I

JOSÉ FLORIANO BARÊA PASTORE

FILOGENIA MOLECULAR DA SUBTRIBO HYPTIDINAE ENDL. (LABIATAE) E SUAS IMPLICAÇÕES TAXONÔMICAS

Feira de Santana, Bahia 2010

II

UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM BOTÂNICA

FILOGENIA MOLECULAR DA SUBTRIBO HYPTIDINAE ENDL. (LABIATAE) E SUAS IMPLICAÇÕES TAXONÔMICAS

José Floriano Barêa Pastore

Feira de Santana, Bahia Julho de 2010

III

UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM BOTÂNICA

FILOGENIA MOLECULAR DA SUBTRIBO HYPTIDINAE ENDL. (LABIATAE) E SUAS IMPLICAÇÕES TAXONÔMICAS

José Floriano Barêa Pastore

Orientador: Prof. Dr. Cássio van den Berg (UEFS) Co-orientador: Prof. Dr. Raymond Mervyn Harley (Royal Botanic Gardens, Kew)

IV

Tese apresentada ao Programa de Pós‐ Graduação em Botânica da Universidade Estadual de Feira de Santana como parte dos requisitos para a obtenção do título de Doutor em Botânica.

Feira de Santana, Bahia Julho de 2010 V

Pastore, José Floriano Barêa Pastore Filogenia molecular da subtribo Hyptidinae Endl. (Labiatae) e suas implicações taxonômicasFicha /catalográfica: José Floriano Biblioteca Barêa Pastore. Central – 2010. Julieta Carteado 123 f. : Il. ; 30 cm.

Tese (doutorado) – Universidade Estadual de Feira de Santana, Departamento de Botânica, 2010. Orientação: Cássio van den Berg. Co-orientação: Raymond M. Harley.

1. Botânica sistemática. 2. Filogenia molecular. 3. Labiatae, subtribo Hyptidinae. I. Título

VII

AGRADECIMENTOS

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa do Programa de Doutorado no Brasil com estágio no Exterior (PDEE), que possibilitou período de estágio no Royal Botanic Gardens, Kew, Inglaterra.

Ao Programa de Pós-Graduação em Botânica da Universidade Estadual de Feira de Santana (PPGBot/UEFS), em especial aos meus orientadores Prof. Cássio van den Berg pela enorme ajuda e grande amizade e ao Dr. Raymond M. Harley pelos preciosos ensinamentos na família Labiatae, por me acolher em sua casa na Inglaterra durante o período de estágio no exterior, pela companhia em diversas expedições de coleta e finalmente pelas incríveis histórias contadas.

A Benham-Moxon Foundation, Kew, pelos recursos recebidos para financiamento do material de laboratório utilizado durante o estágio no Jodrell Laboratory, Kew. Ao MCT e CNPq através dos projetos Instituto do Milenio do Semi-árido (IMSEAR) e ao Programa de Biodiversidade (PPBIO) que financiaram grande parte do trabalho de campo. Ao IAPT (International Association for ) por ter me concedido o apoio financeiro do "Research Grants Program in Plant Systematics, 2009". Aos professores Dr. Luciano Paganucci de Queiroz, Dr. Alessandro Rapini, Dr. Flávio França e Dra. Efigênia Melo e em especial a professora Dra. Ana Maria Giulietti-Harley que foi minha co-orientadora informal, me ajudando em todos os momentos principalmente nos mais difíceis!

Ao funcionário Ricardo Vilas-Boas Gomes do Laboratório de Sistemática Molecular de Plantas (LAMOL), e aos funcionários do Laboratório de Taxonomia Vegetal (TAXON), por toda a estrutura disponibilizada e condições adequadas ao desenvolvimento deste trabalho. À minha estagiária Mariane pela ajuda no LAMOL.

As funcionárias do PPGBot Adriana Estrela e Gardênia Aires pela ajuda, a todos do Herbário da Universidade Estadual de Feira de Santana (HUEFS), Zezé, Elaine Miranda, Cosme, Silvia Karla e em especial a Dra. Teonildes (Téo) Nunes pela competência e simpatia. VIII

A Dra. Hilda Flores Olvera curadora do herbário do MEXU pelo empréstimo de espécimes de Asterohyptis e ao Dr. Jie Li (Chinese Academy of Science) pelo envio de amostras de Hanceola sinensis Kudo. Agradecimento especial a Dra. Taciana B. Cavalcanti curadora do herbário da Embrapa Recursos Genéticos e Biotecnologia (CEN) pelo suporte nas expedições de campo em Goiás, ao Aécio Santos pela ajuda nas coletas de campo em Goiás. Aos meus amigos João Bernardo e Andresa do Cenargen. Ao Dr. Heleno Ferreira e Teresa da UFG pela ajuda nas coletas de campo em Jataí.

Ao Royal Botanic Gardens, Kew, por disponibilizar a estrutura necessária para o desenvolvimento de parte desse trabalho. Ao Dr. Felix Forest e Dr. Alan Paton pela orientação durante o meu período de estágio no laboratório do Jodrell e herbário respectivamente. Sou também grato ao funcionário Lazlo do Jodrell e meus amigos Gemma, Sarah Jose, Lora e Marco que trabalharam no mesmo período no KEW.

À Elisa Suganuma pela grande ajuda e pela companhia de muitos anos.

Aos meus amigos Lia, Tarciso, Paulo Ricardo, Uiara Catharina, María Cristina, Patrícia Luz, Andrea Karla, Marcelo Trovó, Alex Popovkin, Dr. Antônio Azevedo, Nathan, Maria Alice e Pedro Moraes em especial ao Domingos Cardoso e Dr. Hugo Brandão.

Ao meu grande amigo Macloys Aquino.

À minha família, em especial a minha mãe Vera Barêa e ao meu pai Everaldo Pastore para os quais eu dedico esta tese.

À Adriana Fidelis por iluminar nossa casa e pela ajuda na elaboração das pranchas desta da tese.

IX

À memória da Prof.ª Judith Cortesão

X

Resumo

Esta tese consiste no estudo filogenético da subtribo Hyptidinae Endl. (Labiatae), baseado em seqüências de DNA nuclear e plastidial, incluindo as implicações taxonômicas decorrentes dos resultados obtidos. Dentre as subtribos da tribo Ocimeae (subfamília ), Hyptidinae é a única predominante da região Neotropical, com cerca de 400 espécies distribuídas em nove gêneros: Asterohyptis Epling (três espécies), Eriope Bonpl. ex Benth. (30 espécies), Hypenia (Mart. ex Benth.) Harley (27 espécies), Peltodon Pohl. (cinco espécies), Marsypianthes Mart. ex Benth. (seis espécies), Hyptidendron Harley (17 espécies), Jacq, e os gêneros monotípicos Rhaphiodon Schauer e Eriopidion Harley. Hyptis, seguindo a classificação de Epling com algumas alterações de Harley, contém cerca de 320 espécies divididas atualmente em 24 seções e diversas subseções. A filogenia baseada em seqüências da região nuclear ITS incluiu 219 amostras o que representou 180 espécies de Hyptidinae e 30 espécies fora da subtribo. Foram representados todos os gêneros de Hyptidinae e 22 das 24 seções de Hyptis. Apenas duas seções monotípicas, Rhytidea Epling e Hilaria Epling, não foram amostradas. A partir do resultado obtido com ITS foram selecionadas 79 espécies de Hyptidinae e sequenciadas quatro regiões de plastídio, trnL-F, matK, trnS-G e trnD-T, além de mais uma região nuclear ETS. As filogenias obtidas independentemente a partir das regiões nucleares e plastidiais não apresentaram nenhuma incongruência bem sustentada, desta forma estes dois conjuntos de dados foram combinados para uma análise mais completa. Hyptidinae, de maneira geral, aparece como um clado bem sustentado nas análises. Além disso, todos os gêneros, excluindo Hyptis, são monofiléticos desde que Hypenia vitifolia (Pohl ex Benth.) Harley seja excluída de Hypenia, Eriope simplex (A.St.-Hil. ex Benth.) Harley seja excluído de Eriope e Hyptis eximia Epling seja incluída em Hyptidendron. Hyptis aparece em nove linhagens diferentes e Peltodon aparece imerso no clado, aqui definido como, Hyptis s.s. A morfologia e distribuição geográfica dos principais táxons em Hyptidinae é discutida. Através de alguns caracteres morfológicos re-analisados para algumas espécies, é possível uma conciliação entre filogenia e classificação tradicional, resultando na transferência de Eriope simplex (A. St.-Hil. ex Benth.) Harley para Hypenia (Mart. ex Benth.) Harley e Hyptis eximia Epling para Hyptidendron Harley. São restabelecidos os gêneros P.Browne para a seção Mesosphaeria XI

Benth. pro parte e Condea Adans. para as seções Minthidium Benth., Laniflora e Umbellatae Benth. associadas. São propostos novos gêneros: Trichosphaeria (Benth.) Harley & J.F.B.Pastore, Oocephalus (Benth.) Harley & J.F.B.Pastore, Cyanocephalus (Benth.) Harley & J.F.B.Pastore, e Gymneia (Benth.) Harley & J.F.B.Pastore, baseados nas seções homônimas. Também, são descritos três novos gêneros: Martianthus Harley & J.F.B.Pastore, para as espécies da seção Leucocephala Epling, Physocaulon Harley & J.F.B.Pastore (monotípico) para Hypenia vitifolia e Eplingiella Harley & J.F.B.Pastore para as espécies Hyptis fruticosa e H. cuniloides, que estavam incluídas em Hyptis sem seção definida. O gênero Peltodon Pohl. é incluído em Hyptis s.l. baseado neste estudo.

XII

Abstract

This thesis consists of a phylogenetic study of subtribe Hyptidinae Endl. (Labiatae) based on nuclear and plastid DNA sequences, and also the taxonomic implications derived from the results obtained. Among the subtribes of tribe Ocimeae (subfamily Nepetoideae), Hyptidinae is the only one to be predominantly, indeed almost entirely, found in the Neotropics. It has about 400 species, distributed among nine genera: Asterohyptis Epling (three species), Eriope Bonpl. ex Benth. (30 species), Hypenia (Mart. ex Benth.) Harley (27 species), Peltodon Pohl. (five species), Marsypianthes Mart. ex Benth. (six species), Hyptidendron Harley (17 species), Hyptis Jacq., and the monotypic genera Rhaphiodon Schauer and Eriopidion Harley. Hyptis contains around 320 species, divided at the present into 24 sections and several subsections, following the classification of Epling partly modified by Harley. The present phylogenetic study, based on sequences from the nuclear ITS region, included 219 samples, representing 180 species of Hyptidinae and 30 species outside the subtribe. All genera of Hyptidinae and 22 of the 24 sections of Hyptis were sampled. Only two monotypic sections of Hyptis, sect. Rhytidea Epling and Hilaria Epling, were not sampled. Based on the results obtained with ITS, I selected 79 species of Hyptidinae and sampled four plastid regions, trnL-F, matK, trnS-G and trnD-T, as well as another nuclear region, ETS. Considering that plastid and nuclear datasets do not display any strongly supported disagreement, they were combined in a single analysis. In the combined analysis Hyptidinae appears to be monophyletic. Furthermore, all the genera, except Hyptis, are monophyletic, provided that Hypenia vitifolia (Pohl ex Benth.) Harley is excluded from Hypenia, Eriope simplex (A.St.-Hil. Ex Benth.) Harley is excluded from Eriope and Hyptis eximia Epling is included in Hyptidendron. Hyptis is represented by nine different lineages. The morphology and geographic distribution of the principal taxa of Hyptidinae is discussed. On re-examination of the morphological characters of these species, it is possible to reconcile phylogeny with traditional classification, by transferring Eriope simplex to Hypenia and Hyptis eximia to Hyptidendron. The genus Mesosphaerum P.Browne was re-established for section Mesosphaeria Benth. pro parte and Condea Adans. for the combined sections Laniflorae Epling and Umbellatae Benth. The following new genera were proposed: Trichosphaeria (Benth.) Harley & J.F.B.Pastore, Oocephalus (Benth.) Harley & J.F.B.Pastore, Cyanocephalus (Benth.) Harley & XIII

J.F.B.Pastore, and Gymneia (Benth.) Harley & J.F.B.Pastore, all based on the homonymous sections. Additionally, three new genera are described: Martianthus Harley & J.F.B.Pastore, for species of sect. Leucocephala Epling, Physocaulon Harley & J.F.B.Pastore for Hypenia vitifolia, and Eplingiella Harley & J.F.B.Pastore for Hyptis fruticosa Salzm. ex Benth. and H. cuniloides Epling, which were included within Hyptis, without a defined. Furthermore, the genus Peltodon Pohl is included in Hyptis s.l., based on our study.

XIV

Índice de tabelas e apêndices

Tabela 1. Modelos de evolução molecular usadas para as análises bayesianas ...... 23

Tabela 2. Características das matrizes de DNA usadas nesta tese...... 23

Tabela 3. Códigos para representar as diferentes matrizes de dados utilizadas nesta tese...... 43

Tabela 4. Primers utilizados para amplificar as regiões escolhidas para análises filogenéticas...... 43

Apêndice 1. Lista de vouchers dos espécimes utilizados para as análises filogenéticas...... 50

XV

Índice de Figuras

Figura 1. Análise filogenética das seqüências da região nuclear ITS combinada com seus indels codificados ...... 38,39.

Figura 2. Análise filogenética das seqüências da região nuclear ETS combinada com seus indels codificados ...... 40

Figura 3. Análise filogenética das seqüências das regiões nucleares ETS e ITS combinadas com seus indels codificados ...... 41

Figura 4: Topologia comparada de análises filogenéticas baseadas em DNA nuclear e plastidial, incluindo seus respectivos indels codificados...... 42

Figura 5. Análise filogenética das seqüências das regiões nucleares e plastídiais combinadas com seus indels codificados ...... 43

Capítulo 2

Figura 1. A−B. O sistema de polinização explosiva em Hyptis nudicaulis Benth. C. Inflorescencia bracteolada em Oocephalus silvinae (Harley) Harley & J.F.B.Pastore...... 56

Figura 2. Asterohyptis: A. Asterohyptis stellulata (Benth.) Epling; B–C. A. mociniana (Benth.) Epling…………………………………………………………………………………………….87

Figura 3. Condea: A, D. Condea albida (Kunth) Harley & J.F.B.Pastore; B. C. fasciculata (Benth.) Harley & J.F.B.Pastore; C. Nutlets of C. fasciculata; E. C. emoryi (Torr.) Harley & J.F.B.Pastore...... 88

Figura 4. Eriope e Eriopidion: A–B. Eriope latifolia (Mart. ex Benth.) Harley; C. E. tumidicaulis Harley; D. (e detalhe) Eriopidion strictum (Benth.) Harley; E. Eriope sp. nov.; F. E. macrostachya var grandifolia (Epling) Harley……………………………………………..….89 XVI

Figura 5. Gymneia: A e C. Gymneia malacophylla (Benth. in DC.) Harley & J.F.B.Pastore; B. Gymneia sp. nov.; D. G. ampelophylla (Epling) Harley & J.F.B.Pastore; E. G. ovalifolia (Benth.) Harley & J.F.B.Pastore...... 90

Figura 6. Eplingiella: A. Eplingiella cuniloides (Epling) Harley & J.F.B.Pastore; B e C. E. fruticosa (Salzm. ex Benth.) Harley & J.F.B.Pastore ...... 91

Figura 7. Hypenia: A. Hypenia simplex (St. Hil. ex Benth.) Harley & J.F.B.Pastore; B. H. calycina (Pohl ex Benth.) Harley; C. H. crispata (Pohl ex Benth.) Harley; D e E. H. salzmannii (Benth.) Harley; F. H. marifolia (Benth.) Harley. ……………………………………………..92

Figura 8. Cyanocephalus: A. Cyanocephalus rugosus (Benth.) Harley & J.F.B.Pastore; B e C. C. delicatulus (Harley) Harley & J.F.B.Pastore; D. C. selaginifolius (Mart. ex Benth.) Harley & J.F.B.Pastore; E. C. lippioides (Pohl ex Benth.) Harley & J.F.B.Pastore…….………………..92

Figura 9. Hyptidendron: A. Hyptidendron arboreum (Benth.) Harley; B. H. caudatum (Epling & Játiva) Harley; C, D e E. H. canum (Pohl ex Benth.) Harley...... 93

Figura 10. Hyptis: A. Hyptis hassleri Briq.; B. H. cruciformis Epling; C. H. passerina Mart. ex Benth. D. Hyptis nudicaulis Benth.; E. H. pycnocephala Benth.; F. H. proteoides A.St.-Hil ex Benth.; G. H. colligata Epling & Játiva………………………………………………………….94

Figura 11. Hyptis: A. Hyptis caespitosa A.St.-Hil. ex Benth.; B. H. rhomboidea M. Martens & Galeotti; C. H. lappulacea Mart. ex Benth.; D. H. frondosa S. Moore; E. H. conferta Pohl ex Benth. var conferta; F. H. hirsuta Kunth; G. H. villosa Pohl ex Benth.; H. H. lacustris A.St.-Hil. ex Benth.; I. Hyptis linarioides Pohl ex Benth...... 95

Figura 12. Hyptis seção Peltodon e Rhaphiodon: A. Hyptis campestris Harley & J.F.B.Pastore; B e D. H. comariodes (Briq.) Harley & J.F.B.Pastore; C. Hyptis radicans (Pohl) Harley & J.F.B.Pastore; D. Rhaphiodon echinus (Ness & Mart.) Schauer; F. H. pusilla (Pohl) Harley & J.F.B.Pastore ……………………..………………………………..………………………….…96

Figura 13. Hyptis: A. Hyptis carpinifolia Benth.; B. H. propinqua Epling; C. (e detalhe) H. mutabilis Briq.; D. H. rubicunda Pohl ex Benth...... 97 XVII

Figura 14. Oocephalus: A e C. Oocephalus silvinae (Harley) Harley & J.F.B.Pastore; B. O. lythroides (Pohl ex Benth.) Harley & J.F.B.Pastore; D. O. crassifolius (Mart. ex Benth.) Harley & J.F.B.Pastore; E. O. subrotundus (Pohl ex Benth.) Harley & J.F.B.Pastore; F. O. halimifolius (Mart. ex Benth.) Harley & J.F.B.Pastore; G. O. niveus (Epling) Harley & J.F.B.Pastore; H. Oocephalus rigens ined. ………………………………………………………………………..98

Figura 15. Trichosphaeria: A. Trichosphaeria carvalhoi (Harley) Harley & J.F.B.Pastore; B–C. T. eriophylla (Pohl ex Benth.) Harley e J.F.B.Pastore; D–E. T. martiusii (Benth.) Harley & J.F.B.Pastore; F. T. plumosa (Benth.) Harley & J.F.B.Pastore……….……………………..…99

Figura 16. Martianthus: A–B. Martianthus stachydifolius (Epling) Harley & J.F.B.Pastore; C. Martianthus leucocephalus (Mart. ex Benth.) Harley J.F.B.Pastore…………………………..99

Figura 17. Leptohyptis: A. Leptohyptis siphonantha (Harley) Harley & J.F.B.Pastore; B. L. pinheiroi (Harley) Harley & J.F.B.Pastore; C. L. calida ( Mart. ex Benth.) Harley & J.F.B.Pastore…………………………………………………………………………………..100

Figura 18. Marsypianthes: A, B and F. Marsypianthes burchellii Epling; C. Marsypianthes sp. nov.; D. M. montana Benth.; E. M. hassleri Briq…………………………………………….101

Figura 19. Mesosphaerum: A. (L.) O.Kuntze; B. M. sidifolium (L’Hér.) O.Kuntze; C. M. oblongifolium (Benth.) O.Kuntze; D. M. irwinii (Harley) Harley & J.F.B.Pastore…………………………………………………………………………………..102

XVIII

Sumário

Agradecimentos...... VII

Resumo...... X

Abstract...... XII

Índice de tabelas...... XIV

Índice de figuras...... XVI

Introdução geral...... 2

Capítulo 1...... 15

Capítulo 2...... 50

Considerações finais...... 103 XIX

Esta tese é formada por uma introdução geral, dois capítulos e considerações finais. Ambos os capítulos são apresentados seguindo, não estritamente, a formatação exigida pela revista TAXON para submissão de manuscritos. 1

------Para efeito do Código Internacional de Nomenclatura Botânica, esta tese não constitui publicação efetiva para os nomes e tipificações aqui utilizados. Estas mudanças serão efetivadas somente a partir da publicação dos manuscritos aqui apresentados.

For efect of International Code of Botanical Nomenclature, this thesis do not correspond a valid publication for names and tipifications provided here. These nomenclatural novelties will be effectively published only after the publication date of the manuscripts included here. ------2

Introdução Geral A família Martinov ou Labiatae Adans. (ordem ) como mais recentemente delimitada após o impacto dos estudos filogenéticos (Cantino 1992a; 1992b; Cantino et al. 1992; Thorne 1992, Wagstaff et al. 1997) inclui cerca de dois terços dos táxons tradicionalmente classificados em Verbenaceae (como ex. em Bentham (1876)). Lamiaceae está dividida em sete subfamílias: Ajugoideae Kostel., Lamioideae Harley, Nepetoideae (Dumort.) Luerss., Protantheroideae Luerss., Scutellarioideae (Dumort.) Caruel, Symphorematoideae Briq., e Viticoideae Briq. (Harley et al. (2004). Desta forma, Lamiaceae passa ser a maior família da ordem Lamiales, com cerca de 7200 espécies amplamente distribuídas no planeta e agrupadas em cerca de 240 gêneros. Os gêneros mais representativos em número de espécies são: Salvia L. (800 espécies) seguido de Hyptis Jacq. (400) e Clerodendrum L. (400) (Harley et al. 2004; Judd et al. 1999), ocorrendo principalmente em savanas abertas e regiões montanhosas com clima tropicais a subtropicais (Harley & Reynolds, 1992). A família Lamiaceae possui grande importância econômica principalmente pela presença de óleos essenciais e pelas diversas espécies cultivadas como ornamentais (Judd et al. 1999). Dentre as espécies cultivadas mais importantes estão a menta e o hortelã e espécies relacionadas (Mentha spp.), o manjericão (Ocimum spp.), o orégano ( spp.), o alecrim (Rosmarinus officinalis L.), as salvias (Salvia spp.) e as lavandas (Lavandula spp.) todas estas utilizadas como temperos ou na fabricação de perfumes. A maioria das espécies de importância econômica pela presença de óleos essenciais estão incluídas na subfamília Nepetoideae. (Judd et al. 1999, Harley et al. 2004). Esta subfamília é caracterizada principalmente pelo pólen hexacolpado, trinucleado (Erdtman 1945, Cantino & Sanders 1986) e pela presença de ácido rosmarínico (Harley et al. 2004). Ela é recuperada como monofilética em vários estudos filogenéticos baseados em dados moleculares como Wagstaff et al. (1995) e Wagstaff & Olmstead (1997). Nepetoideae, segundo Harley et al. (2004), está dividida em três tribos: Elsholtzieae autor, autor e Ocimeae Dumort. sendo esta última caracterizada morfologicamente pelos estames declinados e anteras sincotecas (Suddee et al. 2004). A tribo Ocimeae por sua vez está dividida segundo a classificação mais recente de Harley et al. (2004) e recentes alterações propostas em Zhong et al. (2010) em sete subtribos: Hanceolinae (C.Y.Wu) A.J.Paton & Harley, Isodoninae J.S.Zhong, J.Li & H.W.Li, Lavandulinae Endl., Ociminae (Dumort.) Schimidt, Plectranthinae Endl., Siphocranioninae J.S.Zhong, J.Li & H.W.Li e Hyptidinae Endl. Hyptidinae é a única predominantemente do novo mundo dentro da tribo e o foco de estudos na presente tese. 3

Hyptidinae Endlicher (1838) descreveu a subtribo 'Hyptidae', nome posteriormente corrigido para Hyptidinae, baseando-se no agrupamento informal de Bentham (1833). Originalmente, a subtribo incluía cinco gêneros, Peltodon Pohl, Marsypianthes Mart. ex Benth., Hyptis Jacq.1, Eriope Humb. & Bonpl. ex Benth. e Syncolostemon E.Mey., este último, atualmente, incluído na subtribo Ociminae (Paton et al. 2004). Posteriormente, Hyptidinae também incluiu Rhaphiodon Schauer 2 , Asterohyptis Epling, Hypenia (Mart. ex Benth.) Harley, Hyptidendron Harley, segregados posteriormente de Hyptis (Harley (1988) e Eriopidion Harley (Harley 1976), segregado de Eriope. Morfologicamente Hyptidinae, com a exceção de Asterohyptis Epling, o qual possui flores muito reduzidas (Paton & Ryding, 1988), são caracterizadas por um mecanismo de polinização explosivo no qua los estames são presos sob pressão pelo lobo anterior corola, quando pressionado pelo polinizador o lobo anterior se move rapidamente para trás liberando os estames contra o abdômen do polinizador (Burkart, 1937; Harley, 1971; Brantjes & Vos, 1981; Paton & Ryding, 1988; Aluri, 2005). A subtribo Hyptidinae é incomum are na tribo Ocimeae pelas inflorescencia bracteosa na inflorescencia (também encontrada em Hanceolinae e Isodoninae), e pelas núculas tipicamente com uma auréola expandida (Paton & Ryding 1988). Diversos caracteres têm sido tradicionalmente utilizados para diferenciar os gêneros, estes são baseados amplamente na inflorescência e estrutura floral. A inflorescência de Hyptidinae é baseada em um tirso: um eixo central indeterminado com cimeiras laterais sendo encontrada uma ampla variação deste sistema nos gêneros (Epling, 1949; Harley, 1985, 1988).

