RIS-0009-CCS. Identification of Signalling and Related Equipment

Total Page:16

File Type:pdf, Size:1020Kb

RIS-0009-CCS. Identification of Signalling and Related Equipment Uncontrolled when printed Document supersedes GKRT0009 Iss 4 and GKGN0609 Iss 1 with effect from 02/09/2017 Rail Industry Standard RIS-0009-CCS Issue One Date September 2017 Identification of Signalling and Related Equipment Synopsis This document sets out the principles for ensuring that signaling and related assets are uniquely identified. Copyright in the Railway Group documents is owned by Rail Safety and Standards Board Limited. All rights are hereby reserved. No Railway Group document (in whole or in part) may be reproduced, stored in a retrieval system, or transmitted, in any form or means, without the prior written permission of Rail Safety and Standards Board Limited, or as expressly permitted by law. RSSB members are granted copyright licence in accordance with the Constitution Agreement relating to Rail Safety and Standards Board Limited. In circumstances where Rail Safety and Standards Board Limited has granted a particular person or organisation permission to copy extracts from Railway Group documents, Rail Safety and Standards Board Limited accepts no responsibility for, nor any liability in connection with, the use of such extracts, or any claims arising therefrom. This disclaimer applies to all forms of media in which extracts from Railway Group documents may be reproduced. Published by: RSSB © Copyright 2017 Rail Safety and Standards Board Limited RIS-0009-CCS Page 1 of 35 Uncontrolled when printed Document supersedes GKRT0009 Iss 4 and GKGN0609 Iss 1 with effect from 02/09/2017 Rail Industry Standard Identification of Signalling and RIS-0009-CCS Issue One Related Equipment Date September 2017 Issue record Issue Date Comments One September 2017 Replaces Railway Group Standard GKRT0009 Issue Four as GKRT0009 could not be retained as a National Technical Rule and is therefore reclassified as a Rail Industry Standard. It also replaces the associated guidance note GKGN0609 Issue One. Superseded or replaced documents The following Railway Group documents are superseded or replaced, either in whole or in part as indicated: Superseded documents Sections Date when superseded sections are superseded GKRT0009 Identification of Signalling and All 02 September Related Equipment, Issue Four 2017 GKGN0609 Guidance on Identification of All 02 September Signalling and Related Equipment, Issue One 2017 GKRT0009 issue four ceases to be in force as of 02 December 2017. Supply The authoritative version of this document is available at www.rssb.co.uk/railway-group- standards. Enquiries on this document can be forwarded to [email protected]. RIS-0009-CCS Page 2 of 35 Uncontrolled when printed Document supersedes GKRT0009 Iss 4 and GKGN0609 Iss 1 with effect from 02/09/2017 Identification of Signalling and Rail Industry Standard RIS-0009-CCS Related Equipment Issue One Date September 2017 Contents Section Description Page Part 1 Introduction 4 1.1 Purpose of this document 4 1.2 Application of this document 4 1.3 Health and safety responsibilities 4 1.4 Approval and authorisation of this document 4 Annexes Annex A Content of GKRT0009, Issue Four 5 Annex B Content of GKGN0609, Issue One 18 Definitions and References 35 RIS-0009-CCS Page 3 of 35 Uncontrolled when printed Document supersedes GKRT0009 Iss 4 and GKGN0609 Iss 1 with effect from 02/09/2017 Rail Industry Standard Identification of Signalling and RIS-0009-CCS Issue One Related Equipment Date September 2017 Part 1 Introduction 1.1 Purpose of this document 1.2 Regulation (EU) 402/2013 on a common safety method for risk evaluation and assessment (CSM RA) requires Proposers to identify the hazards arising from planned changes and apply three risk acceptance principles to confirm that the risk arising from the hazards is controlled to an acceptable level. 1.3 RIS-0009-CCS can assist Proposers in applying the CSM RA before planned changes to signalling and related identities are put into use. 1.4 This RIS can be adopted by IMs and RUs under their respective safety management system (SMS). 1.5 RIS-0009-CCS, which replaces GKRT0009 and GKGN0609, reproduces the text of GKRT0009 in its entirety in Annex A and GKGN0609 in Annex B. 1.6 Application of this document 1.6.1 Compliance requirements and dates have not been specified since these will be the subject of internal procedures or contract conditions. 1.6.2 The Standards Manual and RGS Code does not currently provide a formal process for deviating from RISs. However, a member of RSSB, having adopted a RIS and wishing to deviate from its requirements, may request a Standards Committee to provide observations and comments on their proposed alternative to the requirement in the RIS. Requests for observations and comments should be submitted to RSSB by e-mail to [email protected]. When formulating a request, consideration should be given to the advice set out in the ‘Guidance to applicants and members of Standards Committee on deviation applications’, available from RSSB’s website. 