Quick viewing(Text Mode)

Development of Hayabusa-2 Deployable Camera (DCAM3) for Observation of Impact Simulation on Asteroid

Development of Hayabusa-2 Deployable Camera (DCAM3) for Observation of Impact Simulation on Asteroid

EPSC Abstracts Vol. 8, EPSC2013-733, 2013 European Congress 2013 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2013

Development of -2 Deployable Camera (DCAM3) for observation of impact simulation on

K. Ogawa (1), M. Arakawa (2), H. Sawada (3), Y. Iijima (3), K. Wada (4), R. Honda (5), K. Shirai (3), K. Ishibashi (4), N. Sakatani (6), T. Kadono (7), S. Nakazawa (3), M. Kobayashi (4), and H. Hayakawa (3) (1) University of Tokyo, Kashiwa, Japan, (2) Kobe University, Kobe, Japan, (3) Japan Aerospace Exploration Agency, Sagamihara, Japan, (4) Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Japan, (5) Kochi University, Kochi, Japan, (6) The Graduate University for Advanced Studies, Sagamihara, Japan, (7) University of Occupational and Environmental Health, Kitakyusyu, Japan

Remote Sensing using ONC-T, 分離カメラによる観測計画 Abstract NIRS3, TIR, LIDAR  Close-up Observation 2014 Launch Cruising  退避計画と $#!- 分離ポイント (Ion engine) Dropping exploration rovers A miniaturized optical camera unit (DCAM3) is 2015 Swing-by (MINERVA, MASCOT) being developed for observations of an artificial Determine touch-down point はやぶさ 2 に搭載される分離カメラ(DCAM3)は Fig.5 2018 Arrival at 1999JU3 impact made by Small Carry-On Impactor (SCI) on に示すよう,太陽指向面(+Z パネル)に搭載される. 衝突実験は小惑星表面から高度数 のところで asteroid 1999JU3 in the Hayabusa-2 mission. Science Observation Touch down 100m SCI Experiment Sampling Mission DCAM3 takes images of spreading ejecta motion on Collecting Samples SCI を分離し,母船は安全な小惑星の裏(SCI の発火点 the asteroid, which provides information of surface から見えない領域)まで退避する.Fig.6 に退避計画の 2019 Departure physical properties and ejecta behavior under Cruising 一例を示す. (Ion engine) microgravity. The flight model of DCAM3 is under 1999JU3 の重力定数 GM は 11~92 の範囲であると考 development and operation tests. The science and 2020 Back to the Earth Impact SCI to the surface of asteroid and Capsule Reentry Observation of an artificial crater and state of the えられている.この重力定数は SCI 分離後に SCI の位 instrumental concepts and development status are surface 2021 Sample Return Curation Pinpoint touch down demonstration 置に大きな影響を与え,結果として Fig.6 の発火点分散 reported. Initial Analysis (Optional) Collecting samples from the bottom of the artificial crater or ejector on the surface にあるよう,広い範囲に分散することを考慮して計画 Fig.2 はやぶさ 2 ミッション概要 をたてる必要がある.SCI 分離時に姿勢変動分散も考 Figure 1: Mission schedule of Hayabusa-2. DCAM3 えると,小惑星表面へのライナ着弾点も広い分散とな 1. Introduction will observe an impact in the SCI Experiment. る.SCI 分離から約 15 分後に DCAM3 を Fig.6 に示す Collisions between primitive planetary bodies are .分離カメラシステム 地点で光軸が小惑星側に向くよう分離し,DCAM3 分 one of the important physical processes in the 2. Concept of DCAM3 離後約 25 分で SCI が発火するよう計画している. planetary accretion from planetesimals to planets. JAXA が 2010 年に打ち上げた IKAROS では,20m 級 重力定数は,実際に小惑星に到着してみないと分か are small primitive bodies on the way to The Deployable Camera (DCAM3) is a miniaturized のソーラー電力セイル全景を軌道上で撮像するために, らないため,分散をもった中でも確実に母船が退避し, the larger bodies or the fragment bodies such as detachable camera inherited from DCAM1,2 in the 深宇宙で母船からカメラを分離して,撮像した画像を かつ によって衝突現象を観測できるよう計画 rubble piles of the evolved bodies, so that the Japanese IKAROS mission [3]. The DCAM3 is DCAM3 無線で伝送する分離カメラ(DCAM)が搭載され,成 を立てる必要がある. asteroids are possibly be recognized as fossil bodies currently under development for observations of the 功を収めている.Fig.3 に IKAROS で搭載された分離カ showing the accretion process in the solar nebula. SCI impact. A separable instrument is necessary to メラを,Fig.4 に分離カメラによって撮像された MGA Impact studies on the asteroid, such as the impact obtain close up views of the impact, because the IKAROS の全景写真の例を示す. HGA scaling rules related to the cratering and the mother ship will be hiding in a safe region far from はやぶさ では, で開発された分離カメラ disruption, are important to reveal the actual manner the impact point2 to avoidIKAROS a risk that the mother ship of planetary accretions in early stage of the evolution. 技術をベースとし,母船ではなく小惑星上で行われてencounters high-speed ejecta from the asteroid during いる衝突実験を観測するために開発されている機器で In the future Japanese Hayabusa-2 mission, Small the impact operation. DCAM3 Carry-on Impactor (SCI), which is a small detachable ある. The impact observation part in the DCAM3 launcher of an artificial projectile, will make an systemSCI による衝突実験は,火薬を用いて consist of a separable small camera2km/s cylinder,まで加 STT impact simulation on asteroid 1999JU3 [1] (Figure 1). 速した約its detachment2kg のライナ(銅製)を小惑星表面に衝突さ instrument, and receiving antennas on Capsule