Histórico da taxonomico da subtribo Hyptidinae Possivelmente os registros mais antigos de espécies da subtribo Hyptidinae na literatura datam do início do século XVIII, feitos por Sloane (1707) ou Plumier (1703), onde a espécie tradicionalmente conhecida como Hyptis suaveolens (L.) Poit. fora descrita como “Melissa humilis, caule hispido” e "Mentastrum maximum, flore caeruleo, nardi odore", respectivamente. Embora estes autores citem a “Erva Cidreira Lusianica” de Marcgrav in Piso & Marcgrav

1 Gênero tipo de Hyptidinae. 2 Rhaphiodon era considerado sinônimo de Hyptis por Bentham (1833 e 1848). 4

(1648) como sinônimo de seus polinômios, este último nome provavelmente se refere a Lippia alba (Mill.) N.E.Br. (Verbenaceae) e não a Hyptis suaveolens (L.) Poit. Este período, que durou até meados do séc. XVII, foi marcado pela disputa entre autores, que aparentemente redescreveram as mesmas espécies já descritas por autores anteriores, dando-lhes, entretanto, novos polinômios. Para este grupo de plantas, os polinômios publicados durante este período são muitas vezes encontrados nos protólogos de espécies válidas3, justificando a importância destes nomes para fins de tipificação. Após 1º de maio de 1753, o primeiro nome genérico que foi designado apenas para incluir um táxon de (que posteriormente foi delimitado como) Hyptidinae foi Mesosphaerum, publicado por Browne (1756). Apesar da descrição de Mesosphaerum indubitavelmente 4 se referir a espécie hoje conhecida como Hyptis suaveolens (L.) Poit. (Kuntze 1891, Harley 1978), Browne (1756) não apresentou uma associação clara a um epíteto específico com o nome genérico ali descrito, Mesosphaerum. Além deste, Browne (1756) também descreveu o gênero Galeopsis5 (non Galeopsis L. 1753), ambos como polinômios e não como binômios (Harley 1978). A primeira palavra do polinômio associada a Mesosphaerum levou alguns autores como Maycock (1830), Epling (1949) e mais recentemente Suddee et al. (2004) a reconhecerem a combinação ‘Mesosphaerum hirsutum’. No entanto, atualmente não há referência a espécies válidas publicadas por P. Browne (1756)6, embora seus nomes genéricos sejam considerados validamente publicados. Desta forma, o gênero Mesosphaerum é considerado lectotipificado por Kuntze (1891) em Mesosphaerum suaveolens (L.) Kuntze (Harley 1978). De maneira semelhante, o nome Condea Adans. descrito por Adanson (1763), e não associado originalmente a nenhum nome especifico, tem como lectótipo Satureja americana Poir. (Kuntze 1891). O. Kuntze (1891) restabeleceu o gênero Mesosphaerum e, para este, combinou praticamente todos os epítetos de Hyptis considerados válidos na época. Esta transferência resultou em 101 novas combinações. Porém, Mesosphaerum, apesar de ter prioridade cronológica sobre Hyptis, era praticamente desconhecido dos taxonomistas da época, ocasionando grande perturbação nomenclatural no grupo. Evidentemente, esta mudança de nome genérico foi desvantajosa para a

3 e.g. rugosum L. (= Hyptis alata (Raf.) Shinners) baseada em "Clinopodium rugosum, etc" Dillenius (1732); Hyptis capitata Jacq. baseada em "Melissa altissima globularia” Plumier (1703). 4 Mesosphaerum P.Browne citando o polinômio Mentastrum maximum, etc ... de Sloane (1707). No herbário BM (The Natural History Museum, London) ainda se conserva o material original da coleção de Sloane. 5"Galeopsis procerior, foliis ovato-acuminatis, ferratis, spicis majoribus, compositis, spicillis geminatis fecuntis" 6 Segundo o índice de internacional de Plantas (The international Plant Index, IPNI). Acesso em 30 de maio de 2010. www.ipni.org. 5 taxonomia do grupo e resultou na conservação do nome Hyptis Jacq. (1787) em relação a seus nomes co-genéricos mais antigos Condea (1763) e Mesosphaerum (1756) como registrado pelo Código Internacional de Nomenclatura Botânica, ICBN, McNeill et al. 2006). Esta, porém, não foi a única conservação necessária envolvendo taxóns de Hyptidinae. L’Hér. (1788) foi descrito incluindo seis espécies de Labiatae, dentre as atualmente pertencentes a Hyptidinae estão: Bystropogon pectinatus (L.) L`Hér., B. suaveolens (L.) L`Hér. e B. sidifolius L`Hér. Para que Bystropogon não pudesse ser lectotipificado de maneira a se tornar um sinônimo de Hyptis ou de Mesosphaerum, este nome foi formalmente conservado, como aparece no ICBN (McNeill et al. 2006), com base no tipo Bystropogon plumosus L'Hér. Dentre os nomes genéricos considerados atualmente sinônimos de Hyptis Jacq., dois deles são ilegítimos por serem homônimos posteriores: Schaueria Hassk. (1842), non Schaueria Ness (1838), e Brotera Spreng. (1802), non Brotera Cav. (1799). Os outros, Gnoteris Raf. (1838) e Hypothronia Schrank (1824), são legítimos. O gênero Gnoteris foi descrito com base em dois nomes: Gnoteris cordata Raf. e G. villosa Raf. Estes atualmente são considerados sinônimos de Hyptis suaveolens (L.) Poit. Por fim, Hypothronia Schrank foi descrita com base apenas em Hypothronia undata Schrank, a qual é considerada sinônimo de Hyptis (Minthidium) fasciculata Benth. (Harley 1985). As primeiras espécies validamente publicadas em Hyptidinae são de Linnaeus (1759), distribuídos em três gêneros distintos: Ballota suaveolens L., Nepeta pectinata L. e Clinopodium rugosum L. Nenhum destes gêneros estão incluídos na subtribo Hyptidinae. Ainda no século XVIII, Fusée-Aublet (1775) descreveu Nepeta americana 7 Aubl., incluindo o polinômio "Melissa spicata, lavandulae odore minor" de Plumier (1703) como seu sinônimo. Além disso, Fusée-Aublet incluiu descrições para as espécies Ballota suaveolens e Clinopodium rugosum Posteriormente, Jacquin (1787) descreveu o gênero Hyptis contendo duas espécies, Hyptis verticillata Jacq. e H. capitata Jacq.8, esta última incluindo como sinônimo o polinômio "Melissa altissima globularia" de Plumier (1703). No ano seguinte, após a publicação de Jacquin, Swartz (1788) não aceitou o nome Hyptis e publicou a combinação Clinopodium capitatum (Jacq.) Sw. Em seguida, Lamarck (1789) utilizou o gênero Hyptis para publicar sua nova espécie, Hyptis spicigera Lam. No mesmo ano, L'Héritier de Brutelle (1789) utilizou o nome Bystropogon para combinar as espécies lineanas B. pectinatus (L.) L`Hèr. e B. suaveolens (L.) L`Hér., além de

7 Considerada sinônimo de Hyptis spicigera Lam. 8 Hyptis capitata é considerada o lectótipo do gênero Hyptis (McNeill et al. 2006). 6 descrever uma nova espécies B. sidifolius L`Hér.9 O gênero Hyptis, então, foi reapresentado por Schreber (1791). Entretanto, outros autores contemporâneos a Schreber não utilizaram o nome genérico Hyptis, como, por exemplo, Richard (1792) para Nepeta mutabilis Rich. 10 e Vahl (1794) para Clinopodium chamaedrys Vahl 11 . Willdenow (1800) aceitou o nome Hyptis, redescrevendo as duas espécies de Jacquin (1787), além de combinar Clinopodium chamaedrys em Hyptis. Ele também descreveu uma nova espécie, Hyptis radiata Willd., colocando em sua sinonímia Clinopodium rugosum, como entre outros polinômios anteriores. Poiteau (1806) apresentou 13 novas espécies e combinações em Hyptis: H. atrorubens Poit., H. brevipes Poit., H. lantanifolia Poit., H. plumieri Poit. , H. polyantha Poit., H. pseudochamaedrys Poit., H. recurvata Poit., H. scoparia Poit., H. spicata Poit., H. tomentosa Poit., H. pectinata (L.) Poit., H. persica (Spreng.) Poit. e H. suaveolens (L.) Poit. Este autor seguiu a mesma tendência de Jacquin (1787) de incluir espécies de tipos distintos de inflorescência (capítulos em Hyptis capitata e cimeiras em H. verticillata) dentro de um mesmo gênero. Kunth in Humboldt, Bonpland & Kunth (1818), publicou seis espécies, Hyptis albida Kunth, H. canescens Kunth, H. hirsuta Kunth, H. melissoides Kunth, H. polystachya Kunth e H. urticoides Kunth, baseado em espécimes coletados por Humboldt & Bonpland nas Américas. Schrank (1822, 1828) descreveu sete espécies Hyptis, H. glomerata Mart. ex Schrank, H. graveolens Schrank, H. barbata Schrank, H. inodora Schrank, H. nepetoides Fisch. ex Schrank, H. oppositifolia Schrank, H. undulata Schrank e o gênero Hypothronia Schrank. Sprengel (1824) descreveu duas novas espécies de Hyptis inflata Spreng. e H. lurida Spreng. 12 e Cordia asperrima Spreng. (Boraginaceae), a qual foi combinada para o gênero Hyptis como H. asperrima (Spreng.) Epling.*13. Neste mesmo ano, Weinmann (1824) descreveu Hyptis lamiifolia Weinm., a qual não tem identidade estabelecida até o momento, uma vez que a descrição não é diagnóstica e não existe material-tipo citado pelo autor. Pohl (1827) descreveu o gênero Peltodon com três espécies, Peltodon pusillus Pohl, P. tomentosus Pohl e P. radicans Pohl. Bentham (1833) apresentou a primeira monografia de Labiatae, incluindo na tribo Ocimoideae os seguintes gêneros: Peltodon, Marsypianthes, Eriope e Hyptis. Para esse último gênero, cogitou a possibilidade de reconhecer outros distintos gêneros, porém devido ao grande

9 Tradicionalmente conhecida com Hyptis sidifolia (L`Hér.) Briq. 10 Tradicionalmente conhecida com Hyptis mutablis (Rich) Briq. 11 Posteriormente combinado no gênero Marsypianthes Mart. ex Benth. 12 Hyptis lurida Spreng e H. inflata Spreng são consideradas sinônimos de Marsypianthes chamaedrys (Vahl) Kuntze 13 Atualmente Cordia asperrima Spreng é considerada basiônimo de Hyptidendron asperrimum (Spreng) Harley. 7 número de espécies envolvidas e a incerteza sobre a importância dos caracteres da inflorescência, preferiu manter Hyptis como um gênero amplo, reconhecendo algumas divisões infragenéricas. Ele reconheceu 207 espécies em Hyptis, sendo 176 novas espécies, 12 espécies de Eriope além de Peltodon longipes Benth. e Marsypianthes hyptoides Mart. ex Benth. Agrupou também as espécies de Hyptis em um sistema de classificação infragénerico com 19 seções, algumas delas divididas em subseções. Bentham (1848) apresentou mais 53 novas espécies, sendo duas de Marsypianthes, quatro em Eriope e o restante de Hyptis. Ele também modificou a delimitação de algumas de suas seções de Hyptis descritas em 1833 e reconheceu o gênero com 20 seções. Schauer (1844) combinou Rhaphiodon echinus (Ness. & Mart.) Schauer, baseado em Zapania echinus Nees & Mart. 1823 (non Lam. 1791). O capítulo de Labiatae da Flora brasiliensis elaborado por Schmidt (1858) acrescentou pouco para a taxonomia da subtribo Hyptidinae. Este autor descreveu duas novas espécies, Hyptis marginata Schmidt e H. salicina Schmidt, e apresentou uma classificação infragenérica para Hyptis com base na inflorescência. Foram propostas cinco grandes seções: Spiciformes Schmidt, Capitatae Schmidt, Verticillato- paniculatae Schmidt, Cymoso-axillares Schmidt e Paniculatae Schmidt, todas essas atualmente consideradas sinônimos das seções anterioemente publicadas por Bentham. Briquet (1895, 1897a, 1897b e 1898) publicou, em uma série de artigos, novos taxa e notas sobre a taxonomia dos gêneros incluídos em Hyptidineae. Além disso, Briquet (1897) apresentou o estudo da subtribo reconhecendo os mesmos gêneros e delimitações já apresentada no sistema prévio de Bentham. Epling, em uma série de artigos na primeira metade do século XX, apresentou um extenso trabalho de revisão de Hyptidinae, principalmente em Hyptis, publicando 89 novas espécies para este gênero e seis para Eriope. Além disso, Epling (1933) segregou o gênero Asterohyptis, incluindo neste três espécies Norte-Americanas, Asterohyptis seemannii (A.Gray) Epling, A. mociniana (Benth.) Epling e A. stellulata (Benth.) Epling 14 . Os trabalhos mais importantes de sua obra foram publicados em 1936 e 1949, nos quais apresentou uma extensa revisão para Hyptis, com uma importante contribuição na delimitação infragenérica. Deve ser destacado que Epling (1949), assim como Bentham (1833), expôs sua indecisão sobre a possibilidade de subdividir Hyptis em outros gêneros. Segundo Epling (1949) seria necessário um melhor conhecimento das formas de vida e hábitos das espécies na natureza para a segregação de Hyptis, elevando cada uma das seções para um limite genérico. No entanto, ele

14 Espécie tipo do gênero. 8 também argumentou que na época de sua monografia diversas espécies eram conhecidas por poucos espécimes, muitas delas apenas fragmentos, e considerou inoportuno no momento efetuar modificações na taxonomia do grupo. Epling (1949) considerou Marsypianthes, Peltodon, Eriope, Rhaphiodon muito próximos de Hyptis especialmente pela organização floral e considerou que a distância entre estes gêneros era só um pouco maior do que a distância entre as seções de Hyptis. Avanços consideráveis no entendimento da morfologia e anatomia de Hyptidinae foram apresentados em uma série de estudos de Rudall (1979, 1980a, 1980b e 1986), destacando-se as pesquisas sobre a anatomia foliar da subtribo (Rudall, 1979 e 1986). Uma ampla diversidade de caracteres anatômicos foram mostrados nestes estudos e indicados como relacionados a adaptações para as condições ambientais do Cerrado, Campo Rupestre e especialmente a ambientes xeromórficos. Algumas dessas adaptações também são consideradas caracteres diagnósticos para algumas categorias infragéricas de Hyptis (Harley, 1988). Nos últimos 40 anos, Harley tem se dedicado ao estudo das Labiatae brasileiras, especialmente as espécies de Hyptidinae. Nesse período, além do estudo dos espécimes depositados em herbários, foi feito um extenso trabalho de campo, estudando polinização das flores do grupo, extendendo o conhecimento da ecologia e ampliando consideravelmente as coleções botânicas de Hyptidinae. Nesse período foram publicados mais de 30 trabalhos, incluindo a descrição de 36 novas espécies. Harley revisou o gênero Eriope, modificando a delimitação e incluindo mais cinco espécies neste grupo, antes incluidas em Hyptis (Harley, 1976). Harley ainda descreveu três novos gêneros: Eriopidion, segregado de Eriope (1976) e Hypenia e Hyptidendron (Harley, 1988), segregados de Hyptis. Nos últimos anos, o foco da sua pesquisa tem sido a revisão de Hyptis.

Filoegenia de Hyptidinae Morfologicamente todos os gêneros de Hyptidinae são bem caracterizados pela presença de caracteres com a notável de exceção de Hyptis o qual é caracterizado ter os caracteres de Hyptidinae e não possuir os caracteres morfológicos dos outros gêneros (vide Epling 1949, Harley 1988). Desta forma, suspeitava-se que o gênero Hyptis com ca. de 300 espécies poderia possuir delimitação parafilética, considerando a sua delimitação morfológica. Dentro deste contexto está subtribo foi escolhida para um estudo das relações filogenéticas como tema central desta tese. 9

Objetivos:

• Apresentar a relação filogenética de interna de Hyptidinae baseada em sequências de DNA nuclear e plastidial; • Testar se a subtribo Hyptidinae e se seus táxons internos são monofiléticos; • Apresentar as implicações taxonômicas para resultantes do estudo filogenético, considerando o reconhecimento taxonômico de grupos monofiléticos; • Apresentar considerações biogeográficas com base na distribuição geográfica dos clados recuperados na filogenia. • Considerações morfológicas com indicação das possíveis sinapomorfias dos clados recuperados nas análises filoegenéticas.

A metodologia, resultados e discussão da tese são apresentados em dois capítulos a serem publicados de forma independente. O primeiro capítulo trata da filogenia de Hyptidinae baseada em sequências de DNA nuclear e plastidial analisados através de diversos métodos de inferência filogenética. O segundo capítulo da tese apresenta as implicações taxonômicas decorrentes do estudo filogenético do primeiro capítulo, onde os dados da filogenia molecular, associados aos morfológicos, foram utilizados como base para uma nova classificação genérica na subtribo Hyptidinae.

10

REFERÊNCIAS Adanson, M. 1763. Familles des Plantes, vol. 2. Vicent, Paris. Bentham, G. 1833. Labiatarum Genera et Species. Ridgeway & Sons, London. Bentham, G. 1848. Labiatae Pp. 83−138. in: Candolle, A.P. de (ed.), Prodromus Systematis Naturalis Regni Vegetabilis, vol. 12. Masson, Paris. Bentham, G. 1876. Verbenaceae & Lamiaceae Pp. 1131−1223. Bentham, G. & Hooker, J.D. (eds.), Genera Plantarum vol. 2. Reeve & Co, London. Briquet, J. 1897. Labiatae Pp. 333−347. in: Engler, H.G.A. & Prantl, K.A.E. (ed.), Die Natürlichen Pflanzenfamilien, vol. 4(3a). Wilhelm Engelmann, Leipzig. Briquet, J. 1897a. Fragmenta Monographiae Labiatarum, IV, Bulletin de l'Herbier Boissier 4: 785−808. Briquet, J. 1897b. Contributions à la Flore du Paraguay in: Micheli, M. (ed.), Mémoires de la Société de Physique et d'Histoire Naturelle de Genève 32: 17−36. Briquet, J. 1898. Fragmenta Monographiae Labiatarum V. Annuaire du Conservatoire & du Jardin Botanique de Genève 2: 102−251. Browne, P. 1756. Civil and Natural History of Jamaica. Gray's Inn, London. Cantino, P.D. 1992a. Evidence for a polyphyletic origin of the Lamiaceae. Ann. Missouri Bot. Gard. 79: 361−379. Cantino, P.D. 1992b. Toward a phylogenetic classification of the Labiatae. Pp. 27−37 in: Harley, R.M. & Reynolds, T. (eds.) Advances in Labiate Science. Kew: Royal Botanic Gardens. Cantino, P.D., Harley, R.M. & Wagstaff, S.J. 1992. Genera of Lamiaceae: status and classification. Pp. 511−522 in: Harley, R.M. & Reynolds, T. (eds.) Advances in Labiate Science. Kew: Royal Botanic Gardens. de Queiroz, K. & Gauthier, J. 1994. Toward a phylogenetic system of biological nomenclature. Trends in Ecology and Evolution 9: 27–31. Dillenius, J.J. 1732. Hortus elthamensis. London. Endlicher, S.F.L. 1838. Genera Plantarum. Vienna. Epling, C.C. 1933. Asterohyptis: a newly proposed genus of Mexico and Central America. Bulletin of the Torrey Botanical Club 60: 17−21. Epling, C.C. 1936. Synopsis of the South American Labiatae. Feddes Repertorium Specierum Novarum Regni Vegetabilis 85: 1−341. 11

Epling, C.C. 1949. Revision del Género Hyptis. Revista del Museo de La Plata. Sección Botánica 7: 1−497. Fusée-Aublet, J.B.C. 1775. Histoire des plantes de la Guiane Françoise, vol. 2. Pierre-François, London & Paris. Harley, R.M. 1976. A Review of Eriope and Eriopidion (Labiatae). Hooker's Icones Plantarum 38: 1−107. Harley, R.M. 1978. Nomina Conservanda et Rejicienda Proposita. Taxon 27: 122. Harley, R.M. 1985. Labiadas Pp. 1−72 in: Reitz, R. (ed.), Flora Ilustrada Catarinensis. Herbário Barbosa Rodrigues, Itajaí. Harley, R.M. 1988. Revision of generic limits in Hyptis Jacq. (Labiatae) and its allies. Botanical Journal of the Linnean Society 98: 87−95. Jacquin, N.J. 1787. Collectanea vol. 1. Officina Krausiana.Vienna. Kunth, C.S. 1818. Labiatae Pp. 317−321 in: Humboldt., F.W.H.A. von; Bonpland, A.J.A. & Kunth, C.S. (eds.), Nova Genera et Species Plantarum, vol. 2. Librairie Grecque-Latine- Allemande, Paris. Kuntze, O. 1891. Revisio Generum Plantarum, vol. 2. H. Sturtz, Wurzburg. Lamarck, J.B.A.P. de M. de 1789. Encyclopedie Méthodique, Botanique, vol. 3. Chez Panckoucke, Paris. Linnaeus, C. 17759. Systema Naturae ed. 10: 2. Laurentii Salvii, Stockholm. L'Héritier de Brutelle, C.L. 1789. Sertum Anglicum. P.-F. Dicot, Paris. Maycock, J.D. 1830. Flora Barbadensis. James Ridgway, London. Marcgrav, G. 1648. Historiae Plantarum Pp. 140−448. in: Piso, W. & Marcgrav, G. Historia Naturalis Brasiliae. Leiden. McNeill, J., Barrie, F.R., Burdet, H.M., Demoulin, V., Hawksworth, D.L., Marhold, K., Nicolson, D.H., Prado, J., Silva, P.C., Skog, J.E., Wiersema, J.H. & Turland, N.J. (eds.) 2006. International Code of Botanical Nomenclature (Vienna Code). Adopted by the Seventeenth International Botanical Congress Vienna, Austria, July 2005. Regnum Vegetabile 146. Gantner, Ruggell, Liechtenstein. Paton, A.J., Springate, D., Suddee, S., Otieno, D., Grayer, R.J., Harley, M.M., Willis, F., Simmonds, M.S., Powell, M.P. & Savolaien, V. 2004. Phylogeny and evolution of basils and allies (Ocimeae, Labiatae) based on three plastid DNA regions. Molecular Phylogenetics and Evolution 31: 277−299. 12

Plumier, C. 1703 [1756]. Nova Plantarum Americanarum Pp. 1−261 in: Burman, J. (ed.), Nova Plantarum Americanarum Genera. J. Boudot, Paris. Pohl, J.B.E. 1827. Plantarum Brasiliae Icones et Descriptiones hactenus ineditae, vol. 1. Vienna. Poiteau. P.A. 1806. Monographie du genre Hyptis de la famille des Labiées. Annales du Museum National d'Histoire Naturelle 7: 459−477. Richard, L.M.C. 1792. Catalogue des oiseaux envoyés de Cayenne, à la Société, par M. Le Blond, associé. Actes de la Société d'Histoire Naturelle de Paris 1: 110. Rudall, P. 1979. Leaf and twig anatomy of Eriope, a xeromorphic genus of Labiatae, Botanical Journal of the Linnean Society 78: 157−180. Rudall, P. 1980a. Leaf Anatomy of the subtribe Hyptiidinae (Labiatae). Botanical Journal of the Linnean Society 80: 319−340. Rudall, P. 1980b. Pollen morphology in the subtribe Hyptidinae (Labiatae). Kew Bulletin 35: 453−458. Rudall, P. 1986. Leaf anatomy of Hyptis section Pachyphyllae and related species. Kew Bulletin 41: 1017−1025. Schauer, J.C. 1844. Rhaphiodon, eine neue Gattung der Labiatae. Flora, oder (Allgemeine) Botanischer Zeitung 27: 345−346. 1844 Schrank, R. 1822. Bemerkungen über einige seltnere Pflzanzen des k. botanischen Gartens zu München. Denkschriften der Koniglich-Baierischen Botanischen Gesellschaft in Regensburg 2: 21−72. Schrank, R. 1828. Sylloge Plantarum Novarum, vol. 2. Ratisbonae. Schreber J.C.D. von 1791. Genera Plantarum Ed. 8, vol.2. Schmidt, J.A. 1858. Labiatae Pp: 65−226. in: Martius, C.P.F. (ed.), Flora brasiliensis vol. 8(1). Fleischer, Leipzig. Sloane, H. 1707. Catalogus plantarum quae in insula Jamaica vol. 1. Sprengel, P.J. 1824. Systema vegetabilium. Ed. 16. vol. 2. Göttingen. Suddee, S., Paton, A.J. & Parnell, J.A.N. 2004. A taxonomic revision of tribe Ocimeae Dumort. (Lamiaceae) in continental South East Asia I. introduction, Hyptidinae & Hanceolinae Kew Bulletin 59: 337−378. Swartz, O.P. 1788. Nova genera et species plantarum, seu, Prodromus descriptionum vegetabilium. Bibliiopolis, Upsalae. 13

Thorne, R.F. 1992. Classification & geography of the flowering . Bot. Rev. 58: 225−348. Vahl, M.H. 1794. Symbolae Botanicae vol. 3. Henrichsen, Copenhagen. Wagstaff, S.J., Olmstead, R.G. & Cantino, P.D., 1995. Parsimony analysis of cpDNA restriction site variation in subfamily Nepetoideae (Labiatae). Am. J. Bot. 82: 886−892. Wagstaff, S.J. & Olmstead, R.D. 1997. Phylogeny of Lamiaceae inferred from rbcL sequences. Syst. Bot. 22: 165−179. Wagstaff, S.J., Hickerson, L., Spangler, R., Reeves, P.A. & Olmstead, R.D. 1998. Phylogeny in Lamiaceae s.l. inferred from cpDNA sequences. Pl. Syst. Evol. 209:265−274. Weinmann, J.A. 1824. Sylloge Plantarum Novarum. Ratisbonae. Willdenow, C.L. 1800. Species Plantarum Ed. 4. vol. 3(1). G.C. Nauk, Berlin. Zhong, J.J., Li, L., Conran, J.G. & Li, H.-W. 2010. Phylogeny of Isodon (Schrad. ex Benth.) Spach (Lamiaceae) and related genera inferred from nuclear ribosomal ITS, trnL–trnF region, and rps16 intron sequences and morphology. Systematic Botany 35: 207–219.

14

Chapter I

The phylogeny of subtribe Hyptidinae Endl. (Ocimae, Nepetoideae, Labiatae) as inferred from nuclear and chloroplast DNA

Phylogenetic analyses of subtribe Hyptidinae based on nuclear ribosomal internal and external transcribed spacers ITS and ETS together with plastid DNA trnL-F, trnS-G, trnD-T and matK regions are presented. The sampling included 218 specimens for ITS which represent 180 species of Hyptidinae and 79 species, of which 69 within Hyptidinae, in a more complete analyses including all datasets. The monophyly of Hyptidinae is well supported and also for almost all genera. Eriope has a monophyletic delimitation excluding Eriope simplex, while Hypenia represents a monophyletic group excluding Hypenia vitifolia. Finally, Hyptis eximia was shown to be associated with Hyptidendron, which possibly is monophyletic including this latter species. Peltodon was recovered immersed within the clade Hyptis stricto sensu (s.s.). Some internal relationship within Hyptis s.s. were not resolved; however some preliminary discussion is presented. The traditional classification is confronted with the phylogenetic topologies including some biogeographic discussion. This paper provides evidence for further Hyptis segregation.

KEYWORDS: Hyptis, Lamiaceae, ITS, ETS, trnL-F, trnD-T, trnS-G, matK.

INTRODUCTION Hyptidinae Endl. together with Hanceolinae (C.Y.Wu) A.J.Paton & Harley, Isodoninae J.S.Zhong, J.Li & H.W.Li, Lavandulinae Endl., Ociminae (Dumort.) Schmidt, Plectranthinae Endl. and Siphocranioninae J.S.Zhong, J.Li & H.W.Li make up the tribe Ocimeae Dumort. Within subfamily Nepetoideae (Dumort.) Luerss. (Paton & al., 2004; Zhong & al., 2010). It is the only subtribe in the Ocimeae predominantly from the New World (Paton & al., 2004). Hyptidinae comprises nine genera and about 400 species which occur in areas of the Seasonally Dry Tropical Forest (STDF) (following Pennington & al. 2009) biome and diversifying into areas of open savanna. The species occurrence is also often correlated with seasonally humid soils and high altitudes, and most of them occur in Brazil. The genera of Hyptidinae, with the exception of Asterohyptis Epling, which has greatly reduced flowers, are characterized by a 15 corolla with a hinged anterior corolla lobe, typically held forward under pressure by the declinate stamens which it encloses. When visited by a pollinator, the lip reflexes rapidly and the exposed stamens dust pollen on the ventral surface exposed by the visitor. This explosive pollination system is unique to the subtribe, although a slightly similar but much less elaborate system is found in some species of the African genus Aeollanthus Mart. ex Spreng. Hyptidinae are unusual within Ocimeae in having bracteolate inflorescences (also found in Hanceolinae and Isodon Schrad. ex Benth.), and the nutlets typically have an expanded areole. The group was first studied in detail by Bentham (1833, 1848), which subdivided Hyptis Jacq. into a series of sections. Later, the system was modified by Briquet (1897), who provided an account of the group for Engler’s Pflanzenfamilien. Epling updated the classification (1936) of Hyptidinae in a series of papers in the 20th century and published a more detailed account of Hyptis (Epling, 1949). At that time, Hyptis included two genera later separated by Harley (1988). These were Hyptidendron Harley, derived from species belonging to Hyptis section Umbellaria Benth. and from section Buddleioides Benth. (17 species) and Hypenia (Mart. ex Benth.) Harley which was raised from sectional level (c. 27 species). Other genera within Hyptidinae are Eriope Humb. & Bonpl. ex Benth. (1833), (c. 30 species), Marsypianthes Mart. ex Benth. (1833) (c. six species), and Rhaphiodon Schauer (1844) (one species). Later, Asterohyptis (Epling 1933) and the monotypic Eriopidion Harley (1976) were segregated from Hyptis and Eriope, respectively. Harley (1976) also transferred several species to Eriope, following an earlier re-interpretation of Eriope generic delimitation. Detailed micro-morphological studies of Hyptidinae by Rudall (1979, 1980a, 1980b, 1981a, 1981b and 1986) providing evidence of the relationships among both genera and Hyptis sections, as well as the chromosomes studies of Hyptidinae (Harley & Heywood, 1992), all casting doubt on the monophyly of Hyptis, were part of the base on which Harley arrived at his decision to dismember Hyptis. In the current published classification, Hyptis comprises 285 species. However the classification used here is based on that devised by Epling, which originally contained 26 sections, reduced to 23, by the removal of Hyptis section Mixtae Epling, containing a single species, H. salviifolia Pohl ex Benth., transferred to Eriope (Harley, 1976), and other modifications made by Harley (1976, 1988) already cited. Since that time, Harley (1986) created a further new section by elevating Hyptis section Eriosphaeria Benth. subsection Pachyphyllae Epling to sectional rank as section: Pachyphyllae (Epling) Harley. Thus the genus Hyptis is at present recognized as having 24 sections, some of which are divided into subsections. Characters which have been traditionally used to recognize the genera 16 are based largely on inflorescence and floral structure. The inflorescence in Hyptidinae is based on a thyrse: an indeterminate axis with lateral cymes. This is a system with a wide range of modifications. The cyme may be dichasial, as in some Hyptidendron species, or can be cincinnate. The cymes may be congested or lax, depending on the elongation or reduction of the peduncles or pedicels, and the cyme itself may be many-flowered or reduced to a single flower, as in Eriope or Hypenia, where the inflorescence resembles a simple or branched raceme. The floral structure is also variable, with the calyx usually ± symmetrical and five-lobed, but sometimes slightly zygomorphic or with a reduced number of lobes. Corolla morphology is also extremely variable in size, tube length and colour as an adaptive response to pollinators. The gynoecium is also variable with base of the style sometimes persistent and jointed with the deciduous upper part, the persistent part, or stylopodium usually overtopping the mature nutlets. The nutlets themselves vary in the pericarp pattern, presence of trichomes or corky projections and the pericarp often specialized to produce mucilaginous fibres on contact with water. For better understanding of the evolution of these characters about evolutive history of this group, Hyptidinae has been studied more recently from a phylogenetic perspective. El Gazzar & Rabei (2008), through numerical methods of comparative morphological characters, provided some evidence for the non-monophyly of Hyptis, however their results did not allow any better generic delimitation. Recently, Hyptidinae was sampled in two molecular systematic studies (Paton & al., 2004; Zhong & al., 2010), but neither study focused on the subtribe. In both papers the species of Hyptidinae emerged as a well-supported clade, although the limited sampling made the results not conclusive about the monophyly of Hyptidinae. Zhong & al. (2010) aimed to study the internal relationships of the predominant Asiatic genus Isodon, showing that the most probable sister group of Hyptidinae is the Sino-Japanese genus Hanceola Kudô (subtribe Hanceolinae). The objectives of the current study are to test the monophyly of Hyptidinae and its component genera, to show the relationships among internal groups and discuss the validity of the taxonomic characters used in traditional taxonomy of the subtribe.

MATERIAL AND METHODS Taxon sampling Our sampling included 218 specimens representing 180 specimens of Hyptidinae, of which 170 are described species and nine considered new species. Sampling included some species repetitions from different localities. Hyptidinae, representing all genera and 22 of 24 17 sections of Hyptis for ITS. Later we selected 79 species in which 69 species from Hyptidinae based on the original sampling and considering the well-supported clades recovered in ITS trees for performing an more complete analysis with multiple DNA regions. Only two monotypic sections of Hyptis could not be sampled: Rhytidea Benth. (Hyptis rhytidea Benth. from Mexico and Central America) and Hilaria Benth. (Hyptis lobata A.St.-Hil. ex Benth. only known by the type collection from Brazil, State of São Paulo). The analyses also included 29 species not belonging to Hyptidinae for ITS, and 10 for all other regions, but only one of them in each analysis was chosen as outgroup, Elsholtzia ciliata (Thunb.) Hyl. (tribe Elsholtziae) for combained analysis and ETS analises Siphocranion macranthum (Hook f.) C.Y.Wu for nrDNA cpDNA and Callicarpa giraldii Hesse ex Rehder (Labiatae, subfamily Viticoideae Briq.) for ITS large analysis. The ITS large analysis sampling includes all the subtribes in Ocimeae. The voucher information for all samples is listed in Appendix 1.