1.7 Health and safety responsibilities 1.7.1 Users of documents published by RSSB are reminded of the need to consider their own responsibilities to ensure health and safety at work and their own duties under health and safety legislation. RSSB does not warrant that compliance with all or any documents published by RSSB is sufficient in itself to ensure safe systems of work or operation or to satisfy such responsibilities or duties. 1.8 Approval and authorisation of this document 1.8.1 The content of this document was approved by Control Command and Signalling Standards Committee on 13 April 2017. 1.8.2 This document was authorised by RSSB on 31 July 2017. RIS-0009-CCS Page 4 of 35 Uncontrolled when printed Document supersedes GKRT0009 Iss 4 and GKGN0609 Iss 1 with effect from 02/09/2017 Identification of Signalling and Rail Industry Standard RIS-0009-CCS Related Equipment Issue One Date September 2017 Annex A Content of GKRT0009, Issue Four RIS-0009-CCS Page 5 of 35 Uncontrolled when printed Document supersedes GKRT0009 Iss 4 and GKGN0609 Iss 1 with effect from 02/09/2017 Railway Group Standard GK/RT0009 Issue four Date June 2011 Identification of Signalling and Related Equipment Synopsis This document defines the principles for ensuring that signalling and related assets are uniquely identified. Copyright in the Railway Group Standards is owned by Rail Safety and Standards Board Limited. All rights are hereby reserved. No Railway Group Standard (in whole or in part) may be reproduced, stored in a retrieval system, or transmitted, in any form or means, without the prior written permission of Rail Safety and Standards Board Limited, or as expressly permitted by law. RSSB Members are granted copyright licence in accordance with the Constitution Agreement relating to Rail Safety and Standards Board Limited. In circumstances where Rail Safety and Standards Board Limited has granted a particular person or organisation permission to copy extracts from Railway Group Standards, Rail Safety and Standards Board Limited accepts no responsibility for, nor any liability in connection with, the use of such extracts, or any claims arising therefrom. This disclaimer applies to all forms of media in which extracts from Railway Group Standards may be reproduced. Published by RSSB Block 2 Angel Square 1 Torrens Street London EC1V 1NY © Copyright 2011 Rail Safety and Standards Board Limited Uncontrolled when printed Document supersedes GKRT0009 Iss 4 and GKGN0609 Iss 1 with effect from 02/09/2017 Railway Group Standard GK/RT0009 Issue four Identification of Signalling Date June 2011 and Related Equipment Issue record Issue Date Comments One January 1997 Original document supersedes SSP32, SSP53, SSP54, SSP79 Two October 2003 Replaces issue one Three October 2009 The following sections were amended as a small- scale change: B9, B10.1 and B14 References Four June 2011 Replaces issue three Changed to include only interface measures in accordance with the RGS Code Superseded documents The following Railway Group documents are superseded, either in whole or in part as indicated: Superseded documents Sections Date when superseded sections are superseded GK/RT0009, issue 3, Identification of Signalling Whole 03 September 2011 and Related Equipment GK/RT0045, issue 1, Lineside Signals, Indicators 9.1.1, 9.1.2, 03 September 2011 and Layout of Signals 9.1.3, 9.1.4 and 9.1.5 GK/RT0009, issue 3, Identification of Signalling and Related Equipment ceases to be in force and is withdrawn as of 03 September 2011. Supply The authoritative version of this document is available at www.rgsonline.co.uk. Uncontrolled copies of this document can be obtained from Communications, RSSB, Block 2, Angel Square, 1 Torrens Street, London EC1V 1NY, telephone 020 3142 5400 or e-mail [email protected]. Other Standards and associated documents can also be viewed at www.rgsonline.co.uk. Page 2 of 12 RSSB Uncontrolled when printed Document supersedes GKRT0009 Iss 4 and GKGN0609 Iss 1 with effect from 02/09/2017 Railway Group Standard GK/RT0009 Identification of Signalling Issue four and Related Equipment Date June 2011 Contents Section Description Page Part 1 Purpose and Introduction 4 1.1 Purpose 4 1.2 Introduction 4 1.3 Approval and authorisation of this document 4 Part 2 Requirements for Identification of Signalling and Related Equipment 5 2.1 Allocation of infrastructure asset identities 5 2.2 Display of infrastructure asset identities 6 2.3 Train identity 8 Part 3 Application of this document 9 3.1 Application - infrastructure managers 9 3.2 Application - railway undertakings 9 3.3 Health and safety responsibilities 10 Definitions and Abbreviations 11 References 12 RSSB Page 3 of 12 Uncontrolled when printed Document supersedes GKRT0009 Iss 4 and GKGN0609 Iss 1 with effect from 02/09/2017 Railway Group Standard GK/RT0009 Issue four Identification of Signalling Date June 2011 and Related Equipment Part 1 Purpose and Introduction 1.1 Purpose 1.1.1 This document sets out the principles for the identification of signalling and associated assets and for their signing, to ensure that the equipment and locations can be clearly and unambiguously identified.