1m A copper-disk projectile is deformed by explosive in せる実験で非常に危険なため,はやぶさthe mother ship (Figure 2). After separation2 母船は確実 in the LIDER the SCI and forms a semi-spherical shell, and is にSCI安全な小惑星の裏側まで退避する必要がある.この impact operation, DCAM3 starts its observation Solar Array Paddle at visible wavelength and sends image data on one- Sampler Horn accelerated to approx. 2 km/s [2]. The tiny asteroid ため,母船から直接,衝突実験を観測できる術はなく, 搭載位置 way communication to the mother ship. Design of Fig.5 DCAM3 1999JU3 is a good analogue of planetesimals and 分離カメラによる観測は重要となる. DCAM3 is similar to IKAROS DCAM1,2 (Figure 3), suitable to study the effect of micro-gravity on the impact process and elucidate the mechanical but has an additional high-resolution camera in the properties of planetesimals. body. SCI発火点分散

ライナ着弾点分散 DCAM3分離ポイント

はやぶさ2退避軌道 Fig.3 IKAROS に搭載された分離カメラ

Fig.6 衝突実験時の計画例

 分離カメラシステムの視野設計

前述の通り,1999JU3 の重力定数に幅があるため, これは SCI の分離後位置分散だけでなく,母船の退避 軌道の分散,DCAM3 分離後の位置分散にも影響を与 え,分離カメラの光学視野はそれらを全て考慮する必 Fig.4 撮像された IKAROS 全景写真 3.DCAM3システム概要 3.1DCAM3搭載位置

DCAM3-ANT2 DCAM3-ANT 1999JU3 taken by the DCAM3-D in an ideal position. The optical camera has enough-high space resolution and bright resolution for its sciences. DCAM3 continues to produce data for a few hours until batteries runs out or the DCAM3 falls and crashes on

DCAM3 the asteroid. The digital communication device can send the image data to the mother ship with 4 Mbps at maximum. Instruments in the mother ship store all ※ は内部搭載 CAM-C data taken by the deployed camera. Total size of CAM-H image data is estimated to be approximately 5 Gbits after compression. Figure 2: Components of DCAM3 system on the So far, we conducted the conceptual examinations Hayabusa-2 mother ship. to specify the required specification of the camera and a communication device. Engineering models for all components of DCAM3 were manufactured, and verification tests were conducted with them. The flight models are currently in tests for the observation and communication performances.

Figure 3: A photograph of IKAROS DCAM1,2. Body diameter is approx. 60 mm.

3. Scientific Observation The scientific observations are performed by "DCAM3-D" that is a wide-angle high-resolution camera and its fast digital transmission component in the DCAM3 body. Scientific objectives of this camera are summarized as (1) clarifying the sub- surface structure, and (2) constructing the impact- Figure 4: A virtual image of asteroid 1999JU3 and scaling rule applicable to the surface of asteroid ejecta cone taken by DCAM3-D camera. The blue 1999JU3. Observation objects of the camera are oval sphere shows a potential region in which SCI ejecta and a subsequent crater of the SCI impact, and exists. The green cone shows a possible trajectry of a relative position of the SCI to the asteroid when it the projectile. is launched. DCAM3-D can determine the size and the angle of the ejecta curtain, and the speed of the References ejecta spreading or fragment spattering, which are the key information for the above objectives. In addition, [1] Yoshikawa, M. et al.: Hayabusa-2 -- New Challenge of low-speed ejecta () spreading will possibly be Next Asteroid Sample Return Mission, Proc. Asteroids, , Meteors, #6188, 2012. observed around the DCAM3 in a few hours after the [2] Arakawa, M. et al.: Small Carry-On Impactor (SCI): Its impact. Scientific Purpose, Operation, and Observation Plan in The DCAM3-D CMOS sensor produces 2000 x Hayabusa-2 Mission, Proc. Lunar Planet. Sci. Conf., 44, 2000 pixels 8 bit monochromatic images with a 74 x #1904, 2013. 74 degrees wide-angle optics. It takes 1 frame/sec [3] Sawada, H. et al.: Report on Deployment Solar Power sequential images at maximum. Figure 4 shows a Sail Mission of IKAROS, International Symp. on Solar virtual image of spreading ejecta on asteroid Sailing, 2010.