Small Spacecraft in Small Solar System Body Applications

Total Page:16

File Type:pdf, Size:1020Kb

Small Spacecraft in Small Solar System Body Applications Small Spacecraft in Small Solar System Body Applications Jan Thimo Grundmann Jan-Gerd Meß DLR Institute of Space Systems DLR Institute of Space Systems Robert-Hooke-Strasse 7 Robert-Hooke-Strasse 7 28359 Bremen, 28359 Bremen, Germany Germany +49-421-24420-1107 +49-421-24420-1206 [email protected] [email protected] Jens Biele Patric Seefeldt DLR Space Operations and Astronaut DLR Institute of Space Systems Training – MUSC Robert-Hooke-Strasse 7 51147 Cologne, 28359 Bremen, Germany Germany +49-2203-601-4563 +49-421-24420-1609 [email protected] [email protected] Bernd Dachwald Peter Spietz Faculty of Aerospace Engineering DLR Institute of Space Systems FH Aachen Univ. of Applied Sciences Robert-Hooke-Strasse 7 Hohenstaufenallee 6 28359 Bremen, 52064 Aachen, Germany Germany +49-241-6009-52343 / -52854 +49-421-24420-1104 [email protected] [email protected] Christian D. Grimm Tom Spröwitz DLR Institute of Space Systems DLR Institute of Space Systems Robert-Hooke-Strasse 7 Robert-Hooke-Strasse 7 28359 Bremen, 28359 Bremen, Germany Germany +49-421-24420-1266 +49-421-24420-1237 [email protected] [email protected] Caroline Lange Stephan Ulamec DLR Institute of Space Systems DLR Space Operations and Astronaut Robert-Hooke-Strasse 7 Training – MUSC 28359 Bremen, 51147 Cologne, Germany Germany +49-421-24420-1159 +49-2203-601-4567 [email protected] [email protected] Abstract— In the wake of the successful PHILAE landing on environment has led to new methods which transcend comet 67P/Churyumov-Gerasimenko and the launch of the traditional evenly-paced and sequential development. We first Mobile Asteroid Surface Scout, MASCOT, aboard the evolved and extended Concurrent Design and Engineering HAYABUSA2 space probe to asteroid (162173) Ryugu, small (CD/CE) methods originally incepted for intitial studies into spacecraft in applications related to small solar system bodies Concurrent Assembly, Integration and Verification (CAIV). It have become a topic of increasing interest. Their unique is applied in all phases in most of our projects to achieve combination of efficient capabilities, resource-friendly design convergence of asynchronous subsystem maturity timelines and inherent robustness makes them attractive as a mission and to match parallel tracks of integration and test campaigns. element at the frontiers of exploration of the solar system by When facing such a challenge, Model-Based Systems larger spacecraft as well as stand-alone low-cost approaches to Engineering (MBSE) supports design trades and constant open up the solar system for a broader range of interests. configuration evolution due to unforeseen changes. Proactive change and schedule acceleration has resulted from system- The operators’ requirements for cutting-edge missions level CD/CE optimization across interface boundaries by compatible with available launch capabilities impose MBSE-aided CAIV. significant constraints in resources, timelines, timeliness, mass and size. To create spacecraft feasible within these constraints, We discuss advantages and constraints of small spacecraft for the mission design teams need to accept a broad range of planetary science and applications, focusing on emerging areas equipment maturity levels from fresh concepts to off-the-shelf of activity such as planetary defence, on the background of our units. The resulting Constraints-Driven Engineering (CDE) projects. These include the comet lander PHILAE flown aboard 978-1-5090-1613-6/17/$31.00 ©2017 IEEE 1 ESA’s ROSETTA probe; the mobile asteroid lander MASCOT From Tunguska to Chelyabinsk: Bursts of Interest flying on the JAXA HAYABUSA2; the mobile asteroid lander MASCOT2, a long-term stationary lander planned to land on The widely reported airburst of the Chelyabinsk bolide on th the moon of the Didymos system, a contribution to ESA’s AIM, February 15 , 2013, returned the focus on planetary part of the joint U.S.