Recommended publications
  • Signalling Control Table Design and Test Knowledge
    CPD Series: Signalling Control Table Design and Test Knowledge Course Code: SC 20-038 30 October 2020 (Friday), 7:00 pm – 10:00 pm Objectives and Learning Outcomes This course aims to provide participants in-depth knowledge in signalling control table design and test. Upon completion of this course, participants will be able to: • Understand how to set a signalling route and call a point machine through a number of relay logic circuit sequences • Understand how to normalize a route through trains passing through and by route button pull with or without approaching train • Understand how the relay logic circuits and Solid Course Structure State Interlocking (SSI) data are implemented This course covers the following major according to the control tables topics: • Understand what tests will be conducted before an interlocking system is put into service • Route Relay Interlocking (RRI) principles and related relay circuit sequence for Who Should Attend route setting Those who are interested in railway signalling • Relationship between control tables technology in design, test and commissioning aspects design and signalling circuits on-site implementation Pre-requisites • Introduction of how the Solid State Participants with signalling knowledge and practical Interlocking (SSI) performs the safety experience are preferable* function in Interlocking design to ensure same integrity of RRI Language • What tests will be done in the signalling Cantonese with English terminologies (with presentation circuit during implementation stage slides in English) • How to do the signalling system control tests (Signal, Route & Point Machine) Venue before a signalling system is put into MTR Academy - Hung Hom Centre, Kowloon, Hong Kong service to ensure the signalling circuit is implemented according to the control Mode of Learning table design Classroom lecture and discussion Speaker Timothy Y.T.
    [Show full text]
  • Education, Research and Collaboration in Railway Signalling, Control and Automation Yul Yunazwin Nazaruddin, Prof
    International Webinar on “Railway-University Link: Railway Research and Education Outlook“, Thursday, 21 January’2021 Education, Research and Collaboration in Railway Signalling, Control and Automation Yul Yunazwin Nazaruddin, Prof. Chair of Instrumentation and Control Research Group, ITB Senior Research Fellow of the National Center for Sustainable Transportation Technology (NCSTT) e-mail : [email protected] OUTLINE 1. Graduate Program in Instrumentation and Control with Specialization in Railway Signalling, Control and Automation 2. Research Activities and Collaboration in Railway Signaling, Control and Automation 3. Collaboration with Research and Development Agency, MoT 2 Program Studi Magister Instrumentasi dan Kontrol, ITB, 2020 Graduate Program Master in Instrumentation and Control with special concentration in Railway Signalling, Control and Automation in collaboration with : Faculty of Industrial Technology Institut Teknologi Bandung 3 Master Program in Instrumentation & Control (I&C) • Master Program in Instrumentation dan Control (I&C) is a graduate program in the Faculty of Industrial Technology, Institut Teknologi Bandung (FTI ITB). • Established in 1991, this Program has produced more than hundreds of graduates who are currently working in various universities, industry, institutions / R&D. 4 Master Program in Instrumentation & Control (I&C) • Objectives of the Program “to produce qualified graduates with masters Dozens of graduates have obtained Doctorate degrees and are currently competency level who have the ability pursuing
    [Show full text]
  • Integration of a Mechanical Interlocking Lever Frame Into a Signalling
    MRes in Railway Systems Engineering and Integration College of Engineering, School of Civil Engineering University of Birmingham Integration of a Mechanical Interlocking Lever Frame into a Signalling Demonstrator By: Mersedeh Maksabi Supervisor: Prof. Felix Schmid DATE SUBMITTED: 2013-10-30 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Preliminaries Executive Summary Railway signalling has experienced numerous changes and developments, most of which were associated with its long evolutionary history. These changes have occurred gradually from the earliest days of the railway industry when fairly safe distances between the trains were controlled by signalmen with their rudimentary tools to multiple aspects colour light signalling systems and complicated operating systems as well as computerised traffic information systems. Nowadays signalling technology is largely affected by the presence of high performance electromechanical relays which provide the required logic on one hand and securely control the train movement on the other. However, this kind of control system is bulky and requires large space to accommodate. Therefore, such a technology will be expensive as it requires intensive efforts for manufacturing, installation and maintenance.