DNA methods Total genomic DNA was obtained from either dried leaf tissues, collected in several field expeditions, or from herbarium specimens, using 2× cetyltrimethyl ammonium bromide (CTAB) following a modified version of the Doyle and Doyle method (1987). Four fast-evolving non- coding cpDNA regions (Shaw & al., 2005; 2007) were chosen for sequencing. These were trnL- F (trnL-F intron and intergenic spacer), trnD-trnT (or trnY), trnS-G and a part of matK because these showed the best results in terms of easy amplification and high interspecies polymorphism. As nuclear regions both the entire ITS region (Transcribed Spacer, including ITS1, 5.8S and ITS2) and ETS (External Transcribed Spacer) were used. The ETS was included to improve support for the clades already obtained through the preliminary results of ITS. The spacer trnD– T was amplified for most taxa using the primers of Demesure & al., (1995), trnD GUC and trnT GGU. For some samples which could not be amplified using these primers, we used the internal primer trnY GUA (Shaw & al., 2005). As we could not find a set of primers to amplify the entire matK region easily, we used a partial region of matK amplified with the primers 390F and 1326R (Cuénoud & al., 2002). The trnL-F region was amplified using primers C and F (Taberlet & al., 1991). Some samples which were extracted from herbarium specimens could not be amplified for both the intron and spacer as one fragment, so the internal primers D and E were used in combination with C and F for those samples (Taberlet & al., 1991). For amplifying the trnS-G spacer we used the set of primer described in Shaw & al., (2007). The entire ITS region was 18 amplified using the primers 17SE and 26SE (Sun & al., 1994). In some materials, mainly from herbarium specimens, we had difficulty in amplifying the entire fragment, so the region was amplified in two separated fragments, using primers 17SE with its2 (White & al., 1990) and 26SE with its3 (White & al., 1990). To amplify a portion of the 3’ end of the ETS, the 3’ 18S- IGS primer of Baldwin and Markos (1998) and the 5’ primer ETS-B (Beardsley & Olmstead, 2002) were used. The polymerase chain reaction (PCR) conditions for all plastidial DNA regions (matK, trnD-trnT, trnL-F and trnS-G) were as follows: 30 cycles of 94⁰C for 5 min, 50⁰C for 1 min, and 72⁰C for 2 min. For the nuclear regions (ETS and ITS), the reactions were as follow: 28 cycles of 94⁰C for 5 min, 52⁰C for 1 min, and 72⁰C for 3 min. The pre-melt stage (at 94⁰C) was 5 min and the final extension step (at 72⁰C ) was 7 min for all regions. To avoid the secondary structure affect we added 2% dimethyl sulfoxide (DMSO) and 1mM of betaine to PCR for amplification and 2% DMSO for sequencing. Amplification for all DNA regions was carried out in 30μL polymerase chain reactions (PCR) including 4U of Taq DNA polymerase (Phoneutria and GoTaq) for cpDNA and 1U for nrDNA, 2.5μL 10× Buffer (Mg Free) (Phoneutria) or Flexi

Buffer (GoTaq), 1.7mM of MgCl2 for cpDNA and 3.3mM for nrDNA, 0.4mM of dNTP, 0.125% bovine serum albumin (BSA), 0.33μM each primer for cpDNA and 0.05μM nrDNA. All PCR products were cleaned in QIA Quick silica columns and then sequenced with an ABI3130XL genetic analyzer (Applied Biosystems Inc.) following the manufacturer’s protocol and using the same primers as in the PCR reactions. The sequences were edited in plataform GENEIOUS PRO 4.7 (Drummond & al., 2009) and aligned using the program CLUSTAL2X (Larkin & al., 2007), and finally re-aligned manually. The indels were coded according to the “simple coding” criterion of Simmons & Ochoterena (2000) simple coding through SEQSTATE 1.4.1 (Müller 2005). Data matrices are available on request from JFBP and CvdB.

Phylogenetic analyses A summary of all performed analyses are presented in table 3. An individual analysis with all ITS sequences was performed to define the general topology. Later, the ribosomal nuclear dataset (nrDNA), including ITS and ETS combined, was analyzed together in two different sampling strategies. The first including the same composition of plastid dataset (cpDNA), in order to compare the topology of different datasets and a second including all species which were amplified for these DNA regions. Some important species for which we could not obtain good sequences from ITS were included only in an individual ETS analyses. 19

The cpDNA dataset consisted of partial matK, trnL-F, trnD-T, and trnS-G sequences together. Individual analyses for each cpDNA region were performed and we verified no incongruence between the resulting tree topologies. Nevertheless, these individual topologies presented very low level of resolution, and we decided to show only the combined tree with all plastid dataset, which is more informative (cpDNA). Congruence between nrDNA and cpDNA datasets, excluding the coded gaps, was assessed with the Incongruence Length Difference (ILD) test (Farris & al., 1994). The incongruence test value was calculated using the Partition Homogeneity Test (PHT) implemented in PAUP*4b10 (Swofford 2000), using the heuristic option with 1000 partition replications. In each of them we performed partitioned and joint analysis of datasets always with 3 random taxa-addition replicates holding 10 trees each step, and saving up to 10 trees. The maximum parsimony analyses were conducted using PAUP* 4.0b10 with 1000 random taxa addition sequence replicates limiting swapping and saving up to 10 trees and using TBR branch swapping. All character states were treated as unordered and equally weighted. The bootstrap percentages (Felsenstein 1985) were obtained with addition with 1,000 bootstrap replicates each with 5 random-taxa additive replicates, TBR branch swapping saving 10 trees per replicate. A strict consensus tree was constructed from MP trees retained. Before the model- based analyses, JMODELTEST (Posada 2008) was used to select the optimal substitution models (see table 1). Bayesian analyses were performed using the program MRBAYES v. 3.1.2 (Ronquist & Huelsenbeck, 2003). Two runs were conducted with four Markov chains each running for 10 million generations, sampling trees every 1000 generations to avoid autocorrelation. The chains reached stationarity and the average standard desviation of the split frequencies stabilized in less than 2,000,000 generations which were excluded as the burn-in phase. A 80% majority-rule consensus tree was constructed from the trees obtained from the remaining generations to compute the posterior probabilities.

RESULTS Congruence among datasets The congrunce ILD test resulted in P=0.06, therefore the test did not detect statistically significant incongruency (Farris & al., 1994). Furthermore, upon careful visual examination of cpDNA and nrDNA topologies (figure 4), we did not find any well-supported incongruence among different datasets or among regions. Thus, we combined the nrDNA and cpDNA datasets in single combined analysis (referred here as cp_nrDNA). We also coded indels (gaps) for both 20 nrDNA and cpDNA datasets (the datasets which included gaps are referred to adding _g to the end of the name e.g. nrDNA_g, cpDNA_g, ITS_g etc, see table 3).

21

Table 1: Molecular evolution models and priors for base frequencies used for Bayesian analyses in the present study. DNA region Model Rates ITS1 and ITS2 GTR Gamma + inv 5,8 S K2P Gamma + inv ETS GTR Gamma + inv matK GTR Gamma trnl-F GTR Gamma trnD-T GTR Gamma trnS-G GTR Gamma General Time Reversible (GTR);Kimura 2-Parameter (K2P).

Table 2. Features of DNA datasets used in this study DNA region Aligned No. Variable No. Potentially Fitch No. of changes/ CI RI ts:tv or dataset length sites parsimony tree variable site ITS 753 313 222 1605 5.13 0.30.53 1.74 ETS 535 339 266 1711 5.05 0.30.50 1.67 nrDNA 1288 652 488 3336 5.12 0.3 0.52 1.72 matK 802 213 99 321 1.51 0.7 0.72 1.27 trnL-F 863 165 69 225 1.37 0.8 0.77 1.50 trnD-T 918 146 65 192 1.32 0.8 0.81 1.13 trnS-G 834 73 19 86 1.18 0.9 0.83 1.15 cpDNA 3417 591 252 824 1.28 0.8 0.77 1.28 cp_nrDNA 4705 1249 740 4140 3.31 0.4 0.55 1.61 gaps (cp+nr) 394 391 144 566 1.44 0.6 0.71 - cp_nrDNA_g 5099 1640 884 4706 2.87 0.4 0.57 - CI, consistency index; RI, retention index; ts:tv, transversion index ratio.

22

Phylogenetic relationships In all cases, the topology obtained in the Bayesian analyses was better resolved than the parsimony analyses, without discrepancies, except in the position of Hyptis suaveolens (L.) Poit. and Rhaphiodon echinus (Nees & Mart.) Schauer (see discussion). Therefore we chose to present always the 80% majority-rule consensus of the Bayesian analyses and plot the posterior probabilities (PP) and the bootstrap (BS) values of the parsimony analyses on it (not shown). Only the trees resulting from the ITS_g, nrDNA_g, cpDNA_g and cp_nrDNA_g were showed. The other analyses, ETS_g and nrDNA_g are shown only in the electronic supplement (in this thesis presented as figures 2 and 3, respectively). Because we found no well suported incongruence between datasets, the combined analysis was better resolved and its clades attained higher support, we will present the results of the combined analysis, indicating small differences in individual analyses only when necessary. The results of the individual and combined datasets of cpDNA_g and nrDNA_g strongly support the monophyly of Hyptidinae. However, Hyptis in all analyses is indicated as paraphyletic, with at least nine different lineages (Figs. 1 and 2). On the other hand, several sections and subsections of Hyptis were recovered as monophyletic groups, although many of them were associated with other genera rather than Hyptis sensu stricto (s.s.). Names given to clades in this paper are in agreement with a separate paper dealing with the new generic delimitation and required combinations (Pastore & al., chapter II). In the figure 5 we have divided Hyptidinae in six major clades ‘Leptohyptis’, ‘Oocephalus’ ‘Trichocladus’, ‘Cyanocladus’, ‘Laxiflorae’ and ‘Hyptis’ Clades ‘Leptohyptis’ (Hyptis section Polydesmia Benth. subsection Tubulosae (Briq.) Harley and ‘Oocephalus’ (Hyptis section Polydesmia subsections Oocephalus (Benth.) Epling and Glomeratae (Benth.) Epling) are recovered as successive sister groups to remaining Hyptidinae. Clade ‘Leptohyptis’ is recovered from the cpDNA_g dataset (100% PP 47% BS, and combined dataset as well with 100% PP 60% BS) as sister to all Hyptidinae. However, the nrDNA (100% PP 56% BS) dataset has resolved the clade ‘Oocephalus’ and ‘Leptohyptis’ in diferent positions compared with the cpDNA_g and cp_nrDNA_g analyses. Excluding the clades 'Oocephalus' and 'Leptohyptis', Hyptidinae was dividided in four clades called here as ‘Laxiflorae’, 'Trichoscladus', 'Cyanocladus', and ‘Hyptis’ The relationships amongst them are not well resolved with the data obtained. Although, the more complete analyses indicates Cyanocladus emerging as sister group of 'Hyptis' in Bayesian analises. Within 23

‘Laxiflorae’, ‘Gymneia’ (Hyptis section Gymneia Benth.) is sister to remaining groups, followed by Rhaphiodon (although, isolated analysis of ETS_g and ITS_g have shown a different position for this group). The next internal clade within 'Laxiflorae' is ‘Hyptidendron’, was recovered including Hyptidendron, Hyptis section Latiflorae Epling and also Hypenia vitifolia (Pohl ex Benth.) Harley. 'Hyptidendron' (cp_nrDNA_g 93% PP, >50% BS) has two internal well supported clades. The species composition of these clades does not agree with the traditional sectional delimitation provided by Harley (1988) (see figure 1) for Hyptidendron and one of them include Hyptis eximia Epling (from the monotypic section Latiflorae), while Hypenia vitifolia has appeared in an isolated position on the base of the ‘Hyptidendron’ clade (figure 5). The next clade, called here ‘Condea’, had strong support, mainly in nrDNA_g analysis (and also in cp_nrDNA_g 100% PP, 100% BS). It includes species included traditionally in Hyptis sections Umbellatae Epling, Minthidium Benth. and Laniflorae Benth. together, and each section individually were recovered as monophyletic (see Figures 1, 2, 3, 4 and 5). However, species of section Laniflorae were not included in the cpDNA_g analysis. The next clade, 'Mesosphaerum', includes the Central and North American species of Hyptis section Mesosphaeria Benth. subsection Pectinaria (Benth.) Epling (including the worldwide distributed species H. suaveolens and H. pectinata (L.) Poit), Hyptis section Mesosphaeria subsections Eriocephalae Epling and also Hyptis asperifolia Standl. (from the monotypic section Subumbellaria Epling). 'Mesosphaerum' has weak support of PP 70% and it is not recovered in MP. A more internal subclade of ‘Mesosphaerum’ comprises H. oblongifolia Benth., H. urticoides Kunth and H. asperifolia, and is well supported (ETS_g analysis, cpDNA_g PP 100%, BS 100% data not shown, see ETS_g tree (figure 4) in the electronic appendices). Finally, the clades ‘Eriope’ and ‘Hypenia’ emerged as sister groups within 'Laxiflorae', although with low support (70% PP and not recovered in BS). The clade ‘Eriope’ have strong support (100% BS and 100% PP), internally Eriopidion is resolved (100% PP 100% BS) as sister group of remaining species of Eriope except by Eriope simplex. This latter species is recovered (100% PP 93% BS) in the base of clade Hypenia which is also strong supported as a monophyletic group (100% PP 100% BS, see figure 3). The major clade ‘Hyptis’ (figures 4 and 5) is well supported (cpDNA_g 100% PP 93% BS, nrDNA_g 100% PP 70% BS and cp_nrDNA_g 100% PP 100% BS). This clade, in some analyses, appears divided in two subclades. The first, ‘Polydesmia’, includes Hyptis section Polydesmia Benth. subsections Malvastra Epling, Rigidae Benth., Vulgares Benth. and also 24

South American endemic species of section Mesosphaeria subsections Pectinaria and Plectranthodon Epling. Hyptis spicigera Lam. (from subsection Spicaria (Benth.) appears at the base of 'Polydesmia' Epling). However, it has a different placement comparing nrDNA and cpDNA topologies (figure 4). The second subclade, ‘Hyptis A’, comprises species of Hyptis sections Hyptis, Xylodontes (Benth.) Epling, Cyrta Benth., Muelleriohyptis Briq., Eriosphaeria Benth., Pachyphyllae, Apodotes Benth. and the genus Peltodon Pohl. Internally, ‘Hyptis’ subclade ‘Hyptis A’ comprises the subclade 'Eriosphaeria' including mainly species from Hyptis sections Eriosphaeria Benth., Induratae Epling, Pachyphyllae and also some species from the section Apodotes which were recovered at the base of 'Eriosphaeria'. More internally, clade 'Eriosphaeria' has several well supported subclades which are related with traditionally recognized groups, such as Hyptis section Eriosphaeria subsections Passarinae Epling (100% PP 84% BS ITS), Sessiliflora Epling (including the monotypic subsection Obtectae Epling, 100% PP 100% BS). Clade 'Cyanocladus' (figure 3, cp_nrDNA_g 100% PP 47% BS) comprises species from Hyptis section Cyanocephalus Benth., two related species without section H. cuniloides Epling and H. fruticosa Salzm. ex Benth. (Fruticosae alliance) and also from Marsypianthes together with Asterohyptis. More internally, the 'Fruticosae alliance' and section Cyanocephalus together are resolved as sister (cp_nrDNA 100% PP 53% BS). The topology recovered indicates a subdivision of species attributed by Epling (1949) to section Cyanocephalus. The fourth clade, 'Trichocladus' (figure 5, 100% PP 70% BS), comprises only Hyptis sections Leucocephala Epling and Trichosphaeria Benth.

DISCUSSION Almost all regions employed in this paper were previously used for molecular phylogenetics of Labiatae. The plastid TrnD-T spacer, partial matK and nuclear ITS were used by Bramley (2009) for Callicarpa L., while trnL-F was used by Paton & al., 2004 for tribe Ocimeae, and Zhong & al., (2010), together with ITS, for Isodon and allies. The plastid trnS-G was more recently used by Yuan & al., (2010) for a phylogeny of Clerodendrum L. The nuclear ITS was the region most frequently used, e.g. Jamzad & al., (2003) for Nepeta L., and Bräuchler & al. (2010) for Cunila L. and allies. The current study presents for the first time the use of nuclear region ETS within Labiatae. Considering the rates of variation and the phylogenetic signal which resulted in better support for recovered clades, ETS outperformed ITS, and also the 25 combination of all plastid data (Table 2). Comparing the values obtained in the matrix from our combined analysis and those found by van den Berg & al. (2009) in Laeliinae Benth. (Orchidaceae) and Zhong & al., (2010) with Isodoninae, subfamily Nepetoideae - Labiatae), similar values of ITS and trnL-F variation ratio were found between Hyptidinae and Isodon and allied whereas Hyptidinae had significantly (c. 50%) less variation ratio compared with the Laeliinae (Orchidaceae). The low sequence divergence in contrast with high morphological variation found in Hyptidinae is not an exception within subfamily Nepetoideae (Labiatae). Similar results were found by Bräuchler & al., (2010). The low rate of variation suggests a different level of nucleotide substitutions (at least in the DNA dataset analysed) or most probably rapid speciation and diversification in Hyptidinae.

Biogeography The sister group of Hyptidinae possibly is the Asiatic genus Hanceola, as indicated by Zhong & al., (2010). However, once Hanceola was not sampled here in a more complete analysis, its placement could not be confirmed. Unexpectedly, the clade ‘Leptohyptis’, which is endemic to the Northeastern region of Brazil, has emerged as the most basal lineage within Hyptidinae. Thus, there is no easy explanation for the geographic distance between Hanceola and 'Leptohyptis'. Despite this, Hanceola have bracteoles in the inflorescences, much like Hyptidinae, but lack the plesiomorphic characters found in the external clades of Hyptitinae. For example, Hanceola has cymes 3-flowered or cymes reduzed to a single flower, zygomorphic calyx and large leaves with long petiole, whereas none of this characters seems to be plesiomorphic in Hyptidinae. The basalmost lineages in Hyptidinae, such as clade 'Leptohyptis' and 'Oocephalus' have cymes dense-flowered and calyx actinomorphic. The geographic distribution could be easily explained by a Boreotropical pattern (Lavin & al. 2004) if any of these lineages in Hyptidinae reached Mexico or the Caribeean, but it is possible they might have become extinct in these areas. Several monophyletic groups within Hyptidinae are endemics to the STDF regions, e.g. Rhaphiodon, Hyptis section Leucocephala, section Mesosphaeria subsection Eriocephalae, and also the clades ‘Leptohyptis’ and ‘Fruticosae alliance’. Sometimes the disjunction between closely related species has explanation through distribution of STDF areas, e.g. Hyptis pedalipes Griseb. (from ) and Hyptis rugosa Benth. (Brazil) both on the base of the 'Cyanocephalus' clade, and also H. irwinii and H. eriocephala (Hyptis section Mesosphaeria subsection 26

Eriocephalae). Furthermore, some groups such as the clade ‘Cyanocephalus’ show geographic pattern in their distribution which indicate a single event of migration giving rise to species groups in the savannas. However, the low resolution of ITS analysis together with relatively incomplete sampling within other clades does not allow a similar evaluation therein. This pattern of distribution compared with phylogeny suggests the primary distribution of Hyptidinae throughout STDF and secondary events of diversification into the savanna biome. We also speculate the possibility that savannas might have been colonized from wet places in the margins along water streams and latter the appearance of adaptations to fire conditions such as xylopodia allowed the occurrence in dry savannas.

Traditonal taxonomy vs phylogeny on Hyptidinae Based on the recovered trees, the set of characters which usually define genera and infrageneric categories at the traditional classification in Hyptidinae correspond to true synapomorphies. However, there is a remarkable exception of the genus Hyptis, which was demonstrated here to be delimited by a set of plesiomorphic features within Hyptidinae. Morphologically Hyptis is defined including a wide range of inflorescence variation, which can vary from fairly lax, usually compound cymes from the axils of foliaceous bracts, to an often paniculate synflorescence of capitula like. The capitulum like inflorescence in Hyptidinae is composed of very contracted cincinni, with the structures almost completely lost, surrounded by an involucre of bracteoles, which are derived from the bracteoles of each flower being displaced to the underside of the cincinnus axis, while the individual flowers are held erect, on the upper side of the cincinnus axis. On contraction the bracteoles take up a position on the outside of the capitulum, with the flowers in the centre on a small receptacle, thus forming an involucre. Unlike in the true capitulum found in Asteraceae, the flowers may retain a minute pedicel, usually less than 0.5 mm long. Apart from inflorescence characters, those of the fruiting calyx also can vary, especially the form of the tube and the shape and consistency of the calyx lobes. A persistent part of the style after the major part fell, called stylopodium, was used by Harley (1988) as diagnostic feature of Eriope, Hyptidendron and some sectional delimitation within Hyptis. Considering the topology of the trees, the presence of stylopodium seems to have occurred perhaps twice in the Laxiflorae clade, once at base of the ‘Hyptidendron’ subclade, and once at the base of the ‘Eriope’ clade, after the separation of Eriopidion strictum (Benth.) Harley. ‘Eriope’ clade is sister to the ‘Hypenia’ clade, which have together with some Eriope species, the 27 fistulose, waxy stems and the often uniflorous cymes, the calyces inverted at the base by a pair of usually inconspicuous cymules, as well as typically a shared chromosome number, but not the stylopodium. These genera are better distinguished by the presence (Eriope) or absence (Hypenia) of the stylopodium. Eriope was recovered as a monophyletic group with the exclusion of Eriope simplex, this latter species appears at the base of clade 'Hypenia'. However, an examination of its gynoecium shows that it should more correctly be treated as a Hypenia. The presence of a stylopodium is also recorded in the ‘Hyptis’ clade, characterized by having the flowers in compact, involucrate capitula. However, the clade is not sufficiently resolved internally to decide how often the stylopodium evolved. It appears consistently in the large section Eriosphaeria, which possibly comes out monophyletic in this tree (figure 1) if section Pachyphyllae is included and sister to Hyptis pulegioides, the only species of section Apodotes to be analysed at the cp_nrDNA_g. In the ITS analysis H. pulegioides Pohl ex Benth. does not come together with other species of section Apodotes, although the sampling and resolution was still incomplete. Section Apodotes is characterized by the presence of a stylopodium, although in H. pulegioides this is greatly reduced, and is vestigial. Another feature of the clade 'Hyptis' could be a distinctive polen. Rudall (1980b) divided the pollen in Hyptidinae in three types A, B, and C. Considering the phylogenetic trees, the ancestral-like pollen of Hyptidinae seems to be type B. Type C possible has emerged twice in Hyptidinae, the first time in clade 'Hyptis' subclade 'Hyptis', which also include Peltodon (as traditionally recognized), and a second time independently in the basal clades of ‘Laxiflorae’, for Rhaphiodon and clade 'Gymneia'. The pollen type A possibly has emerged only once in ‘Laxiflorae’, but further studies are needed. Of the remaining clades shown in the combined ITS + ETS tree (figure 3), one brings together the species which do not have flowers arranged in a capitulum, and is composed of parts of both sections Mesosphaeria and Polydesmia, now shown here to be polyphyletic. Certain species have for long been known to be problematic in deciding to which of the two sections they belong, and it is interesting to note that these species seem to fall into the clade now under consideration, although further study on a larger sample, combined with detailed morphological studies will be needed to provide further corroboration. The clade 'Hyptis' contain only groups in which the flowers are arranged in involucrate capitula and comprise the genus Peltodon. The results from different analyses are, in some cases, conflicting. Wider sampling may clarify the picture, but even now, some conclusions can be drawn. Sections Apodotes is not fully resolved, 28 with H. pulegioides not clustering with two other species of this section, in a clade, while section Muellerohyptis Briq. and section Cyrta Benth. appear to be related, though a larger sample is required. The section Hyptis is traditionally separated into three subsections (Epling 1936): subsection Lavandulaceae Benth. (syn. Eriodontes Benth.), subsection Marrubiastrae Benth. and subsection Hyptis. In at least one tree, section Lavandulaceae and Marrubiastrae form a clade, while section Hyptis is composed of two sister clades, one including H. capitata Jacq., the generic type, the other composed of a closely related group of species, see Harley (2003), with Hyptis lantanifolia Poit., H. bahiensis Harley, H. minutifolia Griseb. and H. ammotropha Wright ex Griseb. Section Xylodontes (Benth.) Epling is not supported as monophyletic, with subsection Axillares (Benth.) Epling forming a separate clade, but the evidence is not well supported, and the group requires further study. Of interest is the inclusion of Hyptis alutacea Pohl ex Benth. in the clade composed of species from Xylodontes subsection Paniculatae Epling. This species, together with H. subviolacea Briq. had been placed in section Hyptis subsection Lavandulaceae. The possession of flowers with stylopodium in both these species, suggested their removal to Xylodontes subsection Paniculatae (Harley, unpublished). The independent sectional delimitation for section Eriosphaeria, Induratae and Pachyphyllae is not supported in this analysis, although together these sections form a well supported clade. Section Pachyphylla had previously been included as a subsection of section Eriosphaeria, but was separated by Harley (1986), on the basis of distinctive habit and some floral characters. Regarding section Induratae, their close relationship with section Eriosphaeria has already been demonstrated by Rudall (1980a), using anatomical characters of the leaf. Another species, morphologicaly considered anomalous in its present position in clade ‘Hypenia’, is Hypenia vitifolia, which has an inflorescence composed of few-flowered, pedunculate cymes. In all trees, it appears to fall outside the ‘Hypenia’ clade, and indeed more close to Hyptidendron, although its position is not well supported. However, the presence of fistulose, waxy stems similar to those of Hypenia and Eriope, would suggest a relationship here, though it has a different basic chromosome number. Phylogenetically, Hypenia vitifolia emerged in a politomy with 'Hyptidendron' internal groups (PP 93% BS 16% figure 5), forming the clade 'Hyptidendron'. Despite, Hyptidendron was not recovered as a monophyletic delimitation we presume its monophyly by several morphological characters e.g. the usually strongly woody habit with some species forming trees, a distinct cymose, often lax, inflorescences of large to 29 medium-sized flowers and also by the presence of conspicuous stylopodium in the flower. None of these characters is presented in Hypenia vitifolia. Although we have included four plastid regions and two nuclear, we did not find strong support for several 'Laxiflorae' internal subclades, including Hyptis suaveolens and Rhaphiodon. Both species emerged forming a clade with BS 65% and 62% (parsimony analyses nDNA and combined dataset respectively) (data not shown). However, the same dataset when was analyzed using the Bayesian inference, H. suaveolens emerged coming together with other species of section Mesosphaeria (PP 70% figure 5). The disagreement between PP and BS results together with a morphological assessments, suggests here a weak effect of long-branch attraction (LBA) (LBA was revised by Bergsten, 2005) in the parsimony inference. Nevertheless, the exclusion of one or both species does not change the general topology, but raise the bootstrap support of Laxiflorae clade up to 62% to 90% MP (data not shown).

Variability vs Reticulated evolution. In Labiatae, the reticulated evolution was discussed by Bräuchler & al. (2010) in his study of Cunila and allies (Labiatae tribe Nepetoideae). Also, Harley provided evidence of hybridization between related taxa, e.g. Hyptis section Pachyphyllae species in Hyptidinae (Harley 1986) and several specimens of Eriope have been reported as natural hybrids (R.M. Harley comm. pess.). Other evidence of hybridization on Hyptidinae evolution is the wide range of chromosome numbers (Harley & Heywood 1992). Basically, Hyptidinae have 2n=30 or 32, which was considered tetraploid by Harley & Heywood (1992). Events of dysploidy are not infrequent (e.g. H. cuniloides Epling 2n=20, H. martiusii Benth., 2n=24, 28 or 32) and following the phylogeny topology (figure 1 and 3), this events appears scattered throughout in the subtribe Hyptidinae. The same occurs with polyploidy event which appears in not related Hyptidinae lineages (e.g Hyptis villosa Pohl ex Benth. (2n=96) (clade Hyptis), H. floribunda Briq. (clade ‘Laxiflorae’ subclade ‘Condea’), Hyptidendron canum (Pohl ex Benth.) Harley (2n=64) (clade ‘Laxiflorae’, subclade ‘Hyptidendron’). A remarkable exception is the clade ‘Laxiflorae’, where the dysploidy events seems to be a sinapomorphic condition of the internal clade which excludes clade 'Gymneia' (2n=32). The clades 'Eriope' and 'Hypenia' share chromosomes number (2n)=20 (except Hypenia salzmannii (Benth.) Harley (2n)=12). Are reported for other species of Laxiflorae similar patterns, e.g. Hyptis suaveolens, H. fastigiata and Hypenia vitifolia share (2n=)28, Rhaphiodon echinus (2n=)26 and H. sidifolia (L'Hér.) Briq., H. irwinii Harley and (clade 'Laxiflorae' subclade 'Mesosphaerum') have (2n)=16 30

(following Harley & Heywood (1992)). Despite these works, we do not found any strong supported disagreement between nuclear and plastid datasets, although the combined plastid dataset is not as well resoved as good as the nuclear dataset. Therefore it seems that reticulate evolution may not have played a major role in the evolution of Hyptidinae as it could have been envisioned.