-European Asteroid Impact Deflection defence. This ~500 kiloton TNT-equivalent range event Assessment (AIDA) mission; a Jupiter Trojan asteroid lander, caused by a ~20 m diameter chondritic body [2] was just studied for a future JAXA Solar Power Sail mission; the barely non-lethal: Early reports stated that 1491 people GOSSAMER-1 solar sail ground deployment demonstrator of the including 311 children were seen by medical staff in the DLR-ESTEC Gossamer Roadmap for Solar Sailing which was region [3] and 112 people were treated in hospitals, two of to enable unique and presently infeasible science missions; and them in serious condition. One woman suffered broken its follow-on GOSOLAR which applies the deployment technology of the solar sail to ultra-lightweight very high vertebrae and was flown out for treatment; one man’s finger power level photovoltaic arrays for new space mission types. was cut off by flying glass [4]. Most injuries were by glass We present our advanced design, integration and testing shattered and scattered about or accelerated by the blast methods developed and practiced in these fast-paced highly wave [5]. Property damage included massive destruction of optimized small spacecraft projects. We show why small window panes in the midst of the Siberian winter, mostly on spacecraft require big changes in the way we do things and appartment blocks, and several collapsed structures. [6] occasionally a little more effort than would be anticipated based on a traditional large spacecraft approach. As an The distribution of injuries also clearly demonstrated the outlook, we illustrate how tailored concurrent methods could value of preparedness in natural disasters. At one school and also benefit ‘large’ spacecraft and traditional methods minded kindergarden site, 20 children were injured by flying glass spacecraft customers, and why the combination of lightweight sail and small lander can become the key to most solar system as the blast wave hit during the break just after the first bodies currently out of reach, for planetary defence and lessons were over. At another school, not recognizing the th science. event for what it was, Ms Yulia Karbysheva, a 4 -grade school teacher, ordered her students to execute the duck and TABLE OF CONTENTS cover drill which is still customarily practised there – none of 44 was injured. She herself did not follow and suffered 1. INTRODUCTION……………………………….2 serious lacerations and a tendon cut by flying glass in one 2. EMBRACING CONSTRAINTS…………………..4 arm. [4] 3. GETTING SMALL ……………………………..6 It has to be noted that the main fragmentation occurred 31.8 4. GETTING THERE ……………………………11 km south of the city centre of Chelyabinsk approximately at 5. DOING THINGS ……………………………...14 the minimum distance to the ground track [7] at an altitude 6. CONCLUSION ………………………………..14 of 29.7 km [2], or at about 44 km line-of-sight distance REFERENCES …………………………………..14 between the largest release of energy in the event and a population of 1.13 million. Also, the most intense region of BIOGRAPHY ……………………………………19 the shock wave propagating in the direction of the momentum vector originating from this area was already 1. INTRODUCTION directed away from the city and most densely populated areas surrounding it. [8] Small solar system body spaceflight mission applications currently include planetary science, planetary defence, In the aftermath of this event, the size-frequency distribution exploration, and the emerging field of asteroid mining. All of natural impactors at Earth and their potential for of these, most pronounced for the planetary defence related destructive effects on the ground, and technical options for missions, come in two basic categories: near-Earth object (NEO) deflection were revisited extensively. [9] First there are, prior to any recognized threat or particular interest, mainly scientific missions to investigate the The first wave of attention to the NEO threat had recognized properties of small solar system bodies in general. the rare but potentially globally catastrophic impacts of km- sized near-Earth asteroids (NEA) based on early Second, missions to characterize in specific ways, or photographic asteroid surveys and the cratering record of possibly deflect or exploit, one specific object that has Earth. It drew strongly on prehistoric indicators of major become a recognized threat or resource to such a degree and impacts, e.g. the iridium anomaly at the cretaceous-tertiary confidence that exclusively dedicated missions are boundary in the seminal Alvarez hypothesis [10]; the warranted. recognition of Meteor Crater near Flagstaff, Arizona, [11] of the Tunguska event of 1908, [12] and other related records, The main difference between those categories is that nature e.g. [13] for a historical summary. Recognition of the picks target and, regarding planetary defence, also the impact threat was formalized into the goal to discover 90% timeline for the latter, while for the former careful of all NEAs larger than 1 km diameter, relatively quickly deliberation in scientific committees usually does. followed up by the definition of Potentially Hazardous Asteroids (PHA) of at least 140 m diameter which can 2 approach Earth to within 0.05 AU. Current NEO surveys eliminating the residual