    [Show full text]
  • Signal Box Register Series
    Signal Box Registers Publication schedule and current state of play as at 10th July 2019 Item Publication dateStatus 1. Great Western PB: 22 December 2007 Out of Print HB: 28 December 2007 Out of Print 1. Great Western PB: 10 May 2011 Published (Revised Edition) HB: 24 May 2011 Published 2. Midland Railway latest draft is version E22 dated Substantially complete. 18th September 2017 Publication expected 2020-2021 3. LNER (Southern Area) PB: 29 May 2012 Published. HB: 6 Nov 2012 Published. 4. Southern Railway PB & HB: 23 April 2009 Published 5. LNWR (includes NSR, Sources include NSR (1998), No work started yet. MCR, FR and L&Y) LNWR (240-599), L&Y (1999). 6. Scotland PB: 31 Oct 2012 Published. HB: 7 Nov 2012 Published. 7. North Eastern Region Work in hand (includes H&B) 8. London Transport PB: 12 Jul 2019 Published. HB: 26 Jul 2019 Published. 9. Ireland PB & HB: 3 August 2015 Published CD-ROM CD: 1 January 2008 Includes Volume 1 CDROM updates #1: 2 February 2008 Corr. Sht 1 & updated vol. 1 GW. #2: 16 September 2008 Corr. Sht 2 & updated vol. 1 GW. #3: 23 April 2009 Plus Volume 4 Southern Railway #4: 24 May 2011 Plus corr. sheet 3 & the GW register (revised edition) #5: 21 June 2012 As above plus correction sheet 4 and volume 3 LNER (Southern) #6: 15 Nov 2012 (DVD-ROM) As above plus correction sheet 5 and volume 6 Scotland #7: 25 Jul 2013 (DVD-ROM) As above plus correction sheet 6 #8: 31 May 2014 (DVD-ROM) As above plus correction sheet 7 #9: 3 Aug 2015 (DVD-ROM) As above plus correction sheet 8 #9: 3 Aug 2015 (CD-ROM) Volume 9 Ireland & Isle of Man #10: 21 Nov 2015 (DVD-ROM) As above plus correction sheet 9 #11: 10 Jul 2019 (DVD-ROM) As above plus correction sheet 10 Volume 8 London Transport Correction sheets 1: 16 January 2008 Amended vol.
    [Show full text]
  • West Midlands and Chilterns Route Utilisation Strategy Draft for Consultation Contents 3 Foreword 4 Executive Summary 9 1
    November 2010 West Midlands and Chilterns Route Utilisation Strategy Draft for Consultation Contents 3 Foreword 4 Executive summary 9 1. Background 11 2. Dimensions 20 3. Current capacity, demand, and delivery 59 4. Planned changes to infrastructure and services 72 5. Planning context and future demand 90 6. Gaps and options 149 7. Emerging strategy and longer-term vision 156 8. Stakeholder consultation 157 Appendix A 172 Appendix B 178 Glossary Foreword Regional economies rely on investment in transport infrastructure to sustain economic growth. With the nation’s finances severely constrained, between Birmingham and London Marylebone, as any future investment in transport infrastructure well as new journey opportunities between Oxford will have to demonstrate that it can deliver real and London. benefits for the economy, people’s quality of life, This RUS predicts that overall passenger demand in and the environment. the region will increase by 32 per cent over the next 10 This draft Route Utilisation Strategy (RUS) sets years. While Network Rail’s Delivery Plan for Control out the priorities for rail investment in the West Period 4 will accommodate much of this demand up Midlands area and the Chiltern route between to 2019, this RUS does identify gaps and recommends Birmingham and London Marylebone for the next measures to address these. 30 years. We believe that the options recommended Where the RUS has identified requirements for can meet the increased demand forecast by this interventions to be made, it seeks to do so by making RUS for both passenger and freight markets and the most efficient use of capacity.