Taxonomic implications The phylogeny recovered in this study has strong taxonomic implications in the generic delimitation within Hyptidinae. In this traditional circumscription Hyptis is paraphyletic and there are nine different lineages when Peltodon is included within Hyptis. A monophyletic delimitation of Hyptis, without any segregation, would require the synonymization of all other genera traditionally included in Hyptidinae under a single genus. An alternative, would be the segregation of new genera, leaving Hyptis with a more narrow delimitation. Considering the morphology and the traditional classification the further segregation seems to be more reasonable solution then the single-genus circumscription. Thus, the independent lineages found in the tree topology which correspond to Epling's sectional (sometimes subsectional) delimitation of Hyptis should be used for to generic delimitation. These are: 1. Hyptis section Polydesmia subsection Tubulosae (Briq.) Harley, 2. Hyptis section Polydesmia subsection Glomeratae and Oocephalus, 3. Hyptis section Cyanocephalus, 4. Hyptis section Trichosphaeria, 5. Hyptis section Leucocephala, 6. Hyptis section Gymneia, 7. Hyptis sections Minthidium, Umbellatae and Laniflorae. 8. Hyptis section Mesosphaeria stricto sensu (s.s.) 9. Hyptis fruticosa and H. cuniloides alliance. 10. Hyptis s.s. Thus, each of these lineages would correspond to a morphological delimitation. Furthermore, other minor changes seem to be needed in order to provide a monophyletic delimitation and morphological recognizable group: the sinonimization of (11.) Hyptis section Latiflorae under genus Hyptidendron, the transfer of Eriope simplex to Hypenia and finally a monotyptic generic delimitation for Hypenia vitifolia, which would require a new genus. A complete generic redelimitation is carried out in next paper Pastore & al., (chapter II of this thesis.).

Perspectives for future work in Hyptidinae Although we have included a nearly complete sampling in Hyptidinae of genera and infrageneric taxa, two monotypic sections of Hyptis were not sampled: Hyptis sections Rhytidea 31 and Hilaria. Hyptis rhytidea Benth., included within homonymous section, occurs in dry forest areas of Mexico, morphologically seems to be associated with clade 'Condea', but it requires more investigation. The second, Hyptis lobata A.St.-Hil. ex Benth. (Hyptis section Hilaria) is only known from the type collection. Inicially, Bentham (1833) has included this species in a morphologically heterogeneous section Xanthiophoea Mart. ex Benth., together with Hyptis sideritis Mart. ex Benth. (= Rhaphiodon echinus) and Hyptis lagenaria A.St.-Hil. ex Benth. (the latter species is now included in Hyptis section Apodotes by Epling (1949). Like Hyptis rhytidea, H. lobata was transferred to a monospecific section by Epling (1949). Morphologically, H. lobata resembles the species included in Hyptis section Cyrta, which probably is not monophyletic, thus its placement is inconclusive. Considering the DNA collection already available at Universidade Estadual de Feira de Santana (UEFS) associated with the experience acquired with laboratory techniques for herbarium DNA extraction for Labiatae, it is expected a better resolution mainly for infrageneric clades into further research in Hyptidinae. Regarding the interesting correlation between geographic distribution and clade delimitation, briefly discussed here, we expect that a more complete phylogeny (adding more samples and DNA regions) of Hyptidinae associated with clade age estimation could be useful example in further studies biogeography pattern in American continent.

32

LITERATURE CITED

Baldwin, B.G. & Markos, S. 1998. Phylogenetic Utility of the External Transcribed Spacer (ETS) of 18S-26S rDNA: congruence of ETS and ITS Trees of Calycadenia (Compositae). Molecular Phylogenetics and Evolution 10: 449–463. Beardsley, P.M. & Olmstead, R.G. 2002. Redefining Phrymaceae: Placement of Mimulus, tribe Mimuleae, and Phryma. American Journal of Botany 89: 1093–1102. Bentham, G. 1833. Labiatarum Genera et Species. Ridgeway & Sons, London. Bentham, G. 1848. Labiatae Pp. 83−138. in: Candolle, A.P. de (ed.), Prodromus Systematis Naturalis Regni Vegetabilis, vol. 12. Masson, Paris. Bergsten, J. 2005. A review of long-branch attraction. Cladistics 21: 163–193. Bramley, G.C. 2009. The genus Callicarpa (Lamiaceae) on Borneo. Botanical Journal of the Linnean Society 159: 416–455. Bräuchler, C., Meimbergc, H. & Heubl, G. 2010. Molecular phylogeny of Menthinae (Labiatae, Nepetoideae, Mentheae) – Taxonomy, biogeography and conflicts. Molecular Phylogenetics and Evolution 55: 501–523. Briquet, J. 1897. Labiatae Pp. 333−347. in: Engler, H.G.A. & Prantl, K.A.E. (ed.), Die Natürlichen Pflanzenfamilien, vol. 4(3a). Wilhelm Engelmann, Leipzig. Cuénoud, P., Savolainen, V., Chatrou, L.W., Powell, M., Grayer, R.J. & Chase, M.W. 2002. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. American Journal of Botany 89: 132–144. Demesure, B., Sodzi, N. & Petit, R. J. 1995. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology 4: 129–131. Doyle, J.J. & Doyle, J.L. 1987. A rapid DNA isolation method for small quantities of fresh tissues. Phytochemical Bulletin of the Botanical Society of America 19: 11–15. Drummond, A.J., Ashton, B., Cheung, M., Heled, J., Kearse, M., Moir, R., Stones-Havas, S., Thierer, T. & Wilson, A. 2009. Geneious v.4.7, Avaiable: http://www.geneious.com El-Gazzar, A. & Rabei, S. 2008. Taxonomic assessment of five numerical methods and its implications on the classification of Hyptis s.l. (Labiatae). International Journal of Botany 4: 85–92. 33

Epling, C.C. 1936. Synopsis of the South American Labiatae. Feddes Repertorium Specierum Novarum Regni Vegetabilis 85: 1−341. Epling, C.C. 1949. Revision del Género Hyptis. Revista del Museo de La Plata. Seccion Botanica 7: 1−497. Farris, J.S., Kallersjo, M., Kluge, A.G. & Bult, C. 1994. Testing significante of congruence. Cladistics 10: 315–319. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. Harley, R.M. 1976. A Review of Eriope and Eriopidion (Labiatae). Hooker's Icones Plantarum 38: 1−107. Harley, R.M. 1986. Observations on a hybrid population of Hyptis cruciformis & H. pachyphylla in Brazil. Notes on new Word Labiatae: X. Kew Bulletin 41: 1007–1015. Harley, R.M. 1988. Revision of generic limits in Hyptis Jacq. (Labiatae) and its allies. Botanical Journal of the Linnean Society 98: 87−95. Harley, R.M. 2003. Hyptis bahiensis Harley: a new species of Labiatae from Brazil. Kew Bulletin 58: 479–483. Harley, R.M. & Heywood, C.A. 1992. Chromosome Numbers in Tropical American Labiatae Pp: 211–246. in: Harley, R.M. & Reynolds, T. (eds.). Advances in Labiatae Sciences. Royal Botanic Garden, London. Jamzad, Z., Chase, M.W., Ingrouille, M., Simmonds, M.S.J. & Jalili, A. 2003. Phylogenetic relationships in Nepeta L. (Lamiaceae) and related genera based on ITS sequence data. Taxon 52: 21–32. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. 2007. Clustal W and Clustal X version 2.0, Bioinformatics 23: 2947−2948. Müller, K. 2005. SeqState - primer design and sequence statistics for phylogenetic DNA data sets. Applied Bioinformatics 4: 65–69. Paton, A.J., Springate, D., Suddee, S., Otieno, D., Grayer, R.J., Harley, M.M., Willis, F., Simmonds, M.S., Powell, M.P. & Savolainen, V. 2004. Phylogeny and evolution of basils and allies (Ocimeae, Labiatae) based on three plastid DNA regions. Molecular Phylogenetics & Evolution 31: 277–299. 34

Pennington, R.T. , Lavin, M. & Oliveira-Filho, A. 2009. Woody Plant Diversity, Evolution and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests. Annual Review of Ecology, Evolution, and Systematics 40: 437–457. Posada D. 2008. jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution 25: 1253–1256. Ronquist, F. & Huelsenbeck, J. P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. Rudall, P. 1979. Leaf and twig anatomy of Eriope, a xeromorphic genus of Labiatae, Botanical Journal of the Linnean Society 78: 157−180. Rudall, P. 1980a. Leaf Anatomy of the subtribe Hyptidinae (Labiatae). Botanical Journal of the Linnean Society 80: 319−340. Rudall, P. 1980b. Pollen morphology in the subtribe Hyptidinae (Labiatae). Kew Bulletin 35: 453−458. Rudall, P. 1981a. Flower anatomy of the subtribe Hyptidinae (Labiatae). Botanical Journal of the Linnean Society 78: 157−180. Rudall, P. 1981b. Woody anatomy in the Hyptidinae (Labiatae). Kew Bulletin 35: 735−741. Rudall, P. 1986. Leaf anatomy of Hyptis section Pachyphyllae and related species. Kew Bulletin 41: 1017−1025. Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W., Miller, J., Siripun, K.C., Winder, C.T., Schilling, E.E. & Small, R.L. 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92:142−166. Shaw, J., Lickey, E.B., Schilling, E.E. & Small, R.L. 2007. Comparing of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperm: the tortoise and the hare III. American Journal of Botany 94: 275−288. Simmons, M.P. & Ochoterena, H. 2000. Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49: 369–381. Sun, Y., Skinner, D.Z., Liang, G.H. & Hulbert, S.H. 1994. Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theoretical and Applied Genetics 89: 26–32. Swofford, D.L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0b10. Sinauer Associates, Sunderland, Massachusets. 35

Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. 1991. Universal primers for amplifications of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105–1109. van den Berg, C., Higgins, W.E., Dressler, R.L., Whitten, W.M., Soto-Arenas, M.A. & Chase, M.W. 2009. A phylogenetic study of Laeliinae (Orchidaceae) based on combined nuclear and plastid DNA sequences. Annals of Botany 104: 417–430. White, T.J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315–322. in: Innis, M., Gelfand, D., Sninsky, J., White, Y. (eds). PCR protocols: a guide to methods and applications. Academic Press, San Diego. Yuan, Y. W., Mabberley, D. J., Steane, D. A. & Olmstead, R. G. 2010. Further disintegration and redefinition of Clerodendrum (Lamiaceae): Implications for the understanding of the evolution of an intriguing breeding strategy. Taxon 59: 125–133. Zhong, J.J., Li, L., Conran, J.G. & Li, H.-W. 2010. Phylogeny of Isodon (Schrad. ex Benth.) Spach (Lamiaceae) and related genera inferred from nuclear ribosomal ITS, trnL–trnF region, and rps16 intron sequences and morphology. Systematic Botany 35: 207–219.

36

Table 3. Codes used for DNA datasets analysed in this study.

ITS Matrix ITS region (without indels coded) 218 ITS_g Matrix ITS region + indels coded 218 ETS Matrix ETS region (without indels coded) 87 ETS_g Matrix ETS region + indels coded 87 nrDNA Matrix ETS and ITS combined (without indels coded) 78 nrDNA_g Matrix ETS and ITS combined + indels coded 78 cpDNA Matrix including all plastid regions combined (without indels coded) 77 cpDNA_g Matrix including all plastid regions combined + indels coded 77 cp_nrDNA Matrix including all plastid and nuclear regions combined (without 70 indels coded) cp_nrDNA_g Matrix including all plastid, nuclear regions + indels coded 79 gaps (cp+nr) Matrix including only indels coded from both datasets 79

Table 4. PCR primers used in this study.

Sequence 3' to 5' Reference matK 1326R TCT AGC ACA CGA AAG TCG AAG T Cuénoud & al., 2002 matK 390F CGA TCT ATT CAT TCA ATA TTT Cuénoud & al., 2002 ETS-B ATA GAG CGC GTG AGT GGT G Beardsley & Olmstead, 2002 ETS 18S ACT TAC ACA TGC ATG GCT TAA TCT Baldwin & Markos, 1998 ITS 17SE ACG AAT TCA TGG TCC GGT GAA GTG TTC G Sun & al., 1994 ITS 26SE TAG AAT TCC CCG GTT CGC TCG CCG TTA Sun & al., 1994 ITS 2 GCT GCG TTC TTC ATC GAT GC White & al., 1990 ITS 3 GCA TCG ATG AAG AAC GCA GC White & al., 1990 trnD GUC F ACC AAT TGA ACT ACA ATC CC Demesure & al., 1995 trnT GGU CTA CCA CTG AGT TAA AAG GG Demesure & al., 1995 trnY CCG AGC TGG ATT TGA ACC A Shaw & al., 2005 trnL-F C CGA AAT CGG TAG ACG CTA CG Taberlet & al., 1991 trnL-F D GGG GAT AGA GGG ACT TGA AC Taberlet & al., 1991 37 trnL-F E GGT TCA AGT CCC TCT ATC CC Taberlet & al., 1991 trnL-F F AAT TGA ACT GGT GAC ACG AG Taberlet & al., 1991 trnS GCU AGA TAG GGA TTC GAA CCC TCG GT Shaw & al., 2007 trnG UUC GTA GCG GGA ATC GAA CCC GCA TC Shaw & al., 2007

38

Figure 1. Phylogenetic Analyses using ITS_g dataset. 80% Majority rule consenso tree from 8 000 trees obtained from 107 generations runs of MCMC excluding the burn-in fase. Numbers above branches are posterior probabilities (PP) and those below are boostrap support values (>50%), ("*" indicates 100% PP of support). 39

40

Figure 2. Phylogenetic Analyses using ETS_g dataset. 80% Majority rule consenso tree from 8 000 trees obtained from 107 generations runs of MCMC excluding the burn-in fase. Numbers above branches are posterior probabilities (PP) and those below are boostrap support values (>50%), ("*" indicates 100% PP of support). 41

Figure 3. Phylogenetic Analyses using nDNA_g dataset. 80% Majority rule consenso tree from 8 000 trees obtained from 107 generations runs of MCMC excluding the burn-in fase. Numbers above branches are posterior probabilities (PP) and those below are boostrap support values (>50%). "*" indicates 100% PP of support and "←" indicates species which were not included nrDNA_g confronted with cpDNA_g (figure 4). 42

Figure 4. Phylogenetic Analyses using cpDNA_g (left) compared with nrDNA_g (right). 80% Majority rule consenso tree from 8 000 trees obtained from 107 generations runs of MCMC excluding the burn-in fase. Numbers above branches are posterior probabilities (PP) and those below are boostrap support values (>50%). "*" indicates 100% PP of support. 43

Figure 5. Phylogenetic Analyses using cp_nrDNA_g dataset. 80% Majority rule consenso tree from 8 000 trees obtained from 107 generations runs of MCMC excluding the burn-in fase. Numbers above branches are posterior probabilities (PP) and those below are boostrap support values (>50%), ("*" indicates 100% PP of support). 44

Appendix 1. Specimens or genbank references for vouchers:

Asterohyptis mociniana (Benth. ) Epling – Mexico, J.J. Balleza C. 11620 (MEXU); Asterohyptis seemannii (A.Gray) Epling – Mexico, G. Flores 1694 (MEXU); Asterohyptis stellulata (Benth.) Epling – Mexico, J. Calonico-Soto, s.n. (MEXU #20828); Callicarpa giraldii Hesse ex Rehder – FJ593347; Dauphinea brevilabra Hedge – Madagascar, H. Rauth 2878 (K); Elsholtzia ciliata (Thunb.) Hyl. – FJ593349; Eriope blanchetii (Benth.) Harley – Brazil, Bahia, D.B.S.O. Cardoso 2107 (HUEFS); Eriope complicata A.St.-Hil. ex Benth. – Brazil, Goiás, J.F.B. Pastore et al. 2305 (HUEFS); Eriope confusa Harley – Brazil, Bahia, R.M. Harley et al. 55620 (HUEFS); Eriope crassipes Benth. – Brazil, Goiás, J.F.B. Pastore & E.A. Pastore 2246 (HUEFS); Eriope cristalinae (Harley) Rizzini – Brazil, Goiás, J.F.B. Pastore & R.M. Harley 2268 (HUEFS); Eriope exaltata Harley – Brazil, Bahia, R.M. Harley et al. 55465 (HUEFS); Eriope filifolia Benth. – Brazil, Minas Gerais, R.M. Harley et al. 55150 (HUEFS); Eriope foetida A.St.-Hil. ex Benth. – Brazil, Goiás, J.F.B. Pastore & E. Suganuma 1896 (HUEFS); Eriope glandulosa (Harley) Harley – Brazil, Bahia, J.F.B. Pastore & A.L. Cortês 1928 (HUEFS); Eriope glandulosa x hypoleuca – Brazil, Minas Gerais, R.M. Harley et al., 55123-A (HUEFS); Eriope hypenioides Mart. ex Benth. – Brazil, Bahia, J.F.B. Pastore et al. 2144 (HUEFS); Eriope hypoleuca (Benth.) Harley – Brazil, Minas Gerais, R.M. Harley et al. 55175 (HUEFS); Eriope latifolia (Mart. ex Benth.) Harley – Brazil, Bahia, R.M. Harley et al. 55630 (HUEFS); Eriope latifolia (Mart. ex Benth.) Harley – DQ787416; Eriope macrostachya Mart. ex Benth. var. hypoleuca Benth. – Brazil, Minas Gerais, R.M. Harley et al. 55162 (HUEFS); Eriope obovata Epling – Brazil, Bahia, J.F.B. Pastore et al. 2193 (HUEFS); Eriope simplex (A.St.-Hil. ex Benth.) Harley – Brazil, Goiás, J.F.B. Pastore et al. 1866 (HUEFS); Eriope sincorana Harley – Brazil, Bahia, J.F.B. Pastore & H.N. Brandão 2203 (HUEFS); Eriope sp. nov. – Brazil, Bahia, J.F.B. Pastore & H.N. Brandão 2158 (HUEFS); Eriope velutina Pohl ex Benth. – Brazil, Goiás, J.F.B. Pastore & M. Aquino 1755 (HUEFS); Eriopidion strictum (Benth.) Harley – Brazil, Piauí, R.M. Harley 55867 (HUEFS); Hanceola exserta Y.Z.Sun ex C.Y.Wu – FJ593350; Hanceola sinensis (Hemsl.) Kudo – FJ593351; Hanceola sinensis (Hemsl.) Kudo – FJ593352; Hanceola sinensis (Hemsl.) Kudo – FJ593353; Hypenia aristulata (Epling) Harley – Brazil, Tocantins, G. Pereira-Silva et al. 10592 (CEN); Hypenia brachystachys (Pohl ex Benth.) Harley – Brazil, Goiás, J.F.B. Pastore & E. Suganuma 1911 (HUEFS); Hypenia calycina (Pohl ex Benth.) Harley – Brazil, Goiás, J.F.B. Pastore 28 (HUEFS); Hypenia densiflora (Pohl ex Benth.) Harley – Brazil, Goiás, J.F.B. Pastore & E. Suganuma 1919 (HUEFS); 45

Hypenia macrosiphon (Briq.) Harley – Bolivia, J.R.I. Wood & R.M. Harley 18211 (K); Hypenia marifolia (Benth.) Harley – Brazil, Goiás, J.F.B. Pastore et al. 1820 (HUEFS); Hypenia salzmannii (Benth.) Harley – Brazil, Bahia, R.M. Harley et al. 55575 (HUEFS); Hypenia subrosea (Harley) Harley – Brazil, Goiás, J.F.B. Pastore et al. 1801 (HUEFS); Hypenia reticulata (Mart. ex Benth.) Harley – Brazil, Minas Gerais, R.M. Harley et al. 55131 (HUEFS); Hypenia vitifolia (Pohl ex Benth.) Harley – Brazil, Bahia, J.F.B. Pastore & H.N. Brandão 2180 (HUEFS); Hyptidendron arboreum (Benth.) Harley – Bolivia, J.R.I. Wood & R.M. Harley18209 (K); Hyptidendron canum (Pohl ex Benth.) Harley – Brazil, Minas Gerais, R.M. Harley et al. 55165 (HUEFS); Hyptidendron caudatum (Epling & Játiva) Harley – Brazil, Goiás, J.F.B. Pastore et al. 1785 (HUEFS); Hyptidendron glutinosum (Benth.) Harley – Brazil, Mato Grosso, L.P. de Queiroz et al. 10431 (HUEFS); Hyptidendron rondonicum (Harley) Harley – Brazil, Mato grosso, L.P. de Queiroz et al. 10563 (HUEFS); Hyptidendron sp. – Brazil, Minas Gerais, R.M. Harley et al. 55169 (HUEFS); Hyptidendron sp. nov. – Brazil, Goiás, J.F.B. Pastore & E. Suganuma 1899 (HUEFS); Hyptidendron vauthieri (Briq.) Harley – Brazil, Minas Gerais, R.M. Harley et al. 55176 (HUEFS); Hyptidendron vepretorum (Benth.) Harley – Brazil, Minas Gerais, R.C. Forzza et al. 107 (K); Hyptis alata (Raf.) Shinners – DQ667346; Hyptis albida Kunth – Mexico, Hidalgo, G. Cruz U. 2229 (K); Hyptis althaeifolia Pohl ex Benth. – Brazil, Goiás, J.F.B. Pastore et al. 2369 (HUEFS); Hyptis alutacea Pohl ex Benth. – Brazil, Goiás, T.B. Cavalcanti et al. 3600 (HUEFS); Hyptis amaurocaulos Briq. – Brazil, Minas Gerais, R.M. Harley et al. 55160 (HUEFS); Hyptis ammotropha Wright ex. Griseb. – Cuba, R.M. Harley et al. 27902 (K); Hyptis ampelophylla Epling – Brazil, Distrito Federal, J.F.B. Pastore et al. 1877 (HUEFS); Hyptis argyrophylla Harley – Brazil, Bahia, R.M. Harley et al. s.n. (HUEFS); Hyptis asperifolia Standl. – Honduras, R.M. Harley et al. s.n. (K [#3376]); Hyptis atrorubens Poit. – Brazil, Bahia, J.F.B. Pastore 2114 (HUEFS); Hyptis bahiensis Harley – Brazil, Bahia, J.F.B.Pastore 2610 (HUEFS); Hyptis balansae Briq. – Paraguay, E.M. Zardini et al. 34952 (HUEFS); Hyptis brevipes Poit. – Brazil, Amazonas, A.M. Giulietti s.n. (HUEFS); Hyptis brightonii ined. – Brazil, Bahia, M. Machado 253 (HUEFS); Hyptis caespitosae A.St.-Hil. ex Benth.– Brazil, Paraná, T.B. Cavalcanti et al. 3673 (CEN); Hyptis calida Mart. ex Benth.– Brazil, Bahia, J.F.B. Pastore & H.N. Brandão 2151 (HUEFS); Hyptis capitata Jacq. – Thailand, S. Suddee & P. Puudjaa 1120 (K); Hyptis caprariifolia Pohl ex Benth. – Brazil, Goiás, J.F.B. Pastore & E. Suganuma 2575 (HUEFS); Hyptis carpinifolia Benth. – Brazil, Mato Grosso do Sul, V.J. Pott et al. 5598 (HUEFS); Hyptis carvalhoi Harley – Brazil, Bahia, J.F.B. Pastore & H.N. Brandão 2181 (HUEFS); Hyptis colligata Epling & Játiva – Brazil, Goiás, J.F.B. Pastore et al. 1847 (HUEFS); Hyptis conferta Pohl ex Benth.– Brazil, Distrito Federal, J.F.B. Pastore et al. 1772 (HUEFS); Hyptis crassifolia Mart. ex Benth.– Brazil, Bahia, J.F.B. Pastore & H.N. Brandão 2147 (HUEFS); 46

Hyptis crinita Benth.– Brazil, Bahia, R.M. Harley et al. 55631 (HUEFS); Hyptis cruciformis Epling– Brazil, Goiás, J.F.B. Pastore et al. 1803 (HUEFS); Hyptis cuneata Pohl ex Benth. – Brazil, Goiás, J.F.B. Pastore et al. 2280 (HUEFS); Hyptis cuniloides Epling– Brazil, Bahia, J.F.B. Pastore et al. 1935 (HUEFS); Hyptis digitata Harley– Brazil, Goiás, J.F.B. Pastore et al. 1791 (HUEFS); Hyptis ditassoides Mart. ex Benth.– Brazil, Minas Gerais, M.F.Cailó 06 (HUEFS); Hyptis dumetorum Morong – Paraguay, E.M. Zardini et al. 39582 (HUEFS); Hyptis elegans (Briq.) Briq. – , Corrientes, A. Schinini & R.M. Harley 36896 (CTES); Hyptis emoryi Torr. – AY506664; Hyptis eriocephala Benth. – Bolivia, Santa Cruz, J.R.I. Wood & R.M. Harley 18091 (K); Hyptis eriophylla Pohl ex Benth. var. coriifolia Benth.– Brazil, Goiás, J.F.B. Pastore et al. 1781 (HUEFS); Hyptis eriophylla Pohl ex Benth.var. eryophylla – Brazil, Minas Gerais, J.F.B. Pastore 1700 (HUEFS); Hyptis eximia Epling – Bolivia, Santa Cruz, J.R.I. Wood & R.M. Harley 16517 (K); Hyptis fallax Harley – Brazil, Minas Gerais, R.M. Harley et al. 55123 (HUEFS); Hyptis fasciculata Benth. – Brazil, Santa Catarina, R.M. Harley et al. 55885 (HUEFS); Hyptis ferruginosa Pohl ex Benth. – Brazil, Goiás, J.F.B. Pastore et al. 2354 (HUEFS); Hyptis floribunda Briq. – Argentina, Corrientes, A. Schinini & R.M. Harley 36853 (CTES); Hyptis fruticosa Salzm. ex Benth. – Brazil, Bahia, J.F.B. Pastore s.n. (HUEFS); Hyptis gardneri Briq. – Brazil, Minas Gerais, R.M. Harley et al. 55136 (HUEFS); Hyptis glomerata Mart. ex Schrank – Brazil, Goiás, J.F.B. Pastore et al. 2367 (HUEFS); Hyptis goyavensis A.St.-Hil. ex Benth – Brazil, Goiás, J.F.B. Pastore et al. 2353 (HUEFS); Hyptis hagei Harley – Brazil, Bahia, C. van den Berg et al. 1380 (HUEFS); Hyptis halimifolia Mart. ex Benth.– Brazil, Bahia, R.M. Harley et al. 55113 (HUEFS); Hyptis hassleri Briq.– Paraguay, E.M. Zardini et al. 51531 (HUEFS); Hyptis heterodon Epling – Brazil, Paraná, R.M. Harley et al. 55877 (HUEFS); Hyptis heterophylla Benth. – Brazil, Goiás, J.F.B. Pastore et al. 1867 (HUEFS); Hyptis hilari Benth.– Brazil, Distrito Federal, J.F.B. Pastore et al. 1770 (HUEFS); Hyptis hygrobia Briq.– Brazil, Mato Grosso, E.B. Souza et al. 1303 (HUEFS); Hyptis imbricatiformis Harley – Brazil, Goiás, J.F.B. Pastore et al. 1897 (HUEFS); Hyptis inodora Schrank – Brazil, Paraná, R.M. Harley et al. 55882 (HUEFS); Hyptis interrupta Pohl ex Benth. – Brazil, Goiás, J.F.B. Pastore et al. 2356 (HUEFS); Hyptis irwinii Harley – Brazil, Bahia, J.F.B. Pastore 2209 H.N.Brandão (HUEFS); Hyptis kramerioides Harley & J.F.B.Pastore – Brazil, Goiás, J.F.B. Pastore et al. 1824 (HUEFS); Hyptis lacunosa Pohl ex Benth.– Brazil, Minas Gerais, R.M. Harley et al. 55119 (HUEFS); Hyptis lanata Pohl ex Benth. – Brazil, Goiás, J.F.B. Pastore & R.M Harley 2272 (HUEFS); Hyptis lanceolata Poir. – Brazil, Bahia, J.F.B. Pastore & H.N. Brandão 2183 (HUEFS); Hyptis laniflora Benth. – Mexico, Baja California, G.P. Lewis 2034 (K); Hyptis lantanifolia Poit. – Bolivia, Santa Cruz, J.R.I. Wood & R.M. Harley 18105 (K); 47

