. Ahmed 1Department of Genetic Resources, Desert Research Center, El-Matareya, Cairo, Egypt *E-mail: [email protected] his investigation was carried out to assess the relationships among three Thymus species; two wild species (Thymus T capitatus and Thymus decussatus) and a cultivar (Thymus vulgaris). Two molecular markers were used to determine the genetic relationships among them; random amplified polymorphic DNA (RAPD) and the inter-simple sequence repeats (ISSR) markers techniques. The results suggest that RAPD marker is the best choice for the evaluation of diversity and the genetic relationships between two wild Thymus species with high accuracy, which revealed 224 DNA bands detected across 15 primers with high polymorphism than ISSR, which revealed 336 DNA bands. The genetic relationship among Thymus species based on molecular data was developed using a dendrogram constructed by UPGMA cluster analysis. Conservationist may use the information of the present study to make effective decisions regarding the global protection and management of Thymus species in Egypt. Keywords: Thymus, genetic relationships, RAPD-PCR, ISSR The genus Thymus belongs to the family Lamiaceae and includes several hundreds of species distributed over the world (Akcin, 2006). The systematics of species remains difficult because of the interspecific hybridization, polyploidy and morphological similarities among species (Morales, 1996 and Tzakow and Constantinidis, 2005). The genus Thymus is known in several countries as a spice and food preservative, as well as a st The 1 Scientific Conference of Plant Genetic Resources Department, Ecology and Dry Lands Agriculture Division, Desert Research Center “Plant Genetic Resources and Sustainable Development Under Egyptian Desert Conditions” 13-16 November, 2019, Sharm El-Sheikh, South Sinai, Egypt 92 Esraa A. -
EDGG Event Report on the International Symposium On
14 Palaearctic Grasslands 43 October 2019) EDGG event DOI: 10.21570/EDGG.PG.43.14-18 Report on the International Symposium on Grassland Ecology and Conservation in Hohhot, Inner Mongolia, China An International Symposium on Grassland Ecology and Con- activities promoted by the EDGG. Many of the participants servation took place in Hohhot, at the Inner Mongolia Uni- expressed an interest in the GrassPlot database and in the versity (IMU), on August 21–23, 2019. It was jointly organ- EDGG activities. It was agreed that invitations to join the ised by the School of Ecology and Environment of the IMU EDGG will be sent out in order to support data sharing and and by regional branches of the China Association for Sci- to encourage new researchers from the West and Central ence and Technology, under the auspices of the Chinese Asian steppe regions to join the network. Grassland Society, the Ecological Society of China and the In the afternoon of the second day symposium participants Inner Mongolia Grassland Association. had the opportunity to visit two leading companies in their The main topic of the Symposium was modelling, monitor- respective sectors: the Mengniu Dairy Company Ltd. and the ing, sustainable use, conservation and management of Mengcao Eco-environment Company Ltd. grasslands (with special regard to natural steppes) through The first is one of the leading dairy product manufacturers transdisciplinary and transnational cooperation. The Sympo- in China, with an annual production capacity of 10.27 mil- sium included two keynote lectures and 40 talks and it was lion tons (as of June 2019, http://www.mengniuir.com/ attended by 228 participants from seven countries, plus a html/about_profile.php); the second specializes in "grass, number of students from the IMU (Figs. -
Extrapolating Demography with Climate, Proximity and Phylogeny: Approach with Caution