    [Show full text]
  • LNW Route Specification 2017
    Delivering a better railway for a better Britain Route Specifications 2017 London North Western London North Western July 2017 Network Rail – Route Specifications: London North Western 02 SRS H.44 Roses Line and Branches (including Preston 85 Route H: Cross-Pennine, Yorkshire & Humber and - Ormskirk and Blackburn - Hellifield North West (North West section) SRS H.45 Chester/Ellesmere Port - Warrington Bank Quay 89 SRS H.05 North Transpennine: Leeds - Guide Bridge 4 SRS H.46 Blackpool South Branch 92 SRS H.10 Manchester Victoria - Mirfield (via Rochdale)/ 8 SRS H.98/H.99 Freight Trunk/Other Freight Routes 95 SRS N.07 Weaver Junction to Liverpool South Parkway 196 Stalybridge Route M: West Midlands and Chilterns SRS N.08 Norton Bridge/Colwich Junction to Cheadle 199 SRS H.17 South Transpennine: Dore - Hazel Grove 12 Hulme Route Map 106 SRS H.22 Manchester Piccadilly - Crewe 16 SRS N.09 Crewe to Kidsgrove 204 M1 and M12 London Marylebone to Birmingham Snow Hill 107 SRS H.23 Manchester Piccadilly - Deansgate 19 SRS N.10 Watford Junction to St Albans Abbey 207 M2, M3 and M4 Aylesbury lines 111 SRS H.24 Deansgate - Liverpool South Parkway 22 SRS N.11 Euston to Watford Junction (DC Lines) 210 M5 Rugby to Birmingham New Street 115 SRS H.25 Liverpool Lime Street - Liverpool South Parkway 25 SRS N.12 Bletchley to Bedford 214 M6 and M7 Stafford and Wolverhampton 119 SRS H.26 North Transpennine: Manchester Piccadilly - 28 SRS N.13 Crewe to Chester 218 M8, M9, M19 and M21 Cross City Souh lines 123 Guide Bridge SRS N.99 Freight lines 221 M10 ad M22
    [Show full text]
  • Western Route Strategic Plan V7
    Route Strategic Plan Western Route Version 7.0: Strategic Business Plan submission 2nd February 2018 Western Route Strategic Plan Contents Section Title Description Page 1 Foreword and summary Summary of our plan giving proposed high level outputs and challenges in CP6 3 2 Stakeholder priorities Overview of customer and stakeholder priorities 14 3 Route objectives Summary of our objectives for CP6 using our scorecard 26 4 Activity prioritisation on a page Overview of the opportunities, constraints and risks associated with each objective area, the 32 controls for managing these and the resulting output across CP5 and CP6 5 Activities & expenditure High level summary of the cost and activity associated with our plan based on the prioritisation in 41 section 4 6 Customer focus & capacity strategy Summary of customer and capacity themed strategies that will be employed to deliver our plan 66 7 Cost competitiveness & delivery strategy Summary of delivery strategies that will be employed, and of headwinds and efficiency plans 69 accounted developed to date 8 Culture strategy Summary of the culture themed strategies that will be deployed to deliver our plan 80 9 Strategy for commercial focus Summary of our strategy and plans to source alternative investment 86 10 CP6 regulatory framework Information relating to our revenue requirement and access charging income 88 11 Sign-off Senior level commitment from relevant functions 91 Appendix A Joint performance activity prioritisation by Overview of the opportunities, constraints and risks associated
    [Show full text]
  • Evaluation of the Capacity Limitations and Suitability of the European Traffic Management System to Support Automatic Train Operation on Main Line Applications