Hyptis lappulacea Mart. ex Benth.– Brazil, São Paulo, I. Cordeiro & R.M. Harley 2804 (SP); Hyptis lavandulacea Pohl ex Benth. – Brazil, Goiás, R.M. Harley et al. 28570 (HUEFS); Hyptis leptostachys Epling – Brazil, Bahia, R.M. Harley et al. 55570 (HUEFS); Hyptis leucocephala Mart. ex Benth. – Brazil, Bahia, J.F.B. Pastore 2142 (HUEFS); Hyptis linarioides Pohl ex Benth. – Brazil, Distrito Federal, J.F.B. Pastore et al. 1762 (HUEFS); Hyptis longiflora Pohl ex Benth.– Brazil, Tocantins, G. Pereira-Silva 11670 (CEN); Hyptis lorentziana O.Hoffm. – Bolivia, Santa Cruz, J.R.I. Wood & R.M. Harley 18174 (K); Hyptis lutescens Pohl ex Benth. – Brazil, Goiás, J.F.B. Pastore et al. 1814 (HUEFS); Hyptis lythroides Pohl ex Benth. – Brazil, Distrito Federal, J.F.B. Pastore et al. 1879 (HUEFS); Hyptis macrostachys Benth. – Brazil, Bahia, J.F.B. Pastore et al. 2041 (HUEFS); Hyptis malacophylla Benth. – Brazil, Goiás, J.F.B. Pastore et al. 2394 (HUEFS); Hyptis marrubioides Epling – Brazil, Goiás, J.F.B. Pastore & E. Suganuma 2574 (HUEFS); Hyptis marrubioides Epling – Brazil, Minas Gerais, R.M. Harley et al. 55161 (HUEFS); Hyptis martiusii Benth. – Brazil, Bahia, J.F.B. Pastore et al. 1937 (HUEFS); Hyptis microphylla Pohl ex Benth. – Brazil, Bahia, J.F.B. Pastore & E. Suganuma 2117 (HUEFS); Hyptis microphylla Pohl ex Benth. – Brazil, Goiás, J.F.B. Pastore et al. 2341 (HUEFS); Hyptis minutifolia Griseb. – Cuba, Pinar del Rio, R.M. Harley 27910 (K); Hyptis monticola Mart. ex Benth. – Brazil, Minas Gerais, R.M. Harley et al. 55137 (HUEFS); Hyptis muelleri Briq. – Paraguay, Dept. Caaguazú, R.M. Harley et al. s.n. (K); Hyptis multiflora Pohl ex Benth. – Brazil, Bahia, R.M. Harley et al. 55725 (HUEFS); Hyptis mutabilis (Rich.) Briq.– Brazil, Minas Gerais, R.M. Harley et al. 55159 (HUEFS); Hyptis nivea Epling – Brazil, Goiás, J.F.B. Pastore 1798 et al. (HUEFS); Hyptis nubicola Harley – Brazil, Bahia, R.M. Harley et al. 54933 (HUEFS); Hyptis nudicaulis Benth. – Brazil, Distrito Federal, J.F.B. Pastore et al. 1769 (HUEFS); Hyptis oblongifolia Benth. – El Salvador, San Miguel, A. Mongro et al. 2089 (K); Hyptis obtecta Benth. – Brazil, Goiás, J.F.B. Pastore et al. 1858 (HUEFS); Hyptis odorata Benth. – Bolivia, Santa Cruz, J.R.I. Wood & R.M. Harley 18129 (K); Hyptis ovalifolia Benth. – Brazil, Goiás, J.F.B. Pastore et al. 1790 (HUEFS); Hyptis pachyarthra Briq. – Paraguay, Dept. Amambay, R.M. Harley 28092 (K); Hyptis pachyphylla Epling – Brazil, Goiás, J.F.B. Pastore et al. 1843 (HUEFS); Hyptis paludosa A.St.-Hil. ex Benth. – Brazil, Espírito Santo, D.A. Folli et al. 2392 (HUEFS); Hyptis passerina Mart. ex Benth. – Brazil, Minas Gerais, R.M. Harley et al. 55163 (HUEFS); Hyptis pectinata (L.) Poit. – Brazil, Bahia, J.F.B. Pastore et al. 1880 (HUEFS); Hyptis pedalipes Griseb. – Cuba, Pinar del Rio, R.M. Harley 27911 (K); Hyptis peduncularis Benth. – Brazil, Minas Gerais, R.M. Harley et al. 55138 (HUEFS); Hyptis penaeoides Taub. – Brazil, Goiás, J.F.B. Pastore et al. 1846 (HUEFS); Hyptis platanifolia Mart. ex Benth. – Brazil, Bahia, J.F.B. Pastore s.n. (HUEFS); Hyptis plectranthoides Benth. – Brazil, Minas Gerais, R.M. Harley et al. 55164 (HUEFS); 48

Hyptis propinqua Epling – Brazil, Minas Gerais, V.C. Souza et al. 9494 (HUEFS); Hyptis proteoides A.St.-Hil. ex Benth. – Brazil, Minas Gerais, R.C. Forzza et al. 113-A (K); Hyptis pulchella Briq. – Brazil, Mato Grosso, A.V.F. Cianciaruso 5518 (HUEFS); Hyptis pulegioides Pohl ex Benth. – Brazil, Distrito Federal, J.F.B. Pastore 2558 (HUEFS); Hyptis pycnocephala Benth. – Brazil, Goiás, J.F.B. Pastore et al. 1787 (HUEFS); Hyptis racemulosa Mart. ex Benth. – Brazil, Minas Gerais, L.H.Y. Kamino 651 (HUEFS); Hyptis ramosa Pohl ex Benth. – Brazil, Bahia, R.M. Harley 55488 et al. (HUEFS); Hyptis recurvata Poit. – Brazil, Distrito Federal, J.F.B. Pastore 1766 et al. (HUEFS); Hyptis rigens ined. – Brazil, Bahia, R.M. Harley 55097 et al. (HUEFS); Hyptis rotundifolia Benth. – Brazil, Goiás, J.F.B. Pastore 2281 (HUEFS); Hyptis rubicunda Pohl ex Benth. – Brazil, Goiás, G. Pereira-Silva et al.10372 (CEN); Hyptis rubiginosa Benth. – Brazil, Distrito Federal, J.F.B. Pastore et al. 1771 (HUEFS); Hyptis rugosa Benth. – Brazil, Bahia, J.F.B. Pastore 2170 et al. (HUEFS); Hyptis sancti-gabriellii Harley – Brazil, Bahia, J.F.B. Pastore & R.M. Harley 2596 (HUEFS); Hyptis saxatilis A.St.-Hil. ex Benth. – Brazil, Distrito Federal, J.F.B. Pastore et al. 1765 (HUEFS); Hyptis selaginifolia Mart. ex Benth. – Brazil, Goiás, J.F.B. Pastore & R.M. Harley 1779 (HUEFS); Hyptis selloi Benth. – Brazil, Goiás, J.F.B. Pastore & R.M. Harley 2271 (HUEFS); Hyptis sidifolia (L'Herit.) Briq. – Brazil, Bahia, R.M. Harley et al. 55889 (HUEFS); Hyptis silvinae Harley – Brazil, Bahia, R.M. Harley et al. 55662 (HUEFS); Hyptis sinuata Pohl ex Benth. – Brazil, Minas Gerais, R.M. Harley et al. 55157 (HUEFS); Hyptis sp. – Brazil, Goiás, J.F.B. Pastore & E.A. Pastore 2249 (HUEFS); Hyptis sp. – Brazil, Goiás, J.F.B. Pastore et al. 2315 (HUEFS); Hyptis sp. – Brazil, Mato Grasso, L.P. de Queiroz et al. 10461 (HUEFS); Hyptis sp. nov. – Brazil, Goiás, J.F.B. Pastore et al. 1823 (HUEFS); Hyptis sp. nov. – Brazil, Goiás, J.F.B. Pastore et al. 1839 (HUEFS); Hyptis sp. nov. – Brazil, Goiás, J.F.B. Pastore et al. 1913 (HUEFS); Hyptis spicigera Lam. – Bolivia, Santa Cruz, J.R.I. Wood & R.M.Harley s.n. (K); Hyptis stachydifolia Epling. – Brazil, Bahia, J.F.B. Pastore & R.M. Harley 2587 (HUEFS); Hyptis suaveolens (L.) Poit. – Brazil, Distrito Federal, J.F.B. Pastore 1742 (HUEFS); Hyptis tacianae Harley – Brazil, Distrito Federal, J.F.B. Pastore et al. 1878 (HUEFS); Hyptis tafallae Benth.– Bolivia, Santa Cruz, J.R.I. Wood 18326 & R.M. Harley (K); Hyptis tagetifolia Harley – Brazil, Goiás, J.F.B. Pastore et al. 2309 (HUEFS); Hyptis tomentosa Poit. – Mexico, Ooxaca, N. Nei 32286 (K); Hyptis turnerifolia Mart. ex Benth. – Brazil, Bahia, R.M. Harley et al. 55130 (HUEFS); Hyptis uliginosa A.St.-Hil. ex Benth. – Brazil, Minas Gerais, V.C. Souza et al. 5168 (K); Hyptis uncinata Benth. – Bolivia, Santa Cruz, J.R.I. Wood & R.M. Harley 18120 (K); Hyptis urticoides Kunth – Mexico, R. Villacorta, & M.L. Kawasaki 2623 (K); Hyptis verticillata Jacq. – El Salvador, Dept. Santa Ana, J.C. Gonzáles, 173 (K); 49

Hyptis villosa Pohl ex Benth. – Brazil, Goiás, J.F.B. Pastore 1716 (HUEFS); Hyptis violacea Pohl ex Benth. – Brazil, Tocantins, J.F.B. Pastore et al. 2415 (HUEFS); Hyptis virgata Benth. – Brazil, Goiás, J.F.B. Pastore et al. 2245 (HUEFS). Hyptis viscaria ined. – Brazil, Distrito Federal, J.F.B. Pastore et al. 1764 (HUEFS); Isodon bulleyanus (Diels) Kudo – FJ593358; Isodon calcicolus (Hand.-Mazz.) H.Hara – FJ593359; Isodon coetsa (Buch.-Ham. ex D.Don.) Kudo – Thailand, S. Suddee et al. 1085 (K); Isodon flabelliformis (C.Y.Wu) H.Hara – FJ593303; Isodon hispidus (Benth.) Murata – FJ593372; Isodon lophanthoides (Buch.-Ham. ex D.Don.) H.Hare – FJ593378; Isodon phyllopodus (Diels) Kudo – FJ593387; Isodon ternifolius (D.Don.) Kudo – FJ593395; Isodon ternifolius (D.Don.) Kudo – Thailand, S. Suddee (K); Isodon yuennanensis (Hand.-Mazz.) H.Hara – FJ593398; Lavandula angustifolia Mill. – EF437225; Lavandula stoechas L. – Portugal, Coimbra, Chase 19110 (K); Marsypianthes burchellii Epling – Brazil, Goiás, J.F.B. Pastore et al. 1822 (HUEFS); Marsypianthes chamaedrys (Vahl) Kuntze – Brazil, Goiás, J.F.B. Pastore 1714 (HUEFS); Marsypianthes montana Benth. – Brazil, Goiás, J.F.B. Pastore et al. 2306 (HUEFS); Mentha spicata L. – GU 381394; Nepeta straussii Hausskn. & Bornm. – Iran (Cultivated R.B.G.Kew), M.Chase 10030 (K); Ocimum selloi Benth. – Argentina, Corrientes, A. Schinini & R.M. Harley 36873 (CTES); Ocimum selloi Benth. – Brazil, São Paulo, I. Cordeiro & R.M. Harley 2803 (HUEFS) Orthosiphon aristatus (Blume) Miq. – Thailand, S.Suddee et al. 969 (K); Orthosiphon wulfenioides (Diels) Hand.-Mazz. – FJ593404; Peltodon longipes A.St.-Hil. ex Benth. – Argentina, Corrientes, A. Schinini & R.M. Harley 36868 (CTES); Peltodon pusillus Pohl – Brazil, Goiás, J.F.B. Pastore et al. 2440 (HUEFS); Peltodon radicans Pohl – Brazil, Minas Gerais, R.M. Harley et al. 55880 (HUEFS); Peltodon tomentosus Pohl – Brazil, Mato Grosso, L.P. de Queiroz et al. 10402 (HUEFS); Plectranthus glabratus (Benth.) Alston – Thailand, T. Wongprasert et al. s.n. (K - 9802); Plectranthus thyrsoideus (Baker) B.Mathew – Cultivated Kew, LCD 5638704012 (K); Rhaphiodon echinus (Ness & Mart.) Schauer – Brazil, Bahia, J.F.B. Pastore s.n. (HUEFS); Siphocranion macranthum (Hook.f.) C.Y.Wu – FJ593406; Skapanthus oreophilus (Diels) C.Y.Wu & H.W.Li – FJ593409; Tetradenia fruticosa Benth. – Madagascar (Cultivated R.B.G.Kew), R. Hardy 2910A (K); 50

Chapter II

A phylogenetically based generic classification of subtribe Hyptidinae (Labiatae)

In this paper, a new classification is presented for subtribe Hyptidinae (tribe Ocimeae, Subfamily Nepetoideae, Labiatae). It is based on the recognition of monophyletic groups obtained by molecular analyses, performed during this project, which, corroborated by morphological characters, are recognized as new taxa. All previous genera currently recognized in the subtribe, are here maintained: Asterohyptis Epling, Marsypianthes Mart. ex Benth., Rhaphiodon Schauer, Eriope Bonpl. ex Benth., Eriopidion Harley, Hypenia (Mart. ex Benth.) Harley and Hyptidendron Harley, with the exception of Peltodon Pohl, which is included in the synonymy of Hyptis Jacq. s.s. Hyptis l.s., with the exception of the monotypic section Latiflorae Epling, here included within Hyptidendron, was dismembered into 11 genera. The genera recognized are: Hyptis s.s.; Mesosphaerum P.Browne and Condea Adans., old names re-established in this study; Cyanocephalus (Benth.) Harley & J.F.B.Pastore, Gymneia (Benth.) Harley & J.F.B.Pastore, Oocephalus (Benth.) Harley & J.F.B.Pastore and Trichosphaeria (Benth.) Harley & J.F.B.Pastore, which were previously treated as sections of Hyptis, and Eplingiella Harley & J.F.B.Pastore, Leptohyptis Harley & J.F.B.Pastore, Martianthus Harley & J.F.B.Pastore and Physocaulon Harley & J.F.B.Pastore, new generic names proposed here, where no appropriate earlier names are available. Each proposed genus is characterized, and the new combinations provided for the species now removed from Hyptis. The new classification of Hyptidinae results in an increase from nine to 18 genera within the subtribe.

KEYWORDS: Hyptis, Condea, Mesosphaerum, Eplingiella, Martianthus, Physocaulon, Trichosphaeria, Cyanocephalus, Gymneia, Leptohyptis, Oocephalus.

INTRODUCTION Phylogenetic studies on the subtribe Hyptidinae, Pastore & al. (chapter I of this thesis), based on four plastid and two nuclear regions, and analysed both combined and individually have provided results for a significant advance in our knowledge of the relationships between 51 taxa of this subtribe. Hyptidinae has been shown to be a well-supported clade, which also comprises diverse, well supported subclades. These, after some minor adjustments which can be justified on morphological grounds, are often correlated with taxonomic units previously recognized in the group. The only exception is Peltodon Pohl, which, although appearing as a monophyletic group, is clustered with species of Hyptis Jacq. stricto sensu (s.s.). The genus Hyptis, in its traditional delimitation, appears in nine distinct lineages, which, on being associated with morphological characters, can be proposed as genera. This leaves a smaller, monophyletic genus Hyptis, which is more narrowly delimited. This is as yet not well-defined internally, and awaits further study. The objective of this paper is to provide a new generic classification for subtribe Hyptidinae, based on molecular studies presented in Pastore & al. (Chapter I of this thesis), and associated with diagnostic characters for each group.

Hyptidinae [Hyptideae] Endl. Gen. Pl. 610. 1838. The genera of Hyptidinae, with the exception of Asterohyptis Epling, which has greatly reduced flowers (Paton & Ryding, 1988), are characterized by a corolla with a hinged anterior corolla lobe, typically held forward under pressure by the declinate stamens which it encloses (figure 1. A). When visited by a pollinator, the lip reflexes rapidly and the exposed stamens dust pollen on the ventral surface exposed by the visitor (figure 1: B) (Burkart, 1937; Harley, 1971; Brantjes & Vos, 1981; Paton & Ryding, 1988; Aluri, 2005). This explosive pollination system is unique to the subtribe, although a slightly similar but much less elaborate system is found in some species of the African genus Aeollanthus Mart. ex Spreng. (Paton & Ryding, 1988).

52

Figure 1. A−B. The explosive pollination system on Hyptis nudicaulis

Benth. C. Bracteolate inflorescences on Ooceophalus silvinae (Harley) Harley & J.F.B.Pastore. A. photo J.F.B. Pastore; B−C. photo R.M. Harley.

The Hyptidinae are unusual in the Tribe Ocimeae in having bracteolate inflorescences (also found in Hanceolinae and Isodoninae), and the nutlets typically have an expanded areole Paton & Ryding 1988). The group was first studied in detail by Bentham (1833, 1848). Later, Epling (1936) dated the classification of the Hyptidinae and published a more detailed account of Hyptis (Epling, 1949). At that time, Hyptis included the genera Hyptidendron Harley and Hypenia (Mart. ex Benth.) Harley, later separated by Harley (1988). Characters which have been traditionally used to recognize the genera are based largely on inflorescence and floral structure. The Hyptidinae inflorescence is based on a thyrse: an indeterminate axis with lateral cymes. This is a system with a wide range of modifications (Epling, 1949; Harley, 1985, 1988). The cyme may be dichasial, as in some Hyptidendron species or can be cincinnate (Harley, 1988). The cymes may be congested or lax, depending on the elongation or reduction of the peduncles or pedicels, and the cyme itself may be many-flowered or reduced to a single flower, as in Eriope or Hypenia, where the inflorescence sometimes resembles a simple or branched raceme. Of the 18 genera recognized, Hypenia, Eriope Humb. & Bonpl. ex Benth. and Eriopidion Harley are typically with uniflorous cymes.The floral structure is also variable, with the calyx usually ± 53 symmetrical and five-lobed, but sometimes slightly zygomorphic or with a reduced number of lobes. Corolla morphology is also extremely variable in size, tube length and colour, for example, probably as an adaptive response to pollinators. The gynoecium is also variable with style sometimes persistent or stylopodium usually overtopping the mature nutlets. The nutlets themselves vary in pericarp structure, presence of trichomes or corky projections and the pericarp often specialized to produce mucilaginous fibres on contact with water.

Key to genera In the following account, all specimens cited have been seen at least one of the authors, unless otherwise indicated.

Asterohyptis Epling, Bull. Torrey Bot. Cl. 60: 17. 1933. Type: Asterohyptis stellulata (Benth.) Epling. Figure 2: A–C. The genus differs in having very small whitish corollas, very weakly two-lipped, with five subequal lobes. The flowers are arranged in few-flowered sessile verticillasters, in the axils of reduced bracts, forming slender, elongate spike-like inflorescences. The three species extend from Mexico into Central America, in dry, open habitats.

Condea Adans., Fam. P1. 2: 504, 542. 1763. Lectotype: Satureja americana Poir. Figure 3: A–C. Shrub, subshrub or herbs with an often spiciform thyrse of pedunculate or sessile cymes in which the intercalary cyme-axes are contracted. When the cymes are pedunculate the flowers, which often bear long pedicels, appear subumbellate, or appear fasciculate when the peduncle absent. The flowers are usually small and the gynoecium without a stylopodium. There are 26 species, ranging from North America (Western United States) and Central America to the Caribbean and South America. Two sections can be recognized here, based on three sections recognized by Epling (1949). Section Minthidium Benth. as sect. Condea and sect. Laniflorae Benth. together with sect. Umbellatae Epling as sect. Laniflorae. The monotypic Hyptis section Rhytidea may possibly be associated here, although a decision awaits further investigation.

Condea section Condea 54

=Hyptis section Minthidium Benth. Labiat. Gen. Spec. 128. 1833. Lectotype (Epling 1936): Hyptis verticillata Jacq. =? Hypothronia Schrank Syll. Pl. Nov. 1: 85. 1824. Type: Hypothronia undata Schrank. The genus Hypothronia appears to be based on a misprinted Hypothronia undulata Schrank, published a few years earlier. However as the type of this name, based on a cultivated specimen, as never been located, and as the description is insufficient to make a clear identification, the name must be considered invalid. This section, corresponding to Hyptis section Minthidium Benth., is characterized by an indumentum of simple trichomes and fascicles of flowers in the axils of leaf-like bracts. The gynoecium lacks a stylopodium. Condea sect. Condea comprises 16 species, centred in the Caribbean and South America, with one species, Condea verticillata, more widespread, occurring in the Caribbean, Central America and Western South America.

Condea americana (Poir.) Harley & J.F.B.Pastore comb. nov. ≡Satureja americana Poir. Encycl. 6(2): 571: 1805. [Satureia americana]. ≡Hyptis americana (Poir.) Briq., Engler & Prantl, Nat. Pflanzenfam. 4(3): 338. 1897. Non (Aubl.) Urb. Feddes Repert. Spec. Nov. Regni Veg. Beih. 15: 322. 1918. ≡Mesosphaerum americanum (Poir.) Kuntze Revis. Gen. Pl. 2: 525. 1891. Type: America, [Dominican Republic?], J.B.R. Pouppé-Desportes s.n. (holotype P-Lam!, label information: "Condea frutescens Satureiae foliis, flore albo, Mss. Descript. Plant. Amer.".). =Hyptis scoparia Poit. Ann. Mus. Hist. Nat. 7: 475. 1806. Type: Dominican Republic, Cap. Français, environs S. Martin, 1802, P.A. Poiteau s.n. [198] (syntypes P [#720912]!, P[#720913]!, P[#720914]!, P[#737319]!).

Condea chyliantha (Urb. & Ekman) Harley & J.F.B.Pastore comb. nov. ≡Hyptis chyliantha Urb. & Ekman Ark. Bot. 22(10). 1929. Type: Haiti, Massif du Nort, St. Michel de Atalaye, 21 Dec. 1927, E.L. Ekman 9430 (B†, C!, G!, K!, NY!, S!, US!).

Condea cubensis (Urb.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis cubensis Urb. Symb. Antill. 7: 367. 1912. Type: Cuba, Partido de Consolacion, C. Wright 3150 (B†, G!, K!, MA!, MO!, P!, US!).

55

Condea domingensis (Urb.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis domingensis Urb. Symb. Antill. 7(3): 368. 1912. Type: Dominican Republic, prope Constanza, Feb. 1910, H. von Türckheim 2897 (B†, BR!, G!, M!, NY!).

Condea elegans (Briq.) Harley & J.F.B.Pastore comb. nov. ≡Eriope elegans Briq. Bull. Soc. Bot. Genève 5:114. 1889. ≡Hyptis elegans (Briq.) Briq. in Mich. Mém. Soc. Phys. Genève 32(2,10): 19. 1897. Type: Paraguay, Paraguari, 25 March 1875, B. Balansa 979 (BR!, G!, K!).

Condea escobilla (Urb.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis escobilla Urb. Repert. Spec. Nov. Regni Veg. Beih. 16: 143. 1919. Type: Dominican Republic, Santo Domingo, Puerto Plata, 16 april 1887, H.F.A. von Eggers 1545 (B†, G!, M!, P!).

Condea fasciculata (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis fasciculata Benth. Labiat. Gen. Spec. 130. 1833. Lectotype: Brazil, "Brasilia meridionalis", F. Sellow 2030 (B† photo, K!). =Clinopodium verticillatum Vell., Fl. Flumin. 242. 1829. nom inval. (nec Condea verticillata (Jacq.), Harley & J.F.B. Pastore). Lectotype: Brazil, Rio de Janeiro, (original plate on parchment of "Flora Fluminensis" in the Manuscript Section of the Biblioteca Nacional of Rio de Janeiro, of) Fl. Flumin. Icon. 6: 1831. chosen here =Hyptis fasciculata Benth. var. tomentella Benth. in DC. Prodr. 12: 129 (1848). Type: Brazil, ? Rio de Janeiro, J.B.E. Pohl s.n. (?G). =Hyptis eriocalyx St.-Hil. ex Benth., Labiat. Gen. Spec.: 131. 1833. =Mesosphaerum eriocalyx (A.St.-Hil. ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Minas Gerais, “ruisseau de Simão Pereira”, A. Saint-Hilaire B1 36 (holotype P!). =Lepechinia anomala Epling, Brittonia 12: 146. 1960; Epling & Játiva, Brittonia 20: 299. 1968. Type: Brazil, Santa Catarina, in capoeira ad Pilões, Palhoça, R. Reitz & R.M. Klein 3227 (holotype: UC!, isotype HBR!, MO!).

Condea fastigiata (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis fastigiata Benth. Labiat. Gen. Labiat. Gen. Spec. 130. 1833 ≡Mesosphaerum fastigiatum (Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891 ≡Hyptis fasciculata var. fastigiata (Benth.) J.A. Schmidt in Martius, Fl. Brasiliensis 8, 1: 142. 1858 ≡Hyptis fasciculata subsp. fastigiata (Benth.) Harley, Hyptis in Reitz, R. (ed.). 56

Flora Ilustr. Catarinense Labiadas 1: 14. 1985. Lectotype: Brazil, "Brasilia meridionalis" F. Sellow 2110 (B† photo, K!). chosen here =Hyptis fasciculata var. tomentosa J.A. Schmidt in Martius, Fl. Brasiliensis 8, 1: 142. 1858. Type: Brazil, Minas Gerais, Rocinho de João Gomez, J.B.E. Pohl 3768 (G!). =Hyptis diaphora Briq., Bull. Herb. Boiss. 4: 786. 1896. ≡Mesosphaerum diaphorum (Briq.) Kuntze Revis. Gen. Pl. 3: 260. 1898. Type: Brazil. Minas Gerais, Contendas, O. Kuntze s.n. (G!).

Condea floribunda (Briq.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis floribunda Briq. Mém. Soc. Phys. Genève 32 (2,10): 18. 1897. Type: Paraguay, Arroyos y Esteros, July 1875, B. Balansa 980 (G!, P!).

Condea mixta (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis mixta Epling Torrey Bot. Club 71: 495. 1944. Type: Mexico, Oaxaca Tuxtepec, Chiltepec y vecindades, G. Martinez- Calderón 251 (UC!, US photo).

Condea rivularis (Britton) Harley & J.F.B.Pastore comb. nov. ≡Hyptis rivularis Britton Mem. Torrey Bot. Club. 16: 100. 1920. Type: Cuba, Santa Clara cerca Trinidad a lo largo Río Toyaba, N.L. Britton & Wilson 5567 (NY!).

Condea scandens (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis scandens Epling Carn. Inst. Publ. 522: 239. 1940. ≡Hyptis ascendens Epling (sphalm.) Rev. Mus. La Plata (nueva serie) 7: 246. 1949. Type: Guatemala, Peten, El paso, C.L. Lundell 4421 (MICH! F!).

Condea scoparioides (Urb.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis scoparioides Urb. Symb. Antill. 7(3): 366. 1912. Type: Dominican Republic, La Vega, Constanza, H. von Turckheim 3543 (B† photo, BR!, NY!).

Condea thyrsiflora (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis thyrsiflora Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 237. 1936. Type: Brazil, Minas Gerais, Fazenda do Dias, Rio do Peixe, J.B.E. Pohl 2720 (BR!, K!, W!, UC!).

57

Condea trichopes (Epling) Harley & J.F.B.Pastore comb. nov. ≡Eriope trichopes Epling Bull. Torr. Bot. Club. 71: 495. 1944. ≡Hyptis trichopes (Epling) Harley Kew Bull. 28: 24. 1973. Type: Cuba, Isle of Pines, vicinity of San Pedro, pine lands, N.L. Britton et al. 14469 (holotype NY!, isotype K!, US!).

Condea verticillata (Jacq.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis verticillata Jacq. Coll. 1:101. 1787. ≡Mesosphaerum verticillatum (Jacq.) Kuntze Revis. Gen. Pl. 2: 525. 1891. Type: Dominican Republic, N.J. von Jacquin s.n. (W?). =Mentha hyptiformis Lam. Encycl. 4(1): 110. 1797. Type: Martinique, J.M. 342 (P photo). =Hyptis parviflora Martins & Gal. Bull. Acad. Brux. 11. 186. 1844. Type: Mexico, Veracruz, Cordillera, H.G. Galeotti 677 (BR!). =Hyptis pringlei Fernald. Proc. Amer. Acad. 35. 565. 1900. Mexico, San Luis Potosi, Tamasopo canyon, C.G. Pringle 3223 (holotype GH!, isotypes BM!, JE!, K!, NY!, P!, UC!). =Hyptis axillaris Fernald. Proc. Amer. Acad. 35. 565. 1900. Mexico, Puebla, Metlaltoyuca, E.A. Goldman 48 (US!).

Condea section Laniflorae (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis section Laniflorae Epling Type: Condea laniflora (Benth.) Harley & J.F.B.Pastore (Hyptis laniflora Benth.). =Hyptis section Minthidium subsection Umbellatae Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 221. 1936. ≡Hyptis section Umbellatae Benth. Labiat. Gen. Spec. 132. 1833. Type: Hyptis tafallae Benth. (=Condea tafallae (Benth.) Harley & J.F.B.Pastore). syn. nov.

Shrubs with dendroid trichomes and flowers in pedunculate or sessile, subumbellate cymes, arranged in elongate spiciform or paniculate inflorescences; flowers without a stylopodium. There are ten species from the deserts of SW United States Mexico, especially Baja California, south to Guatemala, with one species in Peru and Bolivia. Hyptis sect. Rhytidea Benth., with two species may well prove to belong here.

Condea albida (Kunth) Harley & J.F.B.Pastore comb. nov. ≡Hyptis albida Kunth In Humb. Bonpl. & Kunth Nov. Gen. Sp. 2: 319. 1818. ≡Mesosphaerum albidum (Kunth) Kuntze Revis. 58

Gen. Pl. 2: 526. 1891. Type: Mexico, Michoacan, Lago de Cuitzeo, F.W.H.A. von Humboldt & A.J.A. Bonpland s.n. (P!).

Condea anitae (Epling & Játiva) Harley & J.F.B.Pastore comb. nov. ≡Hyptis anitae Epling & Játiva Brittonia 20: 298. 1968. Type: Mexico, Baja California, Sierra de la Giganta, 03 Oct 1965, A. Carter 5104 (UC!).

Condea decipiens (M.E.Jones) Harley & J.F.B.Pastore comb. nov. ≡Hyptis decipiens M.E.Jones Contr. W. Bot. 18. 53. 1933. Type: Mexico, Baja California cerca de Triunfo, 06 Oct. 1930, M.E. Jones 27299 (BM!, HUH n.v., MEXU n.v., MO photo, UC n.v., US!)

Condea emoryi (Torr.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis emoryi Torr. Ives. Rep. Colorado River Bot. 20. 1861. ≡Mesosphaerum emoryi (Torr.) Kuntze [as "emeroyi (Torrey)"] Revis. Gen. Pl. 2: 526. 1891. Type: United States of America, Arizona, Arizona, Gila River cerca de Yuma, 1 Dec 1846, W.H. Emory s.n. (NY!). =Hyptis palmeri S.Watson Proc. Amer. Acad. Arts 24: 68. 1889. Type: Mexico, Guaymas, 1887, E. Palmer 278 (B!, C!, K!).