risk of surprise in this size segment [14] confirm the significant contribution to the threat of the [15]. much more frequent small impactors with regional or locally devastating effects. [15] NEAs in the sub-PHA size From Hammer to Ore: The Rise of Space Resources range have recently become sufficiently accessible to Most recently, commercial interest in the exploitation of observation to enable population estimates based on re- SSSB resources in space has emerged. As a fresh field, discovery rate which indicate that their relative frequency is ‘asteroid mining’ is currently in a process of analysis and somewhat higher than previously expected [16][17][18]. concepts definitions, surveying and prospecting related U.S. government sensors recorded at least 556 fireball fields of science and engineering. The legal framework is of events from 1994 through 2013, ranging from about 5 ton particular importance to the commercial stakeholders; it TNT-equivalent to the Chelyabinsk superbolide.
Recommended publications
  • 7Th IAA Planetary Defense Conference – PDC 2021 26
    7th IAA Planetary Defense Conference – PDC 2021 1 26-30 April 2021, Vienna, Austria IAA-PDC-21-11-37 Precautionary Planetary Defence Aaron C. Boley(1), Michael Byers(2) (1)(2)Outer Space Institute University of British Columbia 325-6224 Agricultural Road Vancouver, BC V6T 1Z1 Canada +1-604-827-2641 [email protected] Keywords: Asteroids, Precautionary Principle, Decision-Making, Active Management visiting the asteroid before the 2029 close approach Introduction: The question of whether to attempt leads us to ask, in a general sense, to what degree deflections during planetary defence emergencies has might restraint be prudent? been subject to considerable decision-making analysis As discussed by Chesley and Farnocchia (2021), if a (Schmidt 2018; SMPAG Ad-Hoc Working Group on Legal mission to an asteroid with a rich set of keyholes, like Issues 2020). Hypothetical situations usually involve a Apophis, goes awry and unintentionally collides with the newly discovered asteroid with a high impact probability asteroid, there is a risk that this will create a future on a set timescale. This paper addresses two further impact emergency. The publicity associated with the complexities: (1) limiting missions to an asteroid due to asteroid’s close approach could also prompt non-state the risk of a human-caused Earth impact; and (2) active actors to launch their own missions as technology management of asteroids to place them in “safe demonstrations and/or profile-raising exercises, much harbours”, even when impact risks are otherwise below like the infamous Tesla launch by SpaceX. “decision to act” thresholds. We use Apophis as a case Adding to these considerations is a potential traffic study, and address the two complexities in turn.
    [Show full text]
  • Matematikken Viser Vej Til Mars
    S •Matematikken The viser vej til Mars Kim Plauborg © The Terma Group 2016 THE BEGINNING Terma has been in Space since man walked on the Moon! © The Terma Group 2016 FROM ESRO TO EXOMARS Terma powered the first comet landing ever! BREAKING NEWS The mission ends today when the Rosetta satellite will set down on the surface In 2014 the Rosetta satellite deployed the small lander Philae, which landed on the cometof 67P morethe than 10 comet years after Rosetta was launched. © The Terma Group 2016 FROM ESRO TO EXOMARS Rosetta Mars Express Technology Venus Express evolution and Galileo enhancement Small GEO BepiColombo ExoMars © The Terma Group 2016 Why go Mars? Getting to and landing on Mars is difficult ! © The Terma Group 2016 THE EXOMARS PROGRAMME Two ESA missions to Mars in cooperation with Roscosmos with the main objective to search for evidence of life 2016 Mission Trace Gas Orbiter Schiaparelli 2020 Mission Rover Surface platform © The Terma Group 2016 EXOMARS 2016 14th March 2016 Launched from Baikonur cosmodrome, Kazakhstan © The Terma Group 2016 EXOMARS 2016 16th October 2016 Separation of Schiaparelli from the orbiter © The Terma Group 2016 SCHIAPARELLI Schiaparelli (EDM) - an entry, descent and landing demonstrator module © The Terma Group 2016 EXOMARS 2016 19th October 2016 Landing of Schiaparelli the surface of Mars © The Terma Group 2016 EXOMARS 2016 19th October 2016 Landing of Schiaparelli the surface of Mars © The Terma Group 2016 EXOMARS 2020 © The Terma Group 2016 TERMA AND EXOMARS Terma deliveries to the ExoMars 2016 mission • Remote Terminal Power Unit for Schiaparelli • Mission Control System • Spacecraft Simulator • Support for the Launch and Early Orbit Phase © The Terma Group 2016 ExoMars RTPU The RTPU is a central unit in the Schiaparelli lander.