    Computers in Railways XI 193 Evaluation of the capacity limitations and suitability of the European Traffic Management System to support Automatic Train Operation on Main Line Applications P. Thomas1, D. Fisher1 & F. Sheikh2 1Parsons Group International Ltd, UK 2Department for Transport, UK Abstract The European Rail Traffic Management System (ERTMS) is the concept by which Europe is moving towards the standardisation of its rail signal control systems. Standardisation focuses on interfaces necessary for interoperability between trainborne and trackside equipment. ERTMS represents a step change for many railways’, the vast majority of which are signalled with colour light signals and basic warning systems. ERTMS is specified in a number of different levels, and dependant on the implementation can introduce the benefits of cab- signalling, automatic train protection and future moving block train separation. This paper examines the capabilities and limitations of an ETCS/ERTMS level 2 implementation as specified by the current Technical Specifications for Interoperability for use in high density network locations and the suitability of ETCS/ERTMS to support the integration of an Automatic Train Operation (ATO) overlay. A generic sample section has been developed to analyse the headway constraints within the current ERTMS solution. The conclusions from the study suggest that there are no fundamental constraints preventing a level 2 implementation supporting an operational headway of 24 Trains Per Hour with recovery margin. The use of ATO for a high density application will offer an improved headway performance but will require a level of development and enhancement to the ERTMS functionality and architecture to correctly implement some ATO functionality.
    [Show full text]
  • Relation Between Pre-Warning Time and Actual Train Velocity in Automatic Level Crossing Signalling Systems at Level Crossings
    Article citation info: 39 Łukasik J. Relation between pre-warning time and actual train velocity in automatic level crossing signalling systems at level crossings. Diagnostyka. 2021;22(2):39-46. https://doi.org/10.29354/diag/133700 ISSN 1641-6414 DIAGNOSTYKA, 2021, Vol. 22, No. 2 e-ISSN 2449-5220 DOI: 10.29354/diag/133700 RELATION BETWEEN PRE-WARNING TIME AND ACTUAL TRAIN VELOCITY IN AUTOMATIC LEVEL CROSSING SIGNALLING SYSTEMS AT LEVEL CROSSINGS Jerzy ŁUKASIK Silesian University of Technology, Faculty of Transport and Aviation Engineering [email protected] Abstract At level crossings equipped with automatic level crossing signalling devices (which are category B and C crossings in Poland), warning time depends on several factors including the length of what is referred to as the level crossing’s danger zone for road vehicles, and the train velocity. These systems are designed by taking into consideration the maximum train velocity applicable to the given railway line, which is why a train running with a velocity that is lower than the maximum one, e.g. a freight train, produces pre-warning time excess. The pre-warning time excess affects the redundant prolongation of the time when the level crossing is closed for road vehicles. What has been proposed in the article is to reduce the pre-warning time excess by making the pre-warning time depended on the actual train velocity. It describes a structural concept of a solution which should first be implemented in automatic level crossing signalling systems. Owing to adequate assumptions, the concept of the pre-warning time excess reduction exerts no negative effect on safety at level crossings.