Condea iodantha (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis iodantha Epling Madroño 5(1) 16. 1939. Type: Mexico, Zapo, 18 Nov. 1936, G.B. Hinton 9844 (BM!, F!, G!, K!, UC!, US!).

Condea laniflora (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis laniflora Benth. Bot. Sulphur 423. 1844. ≡Mesosphaerum laniflorum (Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Mexico, Baja California. Cabo San Lucas, 1841, R.B. Hinds s.n. (K!). =Hyptis insularis (Standl. & Goldm.) Standl. Contrib. Nat. Herb. 22 1276. 1924. Type: Mexico, Baja California, Isla Espiritu Santo. 07 Feb. 1906. E.W. Nelson & E.A. Goldman 7503 (US!).

Condea subtilis (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis subtilis Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 34: 79. 1933. Type: Mexico, Sadovi, 1842, F.M. Liebmann 15251 (C!, F!). 59

=Hyptis perpulcher Epling Madroño 5: 15. 1939. Type: Mexico, Temascaltepec, Pungarancho, 18 Oct. 1935, G.B. Hilton et al. 8574 (BM!, F!, K!, NY!, MO!, UC!, US!).

Condea tafallae (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis tafallae Benth. Labiat. Gen. Spec. 132. 1833. ≡Mesosphaerum tafallae (Benth.) Kuntze Revis. Gen. Pl. 2: 527. 1891. Type: Peru, H. Ruiz s.n. [J. Tafalla s.n.] (B† photo, M!, P!).

Condea tephrodes (A.Gray) Harley & J.F.B.Pastore comb. nov. ≡Hyptis tephrodes A.Gray Proc. Amer. Acad. Arts. 164. 1861. ≡Mesosphaerum tephrodes (A.Gray) Kuntze Revis. Gen. Pl. 2: 527. 1891. Type: Mexico, Baja California, Cape St. Lucas, Aug 1859 - Jan. 1860, L.J. Xanthus de Vesey 72 (NY!).

Condea tomentosa (Poit.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis tomentosa Poit. Ann. Mus. Par. 7: 469. 1806. ≡Mesosphaerum tomentosum (Poit.) Kuntze Revis. Gen. Pl. 2: 527. 1891. Type: Mexico, Acapulco, F.W.H.A. von Humboldt & A.J.A. Bonpland s.n. (B-Willd!, P!).

Cyanocephalus (Pohl ex Benth.) Harley & J.F.B.Pastore stat. nov. ≡Hyptis section Cyanocephalus Pohl ex Benth. Labiat. Gen. Spec. 84. 1833. Lectotype: Cyanocephalus lippioides (Pohl. ex Benth.) Harley & J.F.B.Pastore (Hyptis lippioides Pohl ex Benth.). designated here. Figure 8: A–E. =Hyptis section Cyrta subsection Rigidae Benth. in DC. Prodr. 12: 91. 1848. Lectotype: Cyanocephalus capriariifolius (Pohl. ex Benth.) Harley & J.F.B.Pastore (Hyptis capriariifolia Pohl ex Benth.). chosen here =Hyptis section Cyrta subsection Cordifoliae Benth. in DC. Prodr. 12: 94. 1848. Lectotype: Hyptis cardiophylla Pohl. ex Benth. chosen here =Hyptis section Cyrta subsection Lobatae Briq. In Engler & Prantl Nat. Pflanzenfam. 4(3 a): 346. 1897. Type: Hyptis tripartita Briq. =Hyptis section Cyrta subsection Argenteae Briq. In Engler & Prantl Nat. Pflanzenfam. 4(3 a): 346. 1897. ≡Hyptis section Cyanocephalus subsection Argenteae (Briq.) Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 270. 1936. Lectotype: Hyptis incana Briq. (Epling 1949). 60

=Hyptis section Cyanocephalus subsection Longifoliae Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 270. 1936. Type Hyptis tenuifolia Epling. =Hyptis section Cyanocephalus subsection Rugosae Epling Feddes Repert. Spec. Nov. Regni Veg. 34: 86. 1933. Type Hyptis pedalipes Griseb.

Cyanocephalus is distinguished by its globose (even when immature), pedunculate capitula with narrowly linear involucrate bracteoles, inconspicuous at anthesis, calyx with usually clavate lobes, tube of fruiting calyx usually strongly curved with oblique mouth. Gynoecium without stylopodium, style with stigma subglobose, stigma lobes reduced. There are 25 species, mainly in the cerrados of Central Brazil, extending to Paraguay, one species in Cuba. The sectional classification has been shown to be unsatisfactory (Harley, 2006).

Cyanocephalus adpressus (A.St.-Hil. ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis adpressa A.St.-Hil. ex Benth. Labiat. Gen. Spec. 84. 1833. ≡Mesosphaerum adpressum (A.St.- Hil. ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Goiás, in campis prope Forquilla, A. Saint-Hilaire C1 853 (holotype P!, isotype US!).

Cyanocephalus apertiflorus (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis apertiflora Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 273. 1936. Type: Brazil, F. Sellow s.n. (B†, UC!).

Cyanocephalus bombycinus (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis bombycina Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 276. 1936. Type: Brazil, Mato Grosso, Coxim, F.C. Hoehne 2852 (UC!).

Cyanocephalus cardiophyllus (Pohl ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis cardiophylla Pohl ex Benth. Labiat. Gen. Spec. 84. 1833. ≡Mesosphaerum cardiophyllum (Pohl ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891.Type: Brasil, Minas Gerais, Rio Urubu, Ouro Fino y Santa Luzia, J.B.E. Pohl s.n. (K!, W!).

Cyanocephalus caprariifolius (Pohl ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis caprariifolia Pohl ex Benth. Labiat. Gen. Spec. 88. 1833. ≡Mesosphaerum caprariifolius (Pohl 61 ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Goiás, Cristalina [Serra dos Chrystais], J.B.E. Pohl 1020 (F!, K!, W!).

Cyanocephalus coriaceus (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis coriacea Benth. in DC. Prod. 12: 95. 1848. ≡Mesosphaerum coriaceum (Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Minas Gerais, Região do Diamante, G. Gardner 5090 (B† photo, K!).

Cyanocephalus cretatus (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis cretata Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85. 276. 1936. Type: Brazil, Minas Gerais, Uberaba, L. Riedel & P.W. Lund 2430 (NY!, UC!, US!).

Cyanocephalus cuneatus (Pohl ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis cuneata Pohl ex Benth. Labiat. Gen. Spec. 88. 1833. ≡Mesosphaerum cuneatum (Pohl ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Minas Gerais, Rio Parahybuna J.B.E. Pohl s.n. (K!, W!). =Hyptis clavellifera Benth. in DC. 1848. ≡Mesosphaerum clavelliferum (Pohl ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Goiás, São Domingos, G. Gardner 4307 (B† photo, K!).

Cyanocephalus delicatulus (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis delicatula Harley, Kew Bull. 40(3): 630. 1985. Type: Brazil, Bahia, Serra do Sincorá, 9 km S of Mucugê, on road to Cascavel, by Rio Paraguaçu, 950 m alt, 07 Feb. 1979, R.M. Harley et al. 16103 (holotype CEPEC!, isotype K!, NY!).

Cyanocephalus desertorum (Pohl ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis desertorum Pohl ex Benth. Labiat. Gen. Spec. 1833. Type: Brazil, Minas Gerais, Rio Parahybuna, J.B.E. Pohl 542 (W!)

Cyanocephalus digitatus (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis digitata Harley Kew Bull. 40: 632. 1985. Type: Brazil, Goiás, Alto Paraíso de Goiás, Chapada dos Veadeiros, 28 Sept. 1975, G. Hatschbach & R. Kummrow 37241 (holotype MBM!, isotype K!, MO photo).

62

Cynocephalus incanus (Briq.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis incana Briq. Bull. Soc. Bot. Genève 5: 111. 1889. (non Hyptis incana Willd. ex Steudel, nom. nov.) ≡Hyptis albicoma Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85:276. 1936. Type: Paraguay, entre Santa Bárbara y Borja, B. Balansa 1001 (holotype G!, isotype P!).

Cyanocephalus lanatus (Pohl ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis lanata Pohl ex Benth. Labiat. Gen. Spec. 84. 1833. ≡Mesosphaerum lanatum (Pohl ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Goiás [Goyaz], Agoa Gente y Trahiras, J.B.E. Pohl 1879 (W!).

Cyanocephalus lippioides (Pohl ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis lippioides Pohl ex Benth. Labiat. Gen. Spec. 86. 1833. ≡Mesosphaerum lippioides (Pohl ex Benth.) Kuntze. Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Goyaz, Chapada São Marcos ad Cabesseira Ribeirão Batalha, J.B.E. Pohl 2866 (K!, W!). =Hyptis fragilifolia A.St.-Hil. ex Benth. Labiat. Gen. Spec. 85. 1833. ≡Mesosphaerum fragilifolium (A.St.-Hil. ex Benth.) Kuntze. Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Minas Gerais, Penha, A. Saint-Hilaire 1164 (P!). =Hyptis nervosa Pohl. ex Benth. Labiat. Gen. Spec. 85. 1833. ≡Mesosphaerum nervosum (Pohl ex Benth.) Kuntze. Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Minas Gerais, inter Estiva et Rio Preto, J.B.E. Pohl s.n. (K!, W!). =Hyptis candida Pohl. ex Benth. Labiat. Gen. Spec. 85. 1833. Type: Brazil, Minas Gerais, inter Rio Jequitinhonha e Barreros, J.B.E. Pohl 6170 (holotype W!). =Hyptis rigida Pohl. ex Benth. Labiat. Gen. Spec. 85. 1833. ≡Mesosphaerum rigidum (Pohl ex Benth.) Kuntze. Revis. Gen. Pl. 2: 527. 1891. Type: Brazil, Minas Gerais, inter Calumbis et Barreros, J.B.E. Pohl 6171 (holotype W!). =Hyptis subnuda Briq. Ann. Conserve. & Jard. Bot. Geneve 2: 231. 1898. Type: Brazil, São Paulo, Bocaina, A.F.M. Glaziou 11308 (G!, K!)

Cyanocephalus nitidulus (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis nitidula Benth. in DC. Prodr. 12: 91. 1848. ≡Mesosphaerum nitidulum (Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Goiás, Chapada da Mangahina, G. Gardner 3392 (BR!, K!).

63

Cyanocephalus pedalipes (Griseb.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis pedalipes Griseb. Cat. Pl. Cub. 213. 1866. ≡Mesosphaerum pedalipes (Griseb.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type Cuba: C. Wright 3152 (G!, K!, MO photo, NY!, P!).

Cyanocephalus peduncularis (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis peduncularis Benth. Labiat. Gen. Spec. 87. 1833. ≡Mesosphaerum pedunculare (Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Minas Gerais, Volta de Serra, F. Sellow 1477 (B photo, K!). =Hyptis camporum Benth. in DC. Prod. 12: 92. 1848. ≡Mesosphaerum camporum (Benth.) Kuntze. Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Minas Gerais, Diamantina, [Diamantina District], G. Gardner 5091 (holotype K!, isotype B†, OXF!).

Cyanocephalus poliodes (Briq.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis poliodes Briq. Mém. Soc. Phys. Geneve. 32(2, 10): 35. 1897. Type: Paraguay, Valenzuela, B. Balansa 4557 (G n.v., P!).

Cyanocephalus rugosus (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis rugosa Benth. Labiat. Gen. Spec. 86. 1833. ≡Mesosphaerum rugosum (Benth.) Kuntze Revis. Gen. Pl. 2: 527. 1891. Type: Brazil, Minas Gerais, Saquinho, F. Sellow 1478 (B† photo).

Cyanocephalus selaginifolius (Mart. ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis selaginifolia Mart. ex Benth. Labiat. Gen. Spec. 87. 1833. ≡Mesosphaerum selaginifolium (Mart. ex Benth.) Kuntze Revis. Gen. Pl. 2: 527. 1891. Type: Brazil, Minas Gerais, Serra de Santo Antônio, C.F.P. Martius s.n. (M!).

Cyanocephalus tacianae (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis tacianae Harley Kew Bull. 61(1): 95. 2006. Type: Brazil, Distrito Federal, Samambaia, Parque Boca da Mata, J.M. Rezende 410 (holotype CEN!, isotype HUEFS!, K!, UFG!).

Cyanocephalus tagetifolius (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis tagetifolia Harley Kew Bull. 29: 134. 1974. Type: Brazil, Goiás, ca. 20 km N of Alto Paraíso de Goiás, 25 March 1971, H.S. Irwin et al. 33180 (K!, NY!, UB!).

64

Cyanocephalus tenuifolius (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis tenuifolia Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 270. 1936. Type: Brazil, São Paulo, entre São Simão y Casa Branca, A.F. Regnell III 923 (S!).

Cyanocephalus tripartitus (Briq.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis tripartita Briq. Bull. Soc. Bot. Genève 5: 111. 1889. Type: Paraguay. Caaguazú, 10 april 1876, B. Balansa 999 (G!, K!, P!, S!).

Cyanocephalus viaticus (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis viatica Harley Kew Bull. 40: 628. 1985. Type: Brazil, Minas Gerais, BR 4, km 878-879, 30 Jan. 1965, E. Pereira 9807 (holotype HB!, isotype K!).

Eplingiella Harley & J.F.B.Pastore gen. nov. Type: Eplingiella fruticosa (Salzm. ex Benth.) Harley & J.F.B.Pastore. Figure 6: A–C.

Ab Hyptidendro gynoecio sine stylopodio, et ab omnibus generibus Hyptidinarum floribus in capitulis semi-sphericis, calyce ad apertura cum corona conspicua trichomatum albarum, calycibus in maturitatibus paulo flexuosis, lobis calycis non claviformibus differt.

Eplingiella is characterized by its shrubby habit with small xeromorphic leaves, the flowers in 15−18-fld cymes, forming pedunculate, spherical clusters of very shortly pedicellate flowers, with narrowly linear bracteoles, not forming an involucres. Calyx with tube narrowly infundibular with thickened prominent nerves and oblique throat, closed by dense white trichomes, lobes subulate, in fruit straight or deflexed/curved distally, below throat, with lobes spreading. Corolla blue to bluish-violet. Gynoecium without stylopodium, style with capitate to very shortly bilobed stigma. Nutlets narrowly ellipsoid, slightly flattened, keeled at base between narrowly 2-lobed abscission scar, dark brown, strongly mucilaginous when wet. Two species of semi-arid, sandy areas, in upland areas of Northeast Brazil, one species extending to coastal sands. Formerly included with species now placed in Hyptidendron, but removed due to absence of stylopodium. The genus is named to honor Carl Epling, whose contribution to the taxonomy of New World Lamiaceae is immense. 65

Eplingiella cuniloides (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis cuniloides Epling Bull. Torrey Bot. Club. 74: 517. 1947. Type: Brazil, Bahia, Morro do Chapéu, April 1944, R.W. Schery 587 (holotype MO!, isotype UC!).

Eplingiella fruticosa (Salzm. ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis fruticosa Salzm. ex Benth. Labiat Gen. Spec. 96. 1833. ≡Mesosphaerum fruticosum (Salzm. ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Bahia, in collibus aridis circa Bahiam (Salvador), 1830, P. Salzmann s.n. [Herbae Florae Brasil Martii 638] (E!, HAL photo, K!, P!).

Eriope Bonpl. ex Benth. Labiat. Gen. Spec. 142. 1833. Type: Eriope nudiflora Humb. & Bonpl. ex Benth. Labiat. Gen. Spec. 144. 1833. Figure 4: A–C, E–F.

The genus includes species with branched habit, with stems hairy and usually glandular, or with virgate habit with few, rarely branched stems with elongate internodes, especially the upper often fistulose, tumescent and glabrous with a layer of wax, lower stems and nodes often long, setose hairs: a suite of characters referred to as “the greasy pole syndrome” (Harley 1991). The flowers are arranged in elongate, branched or unbranched racemes, each flower representing a uniflorous cyme, the calyces with paired bracteoles at the base. The calyx is weakly 2-lipped, turbinate to campanulate, with deltate teeth, these often becoming obsolete in fruit, the calyx throat densely barbate in many species. The corolla usually violet or pink. Gynoecium with well- developed stylopodium, overtopping ripe nutlets, nutlets slightly flattened to ovoid or rarely narrowly winged. There are over 30 species in savannas, especially cerrados of Central and East Brazil and in campo rupestre in mountain areas, some species extending into neighbouring countries. The genus is closely allied to Eriopidion and Hypenia, with which it shares a number of characters.

Eriopidion Harley Hooker's Icon Pl. 38(3): 103. 1976. Type: Eriope stricta Benth. in DC. Prodr. 12: 142. 1848. (=Eriopidion strictum (Benth.) Harley). Figure 4: D. A monotypic genus, differing from Eriope in its herbaceous habit, in lacking a stylopodium and a calyx with hygroscopic lobes and triquetrous nutlets. (Harley 1976). 66

The only species is a rare plant of dry, sandy areas within the caatinga zone, reappearing in semi- arid vegetation by the Lower Orinoco River, in Venezuela The only species is a rare plant of dry, sandy areas within the caatinga zone, reappearing in semi-arid vegetation by the Lower Orinoco River, in Venezuela.

Gymneia (Benth.) Harley & J.F.B.Pastore stat nov. ≡Hyptis Section Gymneia Benth. Labiat. Gen. Spec. 77. 1833. Lectotype: Hyptis virgata Benth. designated here. Figure 5: A–E. =Hyptis section Spiciformes J.A. Schmidt Fl. bras. 8(1): 81. 1858. (Benth.) Harley & J.F.B.Pastore Lectotype: Hyptis virgata Benth. designated here.

Gymneia is characterized by inflorescences, forming elongate congested or interrupted spikes, composed of globose verticillasters in the axils of reduced bracts, the verticillasters formed of strongly congested cincinni with filiform bracteoles. Fruiting calyx with tube strongly curved and with oblique mouth. A genus of six species, occurring in the cerrados of Central Brazil, extending to Eastern Bolivia, with one species typical of waste places in the caatingas of NorthEast Brazil.

Gymneia ampelophylla (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis ampelophylla Epling Repert. Spec. Nov. Regni Veg. Beih. 85: 279. 1936. Type: Brazil, Tocantins. Porto Nacional (Porto Real) W.J. Burchell 8671-2 (K!).

Gymneia interrupta (Pohl ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis interrupta Pohl ex Benth. Labiat Gen. Spec. 77. 1833. ≡Mesosphaerum interruptum (Pohl. ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Lectotype: Brazil, Goiás, Santa Cruz, J.B.E. Pohl 2758 (W!).

Gymneia malacophylla (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis malacophylla Benth. in DC. Prodr. 12: 86. 1848. ≡Mesosphaerum malacophyllum (Benth.) Kuntze Revis. Gen.

Pl. 2: 526. 1891. Type: Brazil, Tocantins, between Natividade & Arraias, Fev 1840, G. Gardner 3930 (K!).

67

Gymneia ovalifolia (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis ovalifolia Benth. in DC. Prodr. 12: 87. 1848. ≡Mesosphaerum ovalifolium (Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Goiás, Serra Dourada [Serra d'Ourada], J.B.E. Pohl 1497 (K!, W!).

Gymneia platanifolia (Mart. ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis platanifolia Mart. ex Benth. Labiat. Gen. Spec. 77. 1833. ≡Mesosphaerum platanifolium (Mart. ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Bahia, Joazeiro, Swainson s.n. (M!, K!,).

Gymneia virgata (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis virgata Benth. Labiat. Gen. Spec. 77. 1833. ≡Mesosphaerum virgatum (Benth.) Kuntze Revis. Gen. Pl. 2: 527. 1891. Type: Brazil, Minas Gerais, F. Sellow s.n. [1497] (B† photo, K!, HAL photo).

Hypenia (Mart. ex Benth.) Harley Bot. J. Linn. Soc. 98: 91. 1988. ≡Hyptis section Hypenia Mart. ex Benth. Labiat. Gen. Spec. 136. 1833. Type: Hyptis reticulata Mart. ex Benth. Fig. 7: A– F.

Herb or subshrub with simple or branched stems with elongate internodes, especially the upper often fistulose, often tumescent and glabrous with a layer of wax, lower stems and nodes often with long, setose hairs: “the greasy pole syndrome”, also found in Eriope and Physocaulon. The flowers are typically in racemose inflorescences, actually composed of uniflorous cymes. The flowers have actinomorphic calyces, with paired bracteoles at the base, corollas often fairly large, sometimes brightly coloured, yellow or red, a group with resupinate flowers is visited by hummingbirds. The gynoecium is without a stylopodium. Hypenia (c. 23 spp.) is typical of the Central Brazilian, upland lateritic savannas or cerrados and shallow sandy soils of campo rupestre in the Serra do Espinhaco range of Eastern Brazil. Hypenia salzmannii (Benth.) Harley, a somewhat weedy species of northeast Brazil in upland caatinga and coastal sands, often behaves as an annual, in drier areas, extending rarely into the foothills of some of the tepuis of the Eastern Guayana Highlands.

Hypenia simplex (A.St.-Hil. ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis simplex A.St.-Hil. ex Benth. Labiat. Gen. Spec. 136. 1833. ≡Eriope simplex (A.St.-Hil. ex Benth.) 68

Harley Bot. J. Soc. 98(2): 93. 1988. ≡Mesosphaerum simplex (A.St.-Hil. ex Benth.) Kuntze Revis. Gen. Pl. 2: 527. 1891. Type: Brazil, Goiás, A. Saint-Hilaire 775 (P!).

Hyptidendron Harley Bot. J. Linn. Soc. 98: 90. 1988. ≡Hyptis section Buddleioides Benth. Labiat. Gen. Spec. 132. 1833. Lectotype: Hyptis membranacea Benth. (Hyptidendron asperrimum (Spreng.) Harley). Figure 9: A–E. =Hyptis section Umbellaria Benth. Labiat. Gen. Spec. 133. 1833. Lectotype: Hyptis rhabdocalyx Mart. ex Benth. ≡Hyptidendron section Umbellaria (Benth.) Harley Bot. J. Linn. Soc. 98: 93. 1988. =Hyptis section Siagonarrhen Mart. ex Benth. Labiat. Gen. Spec. 133. 1833. Lectotype: Hyptis scabra Benth. =Hyptis section Latiflorae Epling Rep. Spec. Nov. Beih. 85: 224. 1936. Type: Hyptis eximia Epling. syn. nov.

The genus can be distinguished by its often strongly woody habit, some species forming trees. Some species have conspicuous dendroid trichomes. The inflorescence is distinctly cymose, often lax, and with large to medium-sized flowers. Hyptidendron also has a conspicuous stylopodium in the flower. Hyptidendron contains c. 17 species, many characteristic of cerrado, from Eastern Brazil to Mato Grosso and Rondônia, and extending into Eastern Bolivia. One species, H. arboreum Benth.) Harley, of forest margins, has a disjunct distribution in the Guiana Highlands, in Colombia and on the Peru/Bolivia border. Harley (1988) recognized two sections, Hyptidendron and Umbellaria. With the addition of the species below, and in the light of the molecular data now available, it will be necessary to re-evaluate these.

Hyptidendron eximium (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis eximia Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 223. 1936. Type: Brazil, Mato Grosso, Barão de Melgaço, Jun. 1918, M. Kuhlmann 2279 (holotype UC!).

Hyptis Jacq. Coll. 1: 101. 1787. nom. cons. Lectotype: Hyptis capitata Jacq. Figure 10: A–G; 11: A–I; 12: A–F; 13 A–C. 69

=Peltodon Pohl Pl. Bras. Icon. Descr. 1:66. 1827. Type: Peltodon pusillus Pohl syn. nov.

The genus Hyptis s.s., as delimited in this study, contains species characterized by the possession of flowers arranged in compact cymes, usually few-flowered and with or without an involucre of small, linear lanceolate to ovate bracteoles, stylopodium absent, or with flowers arranged in spherical or hemispherical capitula surrounded by an involucre of bracteoles, stylopodium present or absent. Hyptis s.s. contains c. 180 species and, although a greatly reduced number from that accepted previously, its distribution remains as previously: from the Southern United States, through the Caribbean and South to Peru, Paraguay and Argentina. The species of Peltodon appeared among species of Hyptis s.s. in the cladistic analyses, which taken together with the few morphological characters that separate it (e.g, the foliaceous calyx lobe apices), indicate that Peltodon should be synonymized with Hyptis, in this work. Using as a basis the classification of Epling (1949) modified by Harley (1988), the following taxa are here provisionally included in Hyptis s.s.: Hyptis sections Cyrta Benth., Plagiotis Benth., Myriocephala Benth, Muellerohyptis Briq., Eriosphaeria Benth., Induratae Benth., Pachyphyllae Harley, Polydesmia Benth. p.p. and Mesosphaeria Benth. p.p. excluding type. The molecular analyses demonstrated (Chapter 1) that monophyletic groups can be recognized within Hyptis s.s., suggesting the possibility that an infra-generic classification could be proposed. However, in this work, we prefer to leave taxonomic treatment only down to the generic level in this case, for the reasons listed below, which make new, more detailed molecular and morphological studies essential, before further modifications are made. 1. It is necessary to confirm that the sections mentioned above, and the appropriate species of the sections Mesosphaeria and Polydesmia constitute the sum of species comprising Hyptis s.s. 2. New molecular analyses must be made of the two small sections, Rhytidea and Lobatae, not included in this thesis, as well as wider sampling of sections Mesosphaeria and Polydesmia, to ensure that characters used to diagnose Hyptis s.s. are fully understood. 3. Of the total of c. 180 species considered here to comprise Hyptis s.s., less than 40%, have been sampled. A larger sample should be analysed. 4. The species which comprise the various monophyletic groups already detected within Hyptis s.s., (Pastore & al., chapter I), require detailed morphological studies, to search for new characters which delimit them. Analyses of floral and inflorescence morphology, pericarp 70

sculpturing and structure, foliar anatomy and palynological studies (aperture and exine structure) using both SEM (Scanning electron microscope) and TEM (Transmission electron microscopy). Without such studies it is still premature to make further infrageneric subdivision within Hyptis. New combinations in Hyptis s.s. are made below:

Hyptis campestris Harley & J.F.B.Pastore nom. nov. ≡Peltodon tomentosus Pohl Pl. Bras. Icon. Descr. 1: 69. 1827. Type: Brazil, Minas Gerais [Fazenda de Almas, in via Paracatu do príncipe ad Rio S. Antônio] J.B.E. Pohl s.n. (Lectotype W!, isotype K!).

Hyptis comaroides (Briq.) Harley & J.F.B.Pastore comb. nov. ≡Peltodon comaroides Briq. Bull. Soc. Bot. Genève 5: 110. 1889. Type: Paraguay, prope Itapé in campis, B. Balansa 1008. (Holotype G!, isotype K!). =Peltodon longipes A. St-Hil. ex Benth. Labiat. Gen. Sp.: 63. 1833.

Hyptis meridionalis Harley & J.F.B. Pastore nom. nov. ≡Peltodon rugosus Tolm. Not. Syst. Herb. Hort. Petrop. 4: 62. 1923. Type: Brazil, Paraná, P.K.H. Dusén s.n. (S!).

Hyptis pusilla (Pohl) Harley & J.F.B.Pastore comb. nov. ≡Peltodon pusillus Pohl. Pl. Bras. Icon. Descr. 1: 67. 1827. Type: Brazil, Tocantins?, [Trahiras et Natividade], J.B.E. Pohl s.n. (Lectotype W!, isotype K!).

Hyptis radicans (Pohl ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Peltodon radicans Pohl Pl. Bras. Icon. Descr. 1: 68. 1827. Type: Brazil, Minas Gerais, Ouro Preto [Villa Ricca], Dec.- Jan. 1820-1821, J.B.E. Pohl s.n. (Lectotype W, isotype K). =Clinopodium repens Vell. Fl. flumin. 242. 1829. nom. illeg. non Clinopodium repens Roxb. Hort. Bengl. 44. 1814. Lectotype: Brazil, Rio de Janeiro, (original plate on parchment of "Flora Fluminensis" in the Manuscript Section of the Biblioteca Nacional of Rio de Janeiro, of) Fl. Flumin. Icon. 6: t. 7. 1831. chosen here ≡Peltodon repens (Vell.) Kuntze Revis. Gen. Pl. 3(3): 260. 1898.

71

Leptohyptis Harley & J.F.B.Pastore gen. nov. Type: Leptohyptis macrostachys (Benth.) Harley & J.F.B.Pastore. Figure 17: A–C. =Hyptis section Minthidium Benth. subsection Tubulosae Briq. In Engler & Prantl Nat. Pflanzenfam. 4(3 a): 377. 1897. ≡Hyptis section Polydesmia Benth. subsection Tubulosae (Briq.) Harley Kew Bull. 40(3): 615-616. 1985. ≡Hyptis section Leptostachys Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 262. 1936. ≡Hyptis section Polydesmia Benth. subsection Leptostachys Epling Rev. Mus. La Plata 7: 298. 1949. ≡Hyptis section Polydesmia Benth. subsection Tubulosae (Briq.) Harley Kew Bull. 40(3): 615-616. 1985. Lectotype: Hyptis macrostachys Benth. (Harley 1985).

Leptohyptis ab omnibus generibus Hyptidinarum membranis lobularibus cum lobis calycis intercalatis differt. Fruteces graciles cymis sessilibus in spicis longis dispositis. Corolla tubularis.

A well-defined genus characterized by the flowers arranged in few-flowered compact cymes in the axils of inconspicuous bracts, forming a very slender ± interrupted spike, the flowers with an actinomorphic calyx with subulate lobes, bearing a scarious, deltate flange in each sinus between them, the corolla tubular. Leptohyptis contains only five closely related species restricted to the mountains of Northeast Brazil, in Bahia and Pernambuco.