! ∀#∀#∃ %& ∋(∀∀!∃ ∀)∗+∋ ,+−, ./ ∃ ∋∃ 0∋∀ /∋0 0 ∃0 . ∃0 1##23%−34 ∃−5 6 Extrapolating demography with climate, proximity and phylogeny: approach with caution Shaun R. Coutts1,2,3, Roberto Salguero-Gómez1,2,3,4, Anna M. Csergő3, Yvonne M. Buckley1,3 October 31, 2016 1. School of Biological Sciences. Centre for Biodiversity and Conservation Science. The University of Queensland, St Lucia, QLD 4072, Australia. 2. Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK. 3. School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland. 4. Evolutionary Demography Laboratory. Max Planck Institute for Demographic Research. Rostock, DE-18057, Germany. Keywords: COMPADRE Plant Matrix Database, comparative demography, damping ratio, elasticity, matrix population model, phylogenetic analysis, population growth rate (λ), spatially lagged models Author statement: SRC developed the initial concept, performed the statistical analysis and wrote the first draft of the manuscript. RSG helped develop the initial concept, provided code for deriving de- mographic metrics and phylogenetic analysis, and provided the matrix selection criteria. YMB helped develop the initial concept and advised on analysis. All authors made substantial contributions to editing the manuscript and further refining ideas and interpretations. 1 Distance and ancestry predict demography 2 ABSTRACT Plant population responses are key to understanding the effects of threats such as climate change and invasions. However, we lack demographic data for most species, and the data we have are often geographically aggregated. We determined to what extent existing data can be extrapolated to predict pop- ulation performance across larger sets of species and spatial areas. We used 550 matrix models, across 210 species, sourced from the COMPADRE Plant Matrix Database, to model how climate, geographic proximity and phylogeny predicted population performance. -
Palynological Evolutionary Trends Within the Tribe Mentheae with Special Emphasis on Subtribe Menthinae (Nepetoideae: Lamiaceae)
Plant Syst Evol (2008) 275:93–108 DOI 10.1007/s00606-008-0042-y ORIGINAL ARTICLE Palynological evolutionary trends within the tribe Mentheae with special emphasis on subtribe Menthinae (Nepetoideae: Lamiaceae) Hye-Kyoung Moon Æ Stefan Vinckier Æ Erik Smets Æ Suzy Huysmans Received: 13 December 2007 / Accepted: 28 March 2008 / Published online: 10 September 2008 Ó Springer-Verlag 2008 Abstract The pollen morphology of subtribe Menthinae Keywords Bireticulum Á Mentheae Á Menthinae Á sensu Harley et al. [In: The families and genera of vascular Nepetoideae Á Palynology Á Phylogeny Á plants VII. Flowering plantsÁdicotyledons: Lamiales (except Exine ornamentation Acanthaceae including Avicenniaceae). Springer, Berlin, pp 167–275, 2004] and two genera of uncertain subtribal affinities (Heterolamium and Melissa) are documented in Introduction order to complete our palynological overview of the tribe Mentheae. Menthinae pollen is small to medium in size The pollen morphology of Lamiaceae has proven to be (13–43 lm), oblate to prolate in shape and mostly hexacol- systematically valuable since Erdtman (1945) used the pate (sometimes pentacolpate). Perforate, microreticulate or number of nuclei and the aperture number to divide the bireticulate exine ornamentation types were observed. The family into two subfamilies (i.e. Lamioideae: bi-nucleate exine ornamentation of Menthinae is systematically highly and tricolpate pollen, Nepetoideae: tri-nucleate and hexa- informative particularly at generic level. The exine stratifi- colpate pollen). While the -
Cocoa Beach Maritime Hammock Preserve Management Plan