    [Show full text]
  • (CCS) and Migration to ERTMS
    FEASIBILITY STUDY REFERENCE FEASIBILITY STUDY REFERENCE SYSTEM ERTMS FinalSYSTEM Report ERTMS DigitalisationFinal Report of CCS (Control Command and Signalling) and MigrationDigitalisation to ERTMS of CCS (Control Command and Signalling) and Migration to ERTMS European Railway Agency - 2017 23 OP European Railway Agency - 2017 23 OP 14 AUGUST 2018 14 AUGUST 2018 FEASIBILITY STUDY REFERENCE SYSTEM ERTMS Contact ANDRÉ VAN ES Arcadis Nederland B.V. P.O. Box 220 3800 AE Amersfoort The Netherlands Our reference: 083702890 A - Date: 2 November 2018 2 of 152 FEASIBILITY STUDY REFERENCE SYSTEM ERTMS CONTENTS 1 INTRODUCTION 9 1.1 EU Context of Feasibility Study 9 1.2 Digitalisation of the Rail Sector 9 1.3 Objectives of Feasibility Study 11 1.4 Focus of Feasibility Study 11 1.5 Report Structure 12 2 SCOPE AND METHODOLOGY 13 2.1 Methodology 13 2.2 Scope Addition 15 2.3 Wider Pallet of Interviewed Parties 15 2.4 Timeframes 19 3 INFRASTRUCTURE MANAGERS 20 3.1 Findings and Trends Infrastructure Managers 20 3.2 Reasons for Replacing Non-ETCS Components 28 3.3 Short-Term versus Long-Term 31 4 OPERATING COMPANIES 33 4.1 Dutch Railways (NS) 33 4.2 DB Cargo 35 4.3 RailGood 36 4.4 European Rail Freight Association 37 4.5 Findings and Trends Operating Companies 38 5 RAIL INDUSTRY SUPPLIERS 40 5.1 Supplier 1 40 5.2 Supplier 2 41 5.3 Supplier 3 42 5.4 Supplier 4 42 5.5 Supplier 5 42 Our reference: 083702890 A - Date: 2 November 2018 3 of 152 FEASIBILITY STUDY REFERENCE SYSTEM ERTMS 5.6 Findings and Trends Suppliers 43 6 RAILWAY INDUSTRY DEVELOPMENT INITIATIVES
    [Show full text]
  • Common Signal Design Principles S1 - Signalling Locking and Train Dynamics ESD-05-01
    Division / Business Unit: Enterprise Services Function: Signalling Document Type: Standard Common Signal Design Principles S1 - Signalling Locking and Train Dynamics ESD-05-01 Applicability ARTC Network Wide Publication Requirement Internal / External Primary Source Document Status Version Date Reviewed Prepared by Reviewed by Endorsed Approved 3.0 13 Oct 15 Standards Stakeholders Manager Operational Safety & Environment Standards Review Committee 13/10/2014 GM Technical Standards 30/11/2015 Amendment Record Version Date Reviewed Clause Description of Amendment 3.0 21 Oct 14 6.2.7 New Clause 6.2.7 Provision of Overlaps for Modified Simultaneous Entry at a Crossing Loop (approved by OSERC 13/10/2014). Further Various minor editorial amendments throughout for consistent terminology and 26 Jun 15 6.2.6 removal of superseded reference documents. Clause 6.2.6 previously applicable to NSW only now extended to network wide applicability. 13 Oct 15 Various Rebranded. © Australian Rail Track Corporation Limited (ARTC) Disclaimer This document has been prepared by ARTC for internal use and may not be relied on by any other party without ARTC’s prior written consent. Use of this document shall be subject to the terms of the relevant contract with ARTC. ARTC and its employees shall have no liability to unauthorised users of the information for any loss, damage, cost or expense incurred or arising by reason of an unauthorised user using or relying upon the information in this document, whether caused by error, negligence, omission or misrepresentation in this document. This document is uncontrolled when printed. Authorised users of this document should visit ARTC’s intranet or extranet (www.artc.com.au) to access the latest version of this document.
    [Show full text]
  • Style Guide for Authors
    http://www.diva-portal.org Preprint This is the submitted version of a paper presented at 4th International Conference on Rail Human Factors; March 5-7, 2013, London, UK. Citation for the original published paper: Golightly, D., Sandblad, B., Dadashi, N., Andersson, A., Tschirner, S. et al. (2013) A socio-technical comparison of rail traffic control between GB and Sweden. In: Rail Human Factors: Supporting reliability, safety and cost reduction (pp. 367-376). London: Taylor & Francis N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-196977 A SOCIOTECHNICAL COMPARISON OF AUTOMATED TRAIN TRAFFIC CONTROL BETWEEN GB AND SWEDEN Golightly, D.1, Sandblad, B.2, Dadashi, N.1, Andersson, A. W.2, Tschirner, S.2, Sharples, S.1. 1Human Factors Research Group, University of Nottingham, UK 2Department of Information Technology, Uppsala University, Sweden There is strong motivation for having rail technology that is both international and interoperable. The practice, however, of moving technology that works well in one operational setting to another is not straightforward. This paper takes one type of technology, traffic control automation, and looks at variability between two contexts – GB and Sweden. The output from this work is a socio- technical framework which will be used to asses the viability of applying new advances in traffic management across a number of EU countries. Introduction With growing demands on railway capacity, less room to build physical infrastructure (e.g. rail tracks) and sophisticated technological advances, there is a need to introduce innovative technologies to improve and enhance railway traffic control.
    [Show full text]