Leptohyptis calida (Mart. ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis calida Mart. ex Benth. Labiat. Gen. Spec. 131. 1833. ≡Mesosphaerum calidum (Mart. ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil. Minas Gerais, In Serra Santo Antonio in deserto Serro Frio, C.F.P. Martius s.n. (M!, UC!, K!).

Leptohyptis leptostachys (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis leptostachys Epling Fedde Repert. Spec. Nov. Regni Veg. Beih. 85: 263. 1936. Type: Brazil, Minas Gerais, A.F.M. Glaziou 14194 (holotype K!, isotype P!).

Leptohyptis leptostachys subsp. caatingae (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis leptostachys Epling subsp. caatingae Harley. Kew Bull. 40(3): 616 (-617) Type: Bahia, 10 Km 72 from town, on road to Marcolino Moura, roadside through caatinga, 1000m, 25 Mar 1977, R.M. Harley et al. 20012 (holotype CEPEC!, isotype K!, NY!, US!).

Leptohyptis macrostachys (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis macrostachys Benth. in DC. Prodr. 12: 130. 1848. ≡Mesosphaerum macrostachyum (Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Bahia, Jaguarari, Serra Jacobina, J.S. Blanchet 2582 (holotype K!, isotype G!, P!)

Leptohyptis pinheiroi (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis pinheiroi Harley Kew Bull. 40(3): 623(-624). 1984. Type: Brazil, Bahia, Municipio de Delfino, Serra do Curral Feio, 16 km NW of Lagoinha on the side of road to Minas do Mimoso, 950-1000m, 41⁰10’W, 10⁰22’S, 04 Mar 1974, R.M. Harley et al. 16689 (holotype CEPEC!, isotype K!, NY!).

Leptohyptis siphonantha (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis siphonantha Harley Kew Bull. 29(1): 132. 1974. Type: Brasil. Bahia, Município de Seabra, Serra da Água de Rega, 28 km N of Seabra, 23 Fev 1971, H.S. Irwin et al. 30757 (holotype K!, isotype NY!, UB!)

Martianthus Harley & J.F.B.Pastore gen. nov. ≡Hyptis section Leucocephala Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 286. 1936. Type: Martianthus leucocephalus (Mart. ex Benth.) Harley & J.F.B.Pastore. Figure 16: A–C.

Ab Cyanocephalo calyce cum lobis filiformibus non clavatis et ab omnibus generibus alteribus Hyptidinarum capitulis longo-pedunculatis extra-axillaribus, floribus usque 1cm diametro, calyce pubescenti in frutificatione fortiter curvato, corolla atropurpurea vel vinacea, gynoecio sine stilopodio differt.

The genus is resembles Cyanocephalus in some characters, with flowers in compact pedunculate, spherical capitula with an involucre of linear, membranous bracteoles, the calyx tube is often curved downwards in fruit and the gynoecium without a stylopodium. It differs in its non-clavate, linear calyx lobes, lobes, the corolla lobes are usually dark lilac or pink at the apex, otherwise pale, and the stigma is distinctly bilobed. 73

There are four species, three restricted to the caatingas or dry montane semi-arid areas of Northeast Brazil, with an outlying species in similar semi-arid conditions in Huarochiri, Coastal Peru.

Martianthus elongatus (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis elongata Benth. Labiat. Gen. Spec. 88. 1833. ≡Mesosphaerum elongatum (Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Peru, Tonga, H. Ruiz L. & J.A. Pavon s.n. (B† photo, G!, OXF!, P!).

Martianthus leucocephalus (Mart. ex Benth.) J.F.B.Pastore comb. nov. ≡Hyptis leucocephala Mart. ex Benth. Labiat. Gen. Spec. 89. 1833. ≡Mesosphaerum leucocephalum (Mart. ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Bahia, prope Joazeiro, fl. S. Francisco, C.F.P. Martius s.n. (holotype M!)

Martianthus sancti-gabrielii (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis sancti- gabrielii Harley Kew Bull. 56(3): 686. 2001. Type: Brazil, Bahia, São Gabriel, Alto da Lagoa Nova, 28 May 2000, R.M. Harley & A.M. Giulietti 53924 (holotype HUEFS!, isotype K!, MO photo).

Martianthus stachydifolius (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis stachydifolia Epling Feddes Repert. Spec. Nov. Regni Veg. Beih.85: 264. 1936. Type: Brazil, Bahia, Serra de São Ignácio, Feb. 1907, E.H.G. Ule 7550 (holotype K!, isotype G!, HBG!).

Marsypianthes Mart. ex Benth. Labiat. Gen. Spec. 64. 1833. Type: Marsypianthes hyptoides Mart. ex Benth. (=Marsypianthes chamaedrys (Vahl.) Kuntze). Figure 18: A–F.

Marsypianthes is characterized by the flowers arranged in lax cymose heads on a short peduncle, or in few-flowered cymes subsessile in the axils of foliaceous bracts. The flowers have an actinomorphic calyx with deltate to lanceolate lobes, sometimes reflexing in fruit. The gynoecium and fruit are very distinctive. There is a 4-angled stylopodium between the four nutlets which is initially fused to them. When mature the nutlets are concave on the inner side with an involute, fimbriate margin, unique in the tribe Ocimeae. 74

Marsypianthes at present comprises five species of subshrubs, primarily in cerrado, in Central, West and Northern Brazil, extending to Paraguay and Argentina. One species, M. chamaedrys (Vahl) Kuntze is a very polymorphic herb of disturbed ground extending from Mexico and the Caribbean southwards to Peru, Bolivia and North Argentina. Species limits still remain to be clearly defined.

Mesosphaerum P. Browne Civ. Nat. Hist. Jamaica 257. 1756. Type: Mesosphaerum suaveolens (L.) Kuntze (≡Ballota suaveolens L.). Figure 19: A–D. =Hyptis section Mesosphaeria Benth. Labiat. Gen. Spec. 1833. p.p. =Brotera Spreng. (non Cavanilles 1799), Trans. Linn. Soc. London, Bot. 6: 151, t. 12 (1802). Nom. illeg. Type: Brotera persica Spreng. (=Mesosphaerum pectinatum (L.) Kuntze). =Schaueria Hassk., Flora: 2 (Beibl. 2): 25 (1842), [non Schaueria Nees 1838, nom. cons. (Acanthaceae)]. Type: Schaueria graveolens (Blume) Hassk. (≡Bystropogon graveolens Blume) (≡Mesosphaerum suaveolens (L.) Kuntze). =Gnoteris Raf. Sylva Tellur. 76. 1838. Lectotype: Gnoteris cordata Raf. chosen here (≡Mesosphaerum suaveolens (L.) O. Kuntze.). =Hyptis section Subumbellaria Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 34: 79. 1933. Type: Hyptis asperifolia Standl. (≡Mesosphaerum asperifolium (Standl.) Harley & J.F.B.Pastore) syn. nov. =Hyptis section Pectinaria Benth. Labiat. Gen. Spec. 1833. ≡Hyptis section Mesosphaeria subsection Pectinaria (Benth.) Epling. Type: Mesosphaerum pectinatum (L.) Kuntze. =Hyptis section Mesosphaeria subsection Eriocephalae Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85. 256. 1936. Type: Hyptis eriocephala Benth. (≡Mesosphaerum eriocephalum (Benth.) Kuntze)

Mesosphaerum, as delimited in this paper, is morphologically characterized an inflorescence with several to many flowers in lax or more congested cincinnate cymes, with bracteoles not forming an involucre, the flowers with a calyx often with white trichomes at the throat, and the gynoecium with stylopodium absent. There are c. 25 species, with a primarily Andean distribution, especially in Ecuador and Colombia, and in mountain areas of Mexico and Central America. M. sidifolium has a wider 75 distribution, extending also into Eastern Brazil, and M. irwinii is endemic to Bahia, NorthEast of Brazil. Epling (1949) divided Hyptis section Mesosphaeria (30 species) into five subsections: Eriocephalae (12 species) largely Andean, Spicaria (Benth.) Epling (two species), Pectinaria (Benth.) Epling (c. 14 species, including H. pectinata the only species included by Bentham (1848) in the latter section, and H. suaveolens), and the two monotypic subsections: subsection Ocimoideae Epling and Plectranthodon Epling. Molecular phylogenetic studies (Pastore & al., chapter 1) demonstrate that Hyptis section Mesosphaeria comprises at least two discrete lineages. One of these, composed by Hyptis section Mesosphaeria subsection Pectinaria p.p, Spicaria and Plectranthodon was included in this paper in Hyptis s.s. The other lineage including Hyptis section Mesosphaeria subsection Pectinaria p.p, (including H. pectinata and H. suaveolens) and Eriocephala and Hyptis section Subumbellaria Epling was recognized as a genus, Mesosphaeria. The species H. cymulosa Benth. the only one in Hyptis section Mesosphaeria subsection Ocimoideae was not included in the molecular analyses (Pastore & al., chapter 1). An infrageneric treatment of Mesosphaeria will require further molecular studies on a larger species sample, with the inclusion of H. cymulosa.

Mesosphaerum argutifolium (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis argutifolia Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 245. 1936. Type: Ecuador, Loja, Yangana, 18 Dec 1976, E. Andre 4592 (K!).

Mesosphaerum asperifolium (Standl.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis asperifolia Standl. J. Arnold Arbor. 11: 40. 1930. Type: Honduras, near Siguatepeque, Dept. Comayagua, 14-27 Feb. 1928, P.C. Standley 56231 (F photo).

Mesosphaerum chacopoyense Briq. ≡Hyptis chacopoyensis (Briq.) Briq. Annuaire Conserv. Jard. Bot. Genève 2: 204. 1898. Type: Peru, Amazonas, Chachapoyas, A. Mathews 3151 (K!).

Mesosphaerum collinum (Brandegee) Harley & J.F.B.Pastore comb. nov. ≡Hyptis collina Brandegee Proc. Calif. Acad. Sci. 2(3): 164. 1891. Probably type: Mexico, Baja California, San José del Cabo, 16 Sept. 1891, J.S. Brandegee s.n. (NY!, UC!).

76

Mesosphaerum diffusum (Epling) Harley & J.F.B.Pastore. comb. nov. ≡Hyptis diffusa Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 242. 1936. Type: Colombia, Magdalena. Santa Marta. Near Onaea, H.H. Smith 1373, 04 Dec. 1898 (K!, NY!, P photo).

Mesosphaerum diversifolium (Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. ≡Hyptis diversifolia Benth. Pl. Hartw. 144. 1846. Type: Peru, Catamayo, prope Loxa, K.T. Hartweg 803 (G!, K!, NY!, P!, W!).

Mesosphaerum eriocephalum (Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. ≡Hyptis eriocephala Benth. in DC. Prodr. 12: 124. 1848. Type: Peru, Chachapoyas, 1835, A. Mathews 1530 (K!).

Mesosphaerum gymnocaulos (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis gymnocaulos Epling. Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 246. 1936. Type: Galapagos, Island Albemarle, 10 Aug. 1905, A.N. Stewart 3326 (US!, NY!).

Mesosphaerum irwinii (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis irwinii Harley Kew Bull. 29(1): 130. 1974. Type, Brazil, Bahia, Valley of the Rio das Ondas, ca. 24 km N of the Seabra. 28 Feb. 1971, H.S. Irwin et al. 31277 (K!, NY!, UB!, UC!)

Mesosphaerum kuntzeanum Briq. Bull. Herb. Boissier 4: 787. 1896. ≡Hyptis kuntzeana (Briq.) Briq. Bull. Herb. Boissier 4: 787. 1896. Type: Bolivia, Cochabamba, C.E.O. Kuntze s.n. (G!, NY!)

Mesosphaerum lachnosphaerium (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis lachnosphaeria Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 247. 1936. Type: Ecuador, Chiborazo, Huigra, A.S. Hitchcock 20363 (K!, NY!, US!)

Mesosphaerum marrubifolium (Epling & M.E. Mathias) Harley & J.F.B.Pastore comb. nov. ≡Hyptis marrubifolia Epling & M.E. Mathias Brittonia 8: 299. 1957. Type: Peru, Amazonas, 10 km SE of Balzas, E.L. Evinger 508. (holotype US!).

77

Mesosphaerum melissoides (Kunth) Kuntze Revis. Gen. Pl. 2: 526. 1891. ≡Hyptis mellissoides Kunth in Humb., Bonpl. & Kunth Nov. Gen. Sp. 2: 320. 1818. Type: Ecuador, El Tablón, A. J. A. Bonpland 2129 (P!).

Mesosphaerum oblongifolium (Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. ≡Hyptis oblongifolia Benth. in DC. Prodr. 12: 125. 1848. Type: Mexico, C. Jurgensen 71 (K!). =Hyptis viejensis Oerst. Kjoeb. Vidensk. Meddel. 34. 1854. Type: Nicaragua, Volcan Viejo, A.S. Oersted 44 (C!) ≡Mesosphaerum viejensis (Oerst.) Kuntze Revis. Gen. Pl. 2: 527. 1891. =Hyptis chapalensis Briq. Annuaire Conserv. Jard. Bot. Geneve. 1898. Type: Mexico, Jalisco, Rich mountains near lake Chapala, 9 Dec 1889, C.G. Pringle 2440 (G!. MO photo, P photo). =Hyptis arborescens Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 34: 100. 1933. Type: Nicaragua, Volcán El Viejo, 18-22 Jan. 1903, C.F. Baker 18 (NY!, MO photo).

Mesosphaerum obtusatum (Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. ≡Hyptis obtusata Benth. Pl. Hartw. 241. 1846. Type: Ecuador, K.T. Hartweg 1322 (K!).

Mesosphaerum pectinatum (L.) Kuntze Revis. Gen. Pl. 2: 525. 1891. ≡Nepeta pectinata L. Syst. Nat. ed. 10. 2: 1097. 1759. ≡Bystropogon pectinatum (L.) L'Hér. Sert. Angl. 19. 1787. ≡Hyptis pectinata (L.) Poit. Ann. Mus. Natl. Hist. 7: 474. 1806. Lectotype: Jamaica, P. Browne 726.31 (LINN!).

Mesosphaerum perbullatum (Fernándo-Alonso) Harley & J.F.B.Pastore comb. nov. ≡Hyptis perbullata Fernándo-Alonso Rev. Acad. Colomb. Cienc. Exact. Fis. Nat. 19, 74: 475−6. 1995. Type: J.R.I. Wood 3762 (holotype COL n.v., isotype K!).

Mesosphaerum pilosum (Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. ≡Hyptis pilosa Benth. Labiat. Gen. Spec. 124. 1833. Type: Peru, 1827, J.A. Pavon s.n. (OXF!, M!, P photo).

Mesosphaerum pseudoglaucum (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis pseudoglauca Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 247. 1936. Type: Ecuador, San Pedro, C.H.T. Townsend A-107 (US!). 78

Mesosphaerum purdiei (Benth.) Kuntze Revis. Gen. Pl. 2: 527. 1891. ≡Hyptis purdiei Benth. in DC. Prodr. 12: 125. 1848. Type: Colombia, Santa Martha, July 1844, W. Purdie s.n. (K!, UC!).

Mesosphaerum septentrionale (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis septentrionalis Epling Type: México, Durango, San Ramón, 21 April - 18 May 1906, E. Palmer 111 (NY!, MO photo).

Mesosphaerum sidifolium (L'Hér.) Harley & J.F.B.Pastore comb. nov. ≡Bystropogon sidifolius L'Hér. Sert. Angl. 19. 1787. ≡Hyptis sidifolia (L'Hér.) Briq. Annuaire Conserv. Jard. Bot. Genève 2: 204. 1898. Type: Peru, J. Dombey s.n. (P!). =Hyptis polyantha Poit. Ann. Mus. Par. 7: 470. 1806. ≡Mesosphaerum polyanthum (Poit.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: ? Ecuador, Gonzanama, A.J.A. Bonpland s.n. (P!, B photo). =Hyptis umbrosa Salzm. ex Benth. Labiat. Gen. Spec. 125. 1833. Type: Brazil, Bahia, P. Salzmann s.n. (K!).

Mesosphaerum silvestre (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis silvestris Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 249. 1936. Type: Colombia, Tolima, La Virginia, Libano, 22 Dec 1917, F.W. Pennell 3274 (NY!, US!).

Mesosphaerum suaveolens (L.) Kuntze Revis. Gen. Pl. 2: 525. 1891. ≡Ballota suaveolens L. Syst. Nat. ed. 10. 2: 1100. 1759. ≡Hyptis suaveolens (L.) Poit. Ann. Mus. Natl. Hist. 7: 474. 1806. Type: Jamaica, P. Browne s.n. (LINN!).

Mesosphaerum urticoides (Kunth) Kuntze Revis. Gen. Pl. 2: 527. 1891. [as "urticodes"] ≡Hyptis urticoides Kunth in Humb., Bonpl. & Kunth Nov. Gen. Sp. 2: 320. 1818. Type: Mexico, F.W.H.A. von Humboldt & A.J.A. Bonpland (P!).

Oocephalus (Benth.) Harley & J.F.B.Pastore stat nov. ≡Hyptis section Oocephalus Benth. Labiat. Gen. Spec. 84. 1833. ≡Hyptis section Polydesmia subsect Oocephalus (Benth.) Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 250. 1936. Lectotype: Oocephalus lacunosus 79

(Pohl. ex Benth.) Harley & J.F.B.Pastore [Hyptis lacunosa Pohl ex Benth.]. chosen here. Figure 14: A–H. =Hyptis section Polydesmia subsection Glomeratae Benth. in DC. Prodr. 12: 119. 1848. p.p. syn. nov. Lectotype (Epling 1936) Hyptis glomerata Mart. ex Schrank (≡Oocephalus glomeratus (Mart. ex Schrank) Harley & J.F.B.Pastore).

This genus is characterized by the inflorescence of congested pedunculate or sessile cymes, not forming a globose or semi-globose capitulum but ± ovoid in form, surrounded by an involucre of often broad, ovate or lanceolate bracteoles. Corollas with an elongate tube. 13 species are recognized here, typically in campo rupestre of the Serra do Espinhaço of Minas Gerais and Bahia and in similar habitats in Goiás. One species is spreading into disturbed habitats and has a wider distribution, also extending into Eastern Bolivia. Further studies are needed to define more clearly the characters of the genus.

Oocephalus argyrophyllus (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis argyrophylla Harley Kew Bull. 40: 614. 1985. Type: Brazil, Bahia, Barra da Estiva on Ibicoara Road by the Rio Preto, 27 Jan 1974, R.M. Harley et al. 15515 (holotype CEPEC!, isotype K!, NY!).

Oocephalus argyrophyllus var. pedunculatus (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis argyrophylla var. pedunculata Harley Kew Bull. 40: 614. 1985. Type: Brazil, Bahia, Serra do Sincorá, 8 km S.W. of Mucugê, on road from Cascavel near Fazenda Paraguaçu, 1000 m alt., 06 Feb 1974, R.M. Harley et al. 16076 (holotype CEPEC!, isotype K!).

Oocephalus crassifolius (Mart. ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis crassifolia Mart. ex Benth. Labiat. Gen. Spec. 94. 1833. ≡Mesosphaerum crassifolium (Mart. ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Bahia, Rio de Contas [in petrosis ad Vila do Rio de Contas]. C.F.P. Martius 1976 (M!).

Oocephalus foliosus (A.St.-Hil. ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis foliosa A.St.-Hil. ex Benth. Labiat. Gen. Spec. 117. 1833. Type: Brazil, Goiás, A. Saint-Hilaire C3 709 (holotype P!). ≡Mesosphaerum foliosum (A.St.-Hil. ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. 80

Oocephalus glomeratus (Mart. ex Schrank) Harley & J.F.B.Pastore comb. nov. ≡Hyptis glomerata Mart. ex Schrank Syll. Pl. Nov. 2: 55. 1828. Type: Brazil, Minas Gerais, "circa de Buritisaes", C.F.P. Martius s.n. (M!).

Oocephalus hagei (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis hagei Harley Kew Bull. 41. 145. 1986. Type: Brazil, Bahia, Lençois, Serra da Larguinha, ca. 2 km N.E. of Caeté Açu (Capão Grande), 25 May 1980, R.M. Harley et al. 22533 (holotype CEPEC!, isotype K!).

Oocephalus halimifolius (Mart. ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis halimifolia Mart. ex Benth. Labiat. Gen. Spec. 94. 1833. ≡Mesosphaerum halimifolium (Mart. ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type, Brazil, Bahia, Rio de Contas "campis altis petrosis, Vila do Rio de Contas", Oct 1818, C.F.P. Martius s.n. (holotype M!, isotype M!, K!)

Oocephalus halimifolius var. pauciflorus (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis halimifolia Mart. ex Benth. var. pauciflora Harley Kew Bull. 40(3): 612. 1985. Type: Brazil, Bahia, Serra das Almas, ca. 25 km WNW of Town of Rio de Contas, 19 Mar 1976, R.M. Harley et al. 19676 (holotype CEPEC!, isotype K!).

Oocephalus lacunosus (Pohl ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis lacunosa Pohl ex Benth. Labiat. Gen. Spec. 94. 1833. ≡Mesosphaerum lacunosum (Pohl ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Minas Gerais, Santa Ingrazia, J.B.E. Pohl 3194 (K!, W!).

Oocephalus lythroides (Pohl ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis lythroides Pohl ex Benth. Labiat. Gen. Spec. 118. 1833. ≡Mesosphaerum lythroides (Benth.) Kuntze [as "lythrodes"] Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Goiás, Fazenda Água Fria, J.B.E. Pohl s.n.1483 (K!, W!).

Oocephalus niveus (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis nivea Epling Repert. Spec. Nov. Regni Veg. Beih. 85: 252. 1936. Type: Brazil, Goiás, A.F.M. Glaziou 21934 (holotype K!, isotype P!). 81

Oocephalus nubicola (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis nubicola Harley Kew Bull. 47: 578. 1992. Type: Brazil, Bahia, Rio de Contas, Pico das Almas, 18 Mar. 1977, R.M. Harley et al. 19614 (holotype CEPEC!, isotype K!).

Oocephalus petraeus (A.St.-Hil. ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis petraea A.St.-Hil. ex Benth. Labiat. Gen. Spec. 117. 1833. ≡Mesosphaerum petraeum (A.St.-Hil. ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Minas Gerais, "un endroit pierreux près Taioba", A. Saint-Hilaire B1 1740 (holotype P!, isotype UC!).

Oocephalus piranii (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis piranii Harley Kew Bull. 47(4): 572. 1992. Type: Brazil, Minas Gerais, Grão Mogol, Descida para Jambeiro, 850 mt alt., 15 July 1990, J.R. Pirani et al. [CFCR] 13069 (holotype SPF!, isotype K!).

Oocephalus silvinae (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis silvinae Harley Kew Bull. 40(3): 624. 1985. Brazil, Bahia, Pico das Almas, 19 Mar 1977, R.M. Harley et al. 19701 (holotype CEPEC!, isotype K!, NY!).

Physocaulon Harley & J.F.B.Pastore gen. nov. Hypeniae habitu virgato cum internodiis superis inflatis, glabris et pruinosis conveniens sed inflorescentia cymis pedunculatis usque ad 3−6- floris instructis et basi calycis bracteolis binatis destituto differt. Type: Physocaulon vitifolium (Pohl ex Benth.) Harley & J.F.B.Pastore.

Shrubs or subshrubs, often aromatic; stems virgate, erect, upper internodes glabrous, pruinose, usually strongly fistulose and inflated, nodes and lower stems often with long, rigid setose hairs; leaves lobed, sometimes weakly so; inflorescence thyrsoid, lax, formed of pedunculate, subumbellate cymes (with intercalary axes reduced), 3- to 6-flowered, flowers shortly pedicellate from the axils of minute, subulate bracts; flowers small with calyx ± actinomorphic, turbinate at anthesis, becoming ± campanulate in fruit, bracteoles reduced, when present borne near base of cyme, never paired at base of calyx, style deciduous from below nutlets, stylopodium absent. 82

Similar, in its virgate habit with upper internodes inflated, glabrous and pruinose, to Hypenia and some species of Eriope, and from all species of these in lacking a pair of bracteoles at base of calyx. One species so far described. Chromosome number: 2n = 28, differing from numbers found in Eriope (2n= 20) and Hypenia (2n= 20, 12).

The genus is restricted to usually montane cerrado areas of Bahia, Minas Gerais, Goiás and São Paulo.

Physocaulon vitifolium (Pohl ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis vitifolia Pohl ex Benth. Labiat., Gen. Spec. 138. 1833. ≡Mesosphaerum vitifolium (Pohl ex Benth.) Kuntze Revis. Gen. Pl. 2. 527. 1891 ≡Hypenia vitifolia (Pohl ex Benth.) Harley Bot. J. Linn. Soc. 98, 2: 91. 1988. Type: Brazil, Goiás, “ad Santa Cruz”, J.B.E. Pohl 6059 (W). =Hyptis calophylla A.St-Hil. ex Benth. Labiat., Gen. Spec. 138. 1833. ≡Mesosphaerum calophyllum (A.St-Hil. ex Benth.) Kuntze Revis. Gen. Pl. 2. 527. 1891. Type: Brazil, Minas Gerais, “Montagne appelée Moro dans les Minas Novas”, A. Saint-Hilaire B1 1133 (holotype P [#737445], isotype P [#737393]). =Hyptis glaziovii Briq. Bull. Herb. Boiss. 2. 716. 1894. Type: Brazil, São Paulo, Campos do Bocaina, prés S. José dos Barreiros, 6 April 1892, A.F.M. Glaziou 13047 (G!, P!).

Rhaphiodon Schauer Flora 27(1): 345. 1844. Type: Rhaphiodon echinus (Nees & Mart.) Schauer. Figure 12: E. =Hyptis section Xanthiophaea Benth. Labiat. Gen. Spec. 70. 1833. p.p.

Rhaphiodon is a monotypic genus, with R. echinus (Nees & Mart.) Schauer. It is a prostrate herb with long-pedunculate, spherical capitula, with spinose calyces (each calyx lobe with an irregular number of long marginal spines) and long, tubular, purple corollas. The gynoecium is unusual in having a small stylopodium, scarcely overtopping the ovary, and large, flattened nutlets of which usually only one develops. The spinose fruiting head is dispersed as a unit. The species occurs along seasonally damp areas especially along roadsides in the caatingas of Northeast Brazil.

Trichosphaeria (Benth.) Harley & J.F.B.Pastore stat. nov. ≡Hyptis section Trichosphaeria Benth. Labiat. Gen. Spec. 95. 1833. Lectotype: Hyptis eriophylla Pohl ex Benth. 83

(≡Trichosphaeria eriophylla (Pohl ex Benth.) Harley & J.F.B.Pastore). chosen here. Figure 15: A–F. =Hyptis section Trichosphaeria subsection Plumosae Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 280. 1936. Type: Hyptis plumosa Benth. =Hyptis section Trichosphaeria subsection Crinitae Epling Feddes Repert. Spec. Nov. Regni Veg. Beih. 85: 281. 1936. Type: Hyptis crinita Benth.

Trichosphaeria is easily recognized by the flowers in globose capitula with filiform bracteoles forming an involucres, flowers with long filiform calyx lobes, corolla tube very slender and gynoecium without a stylopodium (Epling 1949, Harley 1985). At least some species are pollinated by butterflies. There are eight species, mostly occurring in Brazilian Cerrado. Trichosphaeria martiusii is a characteristic component of Caatinga vegetation, in semi-arid areas of the Brazilian Northeast.

Trichosphaeria carvalhoi (Harley) Harley & J.F.B.Pastore comb. nov. ≡Hyptis carvalhoi Harley Kew Bull. 41(1). 1986. Type: Brazil, Bahia, Serra do Sincorá, 4 km S of Ibicoara road, 1100 mt. alt. 25 march 1980, R.M. Harley et al. 20934 (holotype CEPEC!, isotype K!, NY!).

Trichosphaeria crinita (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis crinita Benth. Labiat. Gen. Spec. 95. 1833. ≡Mesosphaerum crinitum (Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Minas Gerais, Serra do Galheiro, F. Sellow s.n. (B† photo, K!). =Hyptis spiraeifolia Mart. ex Benth. Labiat. Gen. Spec. 95. 1833. ≡Mesosphaerum spiraeifolia (Mart. ex Benth.) Kuntze Revis. Gen. Pl. 2: 527. 1891. Type: Brazil, Minas Gerais, in campis desertis Serro Frio, C.F.P. Martius s.n. (M!).

Trichosphaeria eriophylla (Pohl ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis eriophylla Pohl. ex Benth. Labiat. Gen. Spec. 96. 1833. ≡Mesosphaerum eriophyllum (Pohl ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Goiás, ad Megaponte, São Luiz [Pirenópolis], J.B.E. Pohl 1072 (K!, W!).

84

Trichosphaeria eriophylla var. coriifolia (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis eriophylla var. coriifolia Benth. Labiat. Gen. Spec. 96. 1833. Type: Brazil, Minas Gerais, Corrego Boa Vista, Serra Bom Jardim, J.B.E. Pohl 2882 (K!, W!).

Trichosphaeria martiusii (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis martiusii Benth. Labiat. Gen. Spec. 95. 1833. ≡Mesosphaerum martiusii (Benth.) Kuntze [as "martinsii"] Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Bahia, inter Santa Anna et Santo Antonio das Queimadas, C.F.P. Martius s.n. (M!) =Hyptis brachyphylla Mart. ex Benth. Labiat. Gen. Spec. 96. 1833. ≡Mesosphaerum brachyphyllum (Mart. ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Minas Gerais, in campis ad Serra Frio, C.F.P. Martius s.n. (M!)

Trichosphaeria mollissima (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis mollissima Benth. Labiat. Gen. Spec. 85. 1833. ≡Mesosphaerum mollissimum (Benth.) Kuntze Revis. Gen. Pl. 2: 256. 1891. Type: Brazil, Minas Gerais. Paranna, F. Sellow 1479 (B†, K!)