MANAGEMENT PLAN Cocoa Beach’s Maritime Hammock Preserve City of Cocoa Beach, Florida Florida Communities Trust Project No. 03 – 035 –FF3 Adopted March 18, 2004 TABLE OF CONTENTS SECTION PAGE I. Introduction ……………………………………………………………. 1 II. Purpose …………………………………………………………….……. 2 a. Future Uses ………….………………………………….…….…… 2 b. Management Objectives ………………………………………….... 2 c. Major Comprehensive Plan Directives ………………………..….... 2 III. Site Development and Improvement ………………………………… 3 a. Existing Physical Improvements ……….…………………………. 3 b. Proposed Physical Improvements…………………………………… 3 c. Wetland Buffer ………...………….………………………………… 4 d. Acknowledgment Sign …………………………………..………… 4 e. Parking ………………………….………………………………… 5 f. Stormwater Facilities …………….………………………………… 5 g. Hazard Mitigation ………………………………………………… 5 h. Permits ………………………….………………………………… 5 i. Easements, Concessions, and Leases …………………………..… 5 IV. Natural Resources ……………………………………………..……… 6 a. Natural Communities ………………………..……………………. 6 b. Listed Animal Species ………………………….…………….……. 7 c. Listed Plant Species …………………………..…………………... 8 d. Inventory of the Natural Communities ………………..………….... 10 e. Water Quality …………..………………………….…..…………... 10 f. Unique Geological Features ………………………………………. 10 g. Trail Network ………………………………….…..………..……... 10 h. Greenways ………………………………….…..……………..……. 11 i Adopted March 18, 2004 V. Resources Enhancement …………………………..…………………… 11 a. Upland Restoration ………………………..………………………. 11 b. Wetland Restoration ………………………….…………….………. 13 c. Invasive Exotic Plants …………………………..…………………... 13 d. Feral -
Filoggenia Mo J Olecular José Flor R Da Subt Implica
I JOSÉ FLORIANO BARÊA PASTORE FILOGENIA MOLECULAR DA SUBTRIBO HYPTIDINAE ENDL. (LABIATAE) E SUAS IMPLICAÇÕES TAXONÔMICAS Feira de Santana, Bahia 2010 II UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM BOTÂNICA FILOGENIA MOLECULAR DA SUBTRIBO HYPTIDINAE ENDL. (LABIATAE) E SUAS IMPLICAÇÕES TAXONÔMICAS José Floriano Barêa Pastore Feira de Santana, Bahia Julho de 2010 III UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM BOTÂNICA FILOGENIA MOLECULAR DA SUBTRIBO HYPTIDINAE ENDL. (LABIATAE) E SUAS IMPLICAÇÕES TAXONÔMICAS José Floriano Barêa Pastore Orientador: Prof. Dr. Cássio van den Berg (UEFS) Co-orientador: Prof. Dr. Raymond Mervyn Harley (Royal Botanic Gardens, Kew) IV Tese apresentada ao Programa de Pós‐ Graduação em Botânica da Universidade Estadual de Feira de Santana como parte dos requisitos para a obtenção do título de Doutor em Botânica. Feira de Santana, Bahia Julho de 2010 V Pastore, José Floriano Barêa Pastore Filogenia molecular da subtribo Hyptidinae Endl. (Labiatae) e suas implicações taxonômicasFicha /catalográfica: José Floriano Biblioteca Barêa Pastore. Central – 2010. Julieta Carteado 123 f. : Il. ; 30 cm. Tese (doutorado) – Universidade Estadual de Feira de Santana, Departamento de Botânica, 2010. Orientação: Cássio van den Berg. Co-orientação: Raymond M. Harley. 1. Botânica sistemática. 2. Filogenia molecular. 3. Labiatae, subtribo Hyptidinae. I. Título VII AGRADECIMENTOS À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa do Programa de Doutorado no Brasil com estágio no Exterior (PDEE), que possibilitou período de estágio no Royal Botanic Gardens, Kew, Inglaterra. Ao Programa de Pós-Graduação em Botânica da Universidade Estadual de Feira de Santana (PPGBot/UEFS), em especial aos meus orientadores Prof. -
Towards Resolving Lamiales Relationships
Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. -
Information to Users
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 3 0 0 North Z eeb Road, Ann Arbor, Ml 4 8 1 06-1346 USA 313/761-4700 800/521-0600 Order Number 9130509 Allozyme variation and evolution inPolygonella (Polygonaceae) Lewis, Paul Ollin, Ph.D. The Ohio State University, 1991 Copyright ©1991 by Lewis, Paul Ollin.