Trichosphaeria multiflora (Pohl ex Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis multiflora Pohl ex Benth. Labiat Gen. Spec. 96. 1833. ≡Mesosphaerum multiflorum (Pohl ex Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891.Type: Brazil, Minas Gerais, inter Rio Jequitinhonha et Columbis, J.B.E. Pohl s.n. (B†, K!, W!)

Trichosphaeria plumosa (Benth.) Harley & J.F.B.Pastore comb. nov. ≡Hyptis plumosa Benth. in DC. Prodr. 12: 94. 1848. ≡Mesosphaerum plumosum (Benth.) Kuntze Revis. Gen. Pl. 2: 526. 1891. Type: Brazil, Minas Gerais, Formigas, G. Gardner 5086 (K!).

Trichosphaeria simulans (Epling) Harley & J.F.B.Pastore comb. nov. ≡Hyptis simulans Epling Repert. Spec. Nov. Regni Veg. Beih. 85: 282. 1936. Type: Brazil, Ceará, Serra Araripe in “caatinga”, A. Löfgren 566 (S!). ------Incertae sedis: Hyptis section Hilaria Epling Type: Hyptis lobata A.St.-Hil. ex Benth. Labiat. Gen. Spec. 97. 1833. Type: Brazil, São Paulo, São José dos Campos?, "São Jozé", A. Saint-Hilaire 664 (F! P!). 85

Hyptis section Rhytidea Epling Type: Hyptis rhytidea Benth. Pl. Hartw. 21. 1846. Type: Mexico, 1839, K.T. Hartweg 170 (K!). ------

86

LITERATURE CITED

Aluri, R.J.S. 2005. The explosive pollination mechanism and mating system of the weedy Hyptis suaveolens (Lamiaceae). Plant Species Biology 5: 235−241. Bentham, G. 1833. Labiatarum Genera et Species. Ridgeway & Sons, London. Bentham, G. 1848. Labiatae Pp. 83−138 in: Candolle, A.P. de (ed.), Prodromus Systematis Naturalis Regni Vegetabilis, vol. 12. Masson, Paris. Brantjes, N.B.M. & Vos, O.C. de 1981. The explosive release of pollen in flowers of Hyptis Lamiaceae. New Phytologist 87: 425−430. Briquet, J. 1897. Labiatae Pp: 333−347 in: Engler, H.G.A. & Prantl, K.A.E. Die Natürlichen Pflanzenfamilien, vol. 4(3a). Wilhelm Engelmann, Leipzig. Burkart, A. 1937. El mecanismo floral de la labiada Hyptis mutabilis. Darwiniana 3: 425−427. Epling, C.C. 1936. Synopsis of the South American Labiatae. Feddes Repertorium Specierum Novarum Regni Vegetabilis 85: 1−341. Epling, C.C. 1949. Revisión del género Hyptis. Revista del Museo de La Plata. Sección Botánica 7: 1−497. Harley, R.M. 1971. An explosive pollination mechanism in Eriope crassipes, a Brazilian Labiate. Botanical Journal of the Linnean Society 3: 159−162. Harley, R.M. 1976. A Review of Eriope and Eriopidion (Labiatae). Hooker's Icones Plantarum 38: 1−107. Harley, R.M. 1985. Labiadas Pp: 1−72 in: Reitz, R. (ed.), Flora Ilustrada Catarinensis. Herbário Barbosa Rodrigues, Itajaí. Harley, R.M. 1986. Hyptis section Pachyphyllae in Brazil: Notes on New World Labiatae: IX Kew Bulletin 41: 995−1005. Harley, R.M. 1988. Revision of generic limits in Hyptis Jacq. (Labiatae) and its allies. Botanical Journal of the Linnean Society 98: 87−95. Harley, R.M. 1991. The Greasy Pole Syndrome Pp: 430−433 in: Huxley, C.R. & Cutler, D. (eds.): Ant-Plant Interactions. Oxford University Press, Oxford. Harley, R.M. 2006. Taxonomic and nomenclatural changes and two new species of Hyptis Jacq. (Lamiaceae) from Brazil. Kew Bulletin 61: 94−95. Paton, A. & Ryding, O. 1998. Hanceola, Siphocranion and Isodon and their Position in the Ocimeae (Labiatae). Kew Bulletin 53: 723−731. 87

Figure 2. Asterohyptis: A. Asterohyptis stellulata (Benth.) Epling; B–C. A. mociniana (Benth.) Epling. Photos: A. R.M. Harley; B–C. H.Vibrans. 88

Figure 3: A, D. Condea albida (Kunth) Harley & J.F.B.Pastore; B. C. fasciculata (Benth.) Harley & J.F.B.Pastore; C. Nutlets of C. fasciculata; E. C. emoryi (Torr.) Harley & J.F.B.Pastore. Photos: A,D. L.Kelly; B–C. R.M. Harley E. M.L. Charters. 89

Figure 4. Eriope and Eriopidion: A–B. Eriope latifolia (Mart. ex Benth.) Harley; C. E. tumidicaulis Harley; D. (and detail) Eriopidion strictum (Benth.) Harley; E. Eriope sp. nov.; F. E. macrostachya var grandifolia (Epling) Harley. Photos: A–F. R.M. Harley. 90

Figure 5. Gymneia: A and C. Gymneia malacophylla (Benth.) Harley & J.F.B.Pastore; B. Gymneia sp. nov.; D. G. ampelophylla (Epling) Harley & J.F.B.Pastore; E. G. ovalifolia (Benth.) Harley & J.F.B.Pastore. Photo: A–E. R.M. Harley. 91

Figure 6. Eplingiella: A. Eplingiella cuniloides (Epling) Harley & J.F.B.Pastore; B–C. E. fruticosa (Salzm. ex Benth.) Harley & J.F.B.Pastore. Photos: A–C. R.M. Harley; B. A. Popovkin 92

Figure 7. Hypenia: A. Hypenia simplex (St. Hil. ex Benth.) Harley & J.F.B.Pastore; B. H. calycina (Pohl ex Benth.) Harley; C. H. crispata (Pohl ex Benth.) Harley; D and E. H. salzmannii (Benth.) Harley; F. H. marifolia (Benth.) Harley. Photos: A–F. R.M. Harley.

Figure 8. Cyanocephalus: A. Cyanocephalus rugosus (Benth.) Harley & J.F.B.Pastore; B e C. C. delicatulus (Harley) Harley & J.F.B.Pastore; D. C. selaginifolius (Mart. ex Benth.) Harley & J.F.B.Pastore; E. C. lippioides (Pohl ex Benth.) Harley & J.F.B.Pastore. Photos: A–E. R.M. Harley. 93

Figure 9. Hyptidendron: A. Hyptidendron arboreum (Benth.) Harley; B. H. caudatum (Epling & Játiva) Harley; C, D and E. H. canum (Pohl ex Benth.) Harley. Photo: A–E. R.M. Harley. 94

Figure 10. Hyptis: A. Hyptis hassleri Briq.; B. H. cruciformis Epling; C. H. nudicaulis Benth. D. H. colligata Epling & Játiva; E. H. proteoides A.St.-Hil ex Benth.; F. H. pycnocephala Benth.; G. H. passerina Mart. ex Benth. Photos: A–B (and detail), E–G. R.M. Harley; C–D. J.F.B.Pastore 95

Figure 11. Hyptis: A. Hyptis caespitosa A.St.-Hil. ex Benth.; B. H. rhomboidea M. Martens & Galeotti; C. H. lappulacea Mart. ex Benth.; D. H. frondosa S. Moore; E. H. conferta Pohl ex Benth. var conferta; F. H. hirsuta Kunth; G. H. villosa Pohl ex Benth.; H. H. lacustris A.St.-Hil. ex Benth.; I. Hyptis linarioides Pohl ex Benth. Photo: A–I. R.M. Harley. 96

Figure 12. Hyptis sect. Peltodon and Rhaphiodon: A. Hyptis campestris Harley & J.F.B.Pastore; B. and D. H. comaroides (Briq.) Harley & J.F.B.Pastore; C. H. radicans (Pohl) Harley & J.F.B.Pastore; E. Rhaphiodon echinus (Ness & Mart) Schauer; F. Hyptis pusilla (Pohl.) Harley & J.F.B.Pastore Photos: A–F. R.M. Harley. 97

Figure 13. Hyptis: A. Hyptis carpinifolia Benth.; B. H. propinqua Epling; C. (and detail) H. mutabilis Briq.; D. H. rubicunda Pohl ex Benth. Photo: A–B, D. R.M. Harley; C. (and detail) J.R. Gwaltney. 98

Figure 14. Oocephalus: A e C. Oocephalus silvinae (Harley) Harley & J.F.B.Pastore; B. O. lythroides (Pohl ex Benth.) Harley & J.F.B.Pastore; D. O. crassifolius (Mart. ex Benth.) Harley & J.F.B.Pastore; E. O. subrotundus (Pohl ex Benth.) Harley & J.F.B.Pastore; F. O. halimifolius (Mart. ex Benth.) Harley & J.F.B.Pastore; G. O. niveus (Epling) Harley & J.F.B.Pastore; H. Oocephalus rigens ined.; Photos: A–H. R.M. Harley. 99

Figure 15. Trichosphaeria: A. Trichosphaeria carvalhoi (Harley) Harley & J.F.B.Pastore; B–C. T. eriophylla (Pohl ex Benth.) Harley e J.F.B.Pastore; D–E. T. martiusii (Benth.) Harley & J.F.B.Pastore; F. T. plumosa (Benth.) Harley & J.F.B.Pastore. Photos: A–B, D–F. R.M. Harley; C. J.F.B. Pastore.

Figura 16. Martianthus: A–B. Martianthus stachydifolius (Epling) Harley & J.F.B.Pastore; C. Martianthus leucocephalus (Mart. ex Benth.) J.F.B.Pastore. Photos: A–C. R.M. Harley. 100

Figure 17. Leptohyptis: A. Leptohyptis siphonantha (Harley) Harley & J.F.B.Pastore; B. L. pinheiroi (Harley) Harley & J.F.B.Pastore; C. L. calida ( Mart. ex Benth.) Harley & J.F.B.Pastore. Photos: A–C. R.M. Harley. 101

Figure 18. Marsypianthes: A, B and F. Marsypianthes burchellii Epling; C. Marsypianthes sp. nov.; D. M. montana Benth.; E. M. hassleri Briq. Photo. A–F. R.M. Harley. 102

Figure 19. Mesosphaerum: A. Mesosphaerum suaveolens (L.) O.Kuntze; B. M. sidifolium (L’Hér.) Harley & J.F.B. Pastore; C. M. oblongifolium (Benth.) Kuntze; D. M. irwinii (Harley) Harley & J.F.B.Pastore. Photos: A–B, D. R.M. Harley; C. M.O. Muriel.

103

Considerações Finais

Para o capítulo 1, que trata da filogenia da subtribo Hyptidinae, foi encontrada, de maneira geral, baixa taxa de variabilidade nas regiões de DNA estudadas, principalmente naquelas de DNA plastidial. Algumas regiões avaliadas por Shaw et al. (2007) tais como rpl32– trnL, ndhF–rpl32, trnQ–rps16, psbD–trnT, rps16–trnK, ycf–trnC e psbA-trnH e rps16 foram testadas porém não apresentaram taxa de variabilidade promissora e/ou não foram facilmente amplificadas. Desta forma, não foi possível comparar de forma mais aprofundada as filogenias de DNA plastidial e nuclear.

Para o capítulo 2 que trata das considerações taxonômicas, algumas informações serão incluídas apenas para a publicação dos dados, sendo estas uma chave de identificação para os gêneros de Hyptidinae e mapas de distribuição para as espécies de cada grupo que ainda estão em processo de elaboração.

Como perspectiva de estudos futuros em Hyptidiane está a análise de reconstrução do estado ancestral dos caracteres e a estimação da idade dos clados que devem sustentar um discussão mais profunda sobre os resultados obtidos. Sobre os estudos filogenéticos em Hyptidinae, é ainda necessário um estudo mais aprofundado em Hyptis s.s. e Hyptidendron os quais não foram bem resolvidos. Acredita-se no momento que outras regiões nucleares altamente variáveis, que resultaram em recentes pesquisas promissoras em Lamiales, poderiam ser utilizadas, como por exemplo, a região WAXY. Um interessante aspecto sobre a biogeografia de Hyptidinae poderá ser abordado em estudos futuros como os freqüentes eventos de disjunção entre grupos próximos correelacionados a ocorrência de metacomunidade (no caso a STDF) ao mesmo tempo a estruturação geográfica de alguns grupos no bioma Cerrado (como discutido por Simon et al. 2009*). Entranto seria prematuro apresentar agora uma discussão sobre estas questões biogeográficas devido a amostragem ainda incompleta ou falta de resolução de alguns clados no estudo filogenético.

*Simon, M.F.; Grether, R; Queiroz, L.P. de; Skema, C.; Pennington, R.T. & Hughes, C.E. 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences 106: 20359−20364. KEW BULLETIN VOL. 65:59–63 (2010)

Hyptis kramerioides (Lamiaceae), a new species from central Brazil with notes on subsect. Passerinae

Raymond M. Harley1,2 & José Floriano Barêa Pastore3

Summary. A new species of Hyptis sect. Eriosphaeria (Lamiaceae) from Goiás (Brazil) is described, illustrated and compared with related species in sect. Eriosphaeria subsect. Passerinae. An evaluation of the species of the group and a key to identification is provided. Resumo. Uma nova espécie de Hyptis sect. Eriosphaeria (Lamiaceae) de Goiás (Brasil) é descrita, ilustrada e com- parada com as outras espécies de sect. Eriosphaeria subsect. Passerinae. É apresentada uma avaliação das espécies do grupo e uma chave de identificação das mesmas.

Key Words. Hyptis, new species, subsect. Passerinae, taxonomy.

and raised to sectional rank as sect. Pachyphyllae (Harley Introduction 1986), on account of its unusual distichous arrange- Hyptis sect. Eriosphaeria Benth. is a distinct group of ment of the involucral bracteoles, tubular corollas and just over 27 species, most of which are restricted to distinctive vegetative appearance. The new species of tropical Brazil, occurring especially in the campos sect. Eriosphaeria, here described, which displays the rupestres of montane Bahia, Goiás and Minas Gerais. elongate stylopodium typical of the section, falls natu- Three are more widespread, however, with Hyptis rally into subsect. Passerinae Benth. in DC., due to its dilatata Benth. extending into Northern South Amer- very small, compact, hemispherical capitula and its ica: Venezuela, Colombia and the Guianas and also to entire, narrowly elliptic leaves, tapering to a sessile base, Panama, while H. velutina Pohl ex Benth. and H. rather densely hairy with short, appressed hairs. crenata Pohl ex Benth., both widespread in Brazilian cerrado, extend also into Eastern Bolivia. The section is composed of herbs or subshrubs with Hyptis kramerioides Harley & J. F. B. Pastore sp. nov. leaves arranged along the stem and often imbricate Inter species (H. lanuginosa excepta) subsectionis fl and sessile; the owers are arranged in usually densely Passerinarum capitulis sessilibus et lobis calycis elongatis hairy capitula, which are sessile to shortly pedunculate > 4 mm longis differt; ab Hyptis lanuginosa Glaz. ex fl from the axils of usually foliose bracts; owers with Epling foliis concoloribus, nec discoloribus, in paginis calyx tube straight, usually densely hairy, at least ambabus folii dense tomentosis, trichomatibus adpressis above, and often with long silky hairs from base, calyx brevibus rigidis, nunquam trichomatibus elongatis lobes short, deltate to lanceolate, rarely rigid and sericeis, vestitis, et subula apicale loborum calycis minute subulate, rarely with aristate apices; gynoecium with denticulata, non ciliata trichomatibus elongatis sericeis, style with rather short stigmatic lobes and a persistent differt. Typus: Brazil, Goiás, Cavalcante, Pastore, Harley & style-base (stylopodium), overtopping the 4-lobed ovary; Santos 1824 (holotypus HUEFS; isotypi CEN, K). nutlets verrucose, often apiculate or with emarginate apex, and with pericarp mucilaginous when wet. http://www.ipni.org/urn:lsid:ipni.org:names:77104368-1 Inthemostrecentfullaccountofthegenus(Epling 1949), the section was divided into eight subsections, Perennial, caespitose subshrub, with usually several based on various vegetative and reproductive characters. slender stems 35 – 50 cm high, branched or simple, Later on subsection Pachyphyllae Harley was removed arising from a well-developed xylopodium, younger

Accepted for publication March 2010. 1 Honorary Research Fellow, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, U.K. 2 Post-graduate Programme in Botany, Depto de Ciências Biológicas, Universidade Estadual de Feira de Santana, Km 03, BR116, Campus, Feira de Santana, 44031-460, Bahia, Brazil. e-mail: [email protected] 3 Post-graduate Programme in Botany, Departamento de Ciências Biológicas, Laboratório de Sistemática Molecular de Plantas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.

© The Board of Trustees of the Royal Botanic Gardens, Kew, 2010 60 KEW BULLETIN VOL. 65(1) stems quadrangular, 1 – 2.5 cm diam., densely covered 13°37 ′48 ″S, 47°45 ′10 ″W, 13 March 2007, Pastore, Harley with strongly antrorsely appressed, short, rigid, slightly & Santos 1824 (holotype HUEFS; isotypes CEN, K); glossy hairs and sessile glands, older stems terete, São João da Aliança on road to Alto Paraíso de Goiás, < c. 3 mm diam. at base, glabrescent, dark brown. 14°10 ′11 ″S, 47°30 ′58 ″W, 12 March 2007, Pastore, Harley Cauline leaves sessile, densely imbricate, erect, and & Santos 1789 (HUEFS, CEN, K); Alto Paraíso de usually crowded towards stem apices, lower stems Goiás on road to São Jorge, 14°08 ′05 ″S, 47°43 ′48 ″W, becoming bare, lamina 0.8 – 1.4 × 0.1 – 0.3 cm, 14 March 2007, Pastore, Harley & Santos 1845 (HUEFS, membranous, narrowly elliptic-lanceolate, apex acute CEN, K). Alto Paraiso de Goiás, 10 km W da cidade, to acuminate with slightly swollen (?secretory) apicu- na estrada para Colinas do Sul, 900 m alt., 7 Feb. lus, base narrowed, acute, margin entire and some- 1987, Pirani, J. R. et al. 1766 — misidentified as times weakly recurved, concolorous, with both surfaces Hyptis lanuginosa — (SPF, K); Alto Paraiso de Goias, densely covered with strongly antrorsely appressed, 5 – 10 km ao Sul de Alto Paraiso, 24 May 1975, short, rigid, slightly glossy, greyish hairs, and appear- G. Hatschbach 36784 (K, MBM). ing pale grey-green, almost glaucous in fresh material, HABITAT. This new species is from a floristically rich and numerous sessile glands (darkened in herbarium mountain region, the Chapada dos Veadeiros in Goiás material), veins obscured by indumentum. Inflores- State, in the Campos Rupestres Biome. This is a mosaic cence an unbranched terminal thyrse of subspherical, of rock outcrops interspersed with often boggy or sessile capitula 10 – 12 mm diam., crowded toward sandy savanna areas (Harley & Simmonds 1986), apex of flowering stems, borne singly from the axils of noted for its very high proportion of endemic species. leaf-like bracts, these generally smaller than cauline CONSERVATION STATUS. None of the collecting sites leaves, and surrounded by an involucre of bracteoles, are more than 60 km apart and fall between 810 and the outer 6 – 7 × 1.0 – 1.5 mm, narrowly lanceolate 1200 m elevation, within a conservation area: the and with base strongly curved and concave on inner Chapada dos Veadeiros National Park (Goiás State). surface, margin entire, becoming densely long-ciliate Our fieldwork suggests that the new species is not rare towards base with white hairs, outer surface densely in the region, and that further populations will covered with strongly antrorsely appressed, short, rigid, eventually be found in the intervening areas, where slightly glossy, greyish hairs and numerous sessile access is necessarily more restricted. The habitat is, glands, inner surface glabrous at base becoming hairy however, subject to burning in the dry season and towards apex, inner bracteoles narrower, often with could become vulnerable. We therefore recommend shortly and sparsely hairy, subulate apex, the dense, that it be considered Near Threatened (NT) accord- long, white cilia at base of bracteoles giving capitulum ing to the IUCN Red List criteria (IUCN 2001). a white-hairy appearance. Flowers subsessile, with long ETYMOLOGY. This new species is named for the rather erect, silky white hairs ascending from base, calyx at striking appearance of the capitulum, which, with its anthesis 7.25 – 7.5 mm long, tube c. 2.5 × 1.5 mm, rigid calyx lobes and small greyish entire leaves, recalls narrowly cylindrical and widening gradually towards a species of Krameria. throat, membranous, with thickened, prominent NOTES. Section Passerinae Benth. was included by nerves especially just below throat, externally hairy Epling in his revision of the genus Hyptis Jacq. (1949), distally with long, weak, antrorsely appressed hairs and in which he recognised five species: H. leptoclada Benth. densely glandular with crowded, sessile glands, internally in DC., H. lanuginosa Glaz. ex Epling, H. passerina glabrous, lobes c. 5 mm long, subequal, straight, narrowly Mart. ex Benth., H. selloi Benth. and H. gardneri Briq., lanceolate with long, slender, subulate apex, conspicu- all of which are restricted to montane areas of Goiás ously whitish-green when fresh, becoming ferrugineous and Minas Gerais States. The first of these, H. leptoclada, in herbarium material, margins densely long-white-ciliate from Diamantina, Minas Gerais, was included by at base, subula ‘denticulate’ above due to very short Bentham (1848) in subsect. Velutinae Benth. in DC, trichomes borne sparsely on margin, calyx in fruit and but removed from there and placed in its present nutlets not seen; corolla white or with lobes pale lilac, position by Epling (1936), who apparently placed more shorter than calyx, tube 4 – 5mmlong,externally importance on leaf size (leaves less than 1 cm long) sparsely hairy and lobes with sessile glands, internally than on the other characters which he used to hairy, especially along posterior stamen traces, stamens distinguish subsect. Passerinae from subsect. Velutinae. with filaments glabrous, gynoecium glabrous, ovary lobes These were: leaf indumentum slender and appressed apiculate, apicula often purple-tinged, stylopodium and leaf venation not reticulate. In other species of shortly overtopping ovary, style glabrous. Fig. 1. subsect. Passerinae, the venation is not visible and the leaf surface is smooth, while the indumentum is DISTRIBUTION. South America: Brazil, Goiás state, distinctly appressed, usually with very short slender Chapada dos Veadeiros. hairs. In H. leptoclada the small leaves are distinctly SPECIMENS EXAMINED. BRAZIL. Goiás: Cavalcante, reticulate and the venation apparent, while the indu- caminho para o Vão do Moleque e São Domingos, mentum is rather coarse, not appressed and turns

© The Board of Trustees of the Royal Botanic Gardens, Kew, 2010 HYPTIS KRAMERIOIDES (LAMIACEAE), A NEW SPECIES FROM CENTRAL BRAZIL 61

Fig. 1. Hyptis kramerioides. A habit; B leaf adaxial surface; C leaf abaxial surface; D indumentum detail adaxial surface of leaf; E indumentum detail abaxial surface of leaf; F involucral bracteole outer surface; G capitulum; H calyx displayed to show external surface; J flower side view; K corolla side view; L part of stamen showing anther; M gynoecium; N ovary and base of style showing stylopodium; P apical portion of style. All from Pastore et al. 1824. DRAWN BY CARLA LIMA.

© The Board of Trustees of the Royal Botanic Gardens, Kew, 2010 62 KEW BULLETIN VOL. 65(1) yellowish on drying, which is a character of several of leaf width which is more or less continuous. Indeed, species of subsect. Velutinae, to which group this species a similar situation exists as regards leaf length, where obviously belongs and to where we now reassign it. Hyptis selloi tends to have more elongate leaves: c. 10 – The new species, Hyptis kramerioides, had been over- 12 mm long, against c. 8 – 10 mm in H. passerina, with looked, due to confusion with another species of no clear hiatus between the two. We have therefore subsect. Passerinae from the same area: H. lanuginosa, decided to uphold Epling’s original opinion and treat which shares with H. kramerioides the finely subulate H. selloi as a variety, for those who wish to make use of calyx lobes. However, on seeing both species in the field, it. Leaf shape does appear to be under genetic we were struck by the very different appearance of the control, however, as a number of populations exist former from all other members of the subsection, with where only selloi or passerina forms occur, while others its bluish-violet corolla and larger capitulum and the display a range of forms. Geographical separation long silky indumentum of the leaves, characters found between the two is far from complete. Material in species of subsect. Sessilifoliae Benth. in DC., such as referable to var. selloi has been recorded from Goiás: H. crenata. The main evidence for placing H. lanuginosa especially Cristalina, where some specimens are inter- in subsect. Passerinae, is its virgate habit with narrowly mediate with the typical variety, and from Minas elliptic, entire leaves very similar in shape to those of Gerais, Serra da Canastra, Serra do Cabral and São other species of the subsection. The leaf indumentum João d’El Rey, with intermediate forms and the typical of long, silky hairs is unknown elsewhere in the group variety also recorded from these localities. Populations and, together with the characters just mentioned above, from the Serra do Cipó, in Minas Gerais, are almost recalls some species of subsect. Sessilifoliae,towhich,when entirely of the typical variety with short, broad leaves, further evidence becomes available, it may perhaps be although one collection from the area: Município of more appropriately assigned. Until the results of a Conceição do Mato Dentro, Hatschbach & Nicolack molecular study of the entire group, now in progress, is 52917, (K, MBM), falls within var. selloi. complete, it would be unwise to make any firm Hyptis gardneri from Minas Gerais, Diamantina area, pronouncements as to the value of any of the numerous which resembles H. passerina in many respects, differs subsections at present recognised in the genus. in having a slightly more sericeous leaf indumentum Two other species are also here re-evaluated. In his and broader capitula. Unfortunately it is only repre- original work on South American Labiatae, Epling sented by the type collection and no subsequent (1937) reduced Hyptis selloi to varietal status under gatherings can be reliably referred to it, although H. passerina. In his later revision, however (Epling some specimens have been determined as such. 1949), he reverted to the original position taken by Originally described by Bentham (1848)asHyptis Bentham treating the two as distinct species, although passerina var. latifolia Benth. in DC., before being the only distinction he mentions is leaf width: 1 – raised to specific rank by Briquet (1898), it requires 1.5 mm in H. selloi and 2 – 4mminH. passerina. more detailed study, when further collections become As much more material is today available for available and its status can be ascertained. analysis, it has become clear that this distinction, The following key should help to distinguish species based on leaf width, is an artificial one and while the of subsect. Passerinae (including Hyptis lanuginosa, which extremes appear strikingly different, there is a range for the time being is provisionally accepted here).

Key to Species in Hyptis subsect. Passerinae

1. Capitula sessile, flower with calyx lobes 4 – 5 mm long, with slender, subulate apex...... 2 1. Capitula shortly pedunculate, flower with calyx lobes 2 mm long or less, often broadly triangular, apex acute to obtuse, not subulate...... 3 2. Leaves discolorous, greener on adaxial surface, on abaxial surface silvery with long sericeous hairs, calyx lobes denselyhairy,ciliatewithlong,sericeoushairs,lobesnotferrugineousondrying...... Hyptis lanuginosa 2. Leaves concolorous, with both surfaces grey with short, rigid, appressed hairs, calyx lobes with margin appearing denticulate with very short cilia, pale greenish-white at first, becoming ferrugineous on drying...... Hyptis kramerioides 3. Leaves rather densely sericeous with appressed hairs, narrowly linear-elliptic or oblong to obovate, apex usually acute, capitula 10 – 12 mm diam...... Hyptis gardneri 3’.Leaves greyish with short, rigid, appressed hairs, broadly ovate with obtuse apex, capitula c. 6 – 8.5 mm diam...... (Hyptis passerina) 4 4. Leaves < 2 mm wide ...... Hyptis passerina var. selloi 4’. Leaves > 2 mm wide ...... Hyptis passerina var. passerina

© The Board of Trustees of the Royal Botanic Gardens, Kew, 2010 HYPTIS KRAMERIOIDES (LAMIACEAE), A NEW SPECIES FROM CENTRAL BRAZIL 63

Acknowledgements Briquet, J. (1898). Fragmenta Monographiae This work was made possible with financial support from Labiatarum V. Annuaire Conserv. et Jard. Bot. Ministério da Ciência e Tecnologia (MCT) through the Genève 2: 230. Instituto do Milênio do Semi-árido (IMSEAR) and Epling, C. (1935 – 7).SynopsisoftheSouth Programa de Biodiversidade (PPBIO), CENARGEN, in American Labiatae. Repert. Spec. Nov. Regni Veg. Beih. Brasília, for the use of a vehicle, and for the scholarship 85: 1 – 341. for the junior author from CAPES. We wish to thank ____ (1949). Revisión del Género Hyptis (Labiatae). Carla Lima for the illustration of Hyptis kramerioides,also Revista Mus. La Plata. 7: 153 – 497. Sr A. A. Santos, who accompanied us into the field, and Dr Taciana Cavalcanti, for all the facilities provided for Harley, R. M. (1986). Hyptis sect. Pachyphyllae in fieldwork and in the herbarium (CEN). Brazil. Notes on New World Labiatae IX. Kew Bull. 41: 995 – 1005. ____ & Simmons, N. A. (1986). Florula of Mucugê. References Royal Botanic Gardens, Kew. Bentham, G. (1848). Labiatae. In: A. P. de Candolle IUCN (2001). IUCN Red List Categories and Criteria, Version (ed), Prodromus Systematis Naturalis Regni Vegetabilis 3.1. IUCN, Gland, Switzerland and Cambridge, UK. 12: 30 – 148. Victor Masson, Paris. http://www.iucn.org.

© The Board of Trustees of the Royal Botanic Gardens, Kew, 2010