    [Show full text]
  • Planetary Science Division Status Report
    Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine.
    [Show full text]
  • Exomars Schiaparelli Direct-To-Earth Observation Using GMRT
    TECHNICAL ExoMars Schiaparelli Direct-to-Earth Observation REPORTS: METHODS 10.1029/2018RS006707 using GMRT S. Esterhuizen1, S. W. Asmar1 ,K.De2, Y. Gupta3, S. N. Katore3, and B. Ajithkumar3 Key Point: • During ExoMars Landing, GMRT 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 2Cahill Center for Astrophysics, observed UHF transmissions and California Institute of Technology, Pasadena, CA, USA, 3National Centre for Radio Astrophysics, Pune, India Doppler shift used to identify key events as only real-time aliveness indicator Abstract During the ExoMars Schiaparelli separation event on 16 October 2016 and Entry, Descent, and Landing (EDL) events 3 days later, the Giant Metrewave Radio Telescope (GMRT) near Pune, India, Correspondence to: S. W. Asmar, was used to directly observe UHF transmissions from the Schiaparelli lander as they arrive at Earth. The [email protected] Doppler shift of the carrier frequency was measured and used as a diagnostic to identify key events during EDL. This signal detection at GMRT was the only real-time aliveness indicator to European Space Agency Citation: mission operations during the critical EDL stage of the mission. Esterhuizen, S., Asmar, S. W., De, K., Gupta, Y., Katore, S. N., & Plain Language Summary When planetary missions, such as landers on the surface of Mars, Ajithkumar, B. (2019). ExoMars undergo critical and risky events, communications to ground controllers is very important as close to real Schiaparelli Direct-to-Earth observation using GMRT. time as possible. The Schiaparelli spacecraft attempted landing in 2016 was supported in an innovative way. Radio Science, 54, 314–325. A large radio telescope on Earth was able to eavesdrop on information being sent from the lander to other https://doi.org/10.1029/2018RS006707 spacecraft in orbit around Mars.
    [Show full text]
  • Mars Reconnaissance Orbiter
    Chapter 6 Mars Reconnaissance Orbiter Jim Taylor, Dennis K. Lee, and Shervin Shambayati 6.1 Mission Overview The Mars Reconnaissance Orbiter (MRO) [1, 2] has a suite of instruments making observations at Mars, and it provides data-relay services for Mars landers and rovers. MRO was launched on August 12, 2005. The orbiter successfully went into orbit around Mars on March 10, 2006 and began reducing its orbit altitude and circularizing the orbit in preparation for the science mission. The orbit changing was accomplished through a process called aerobraking, in preparation for the “science mission” starting in November 2006, followed by the “relay mission” starting in November 2008. MRO participated in the Mars Science Laboratory touchdown and surface mission that began in August 2012 (Chapter 7). MRO communications has operated in three different frequency bands: 1) Most telecom in both directions has been with the Deep Space Network (DSN) at X-band (~8 GHz), and this band will continue to provide operational commanding, telemetry transmission, and radiometric tracking. 2) During cruise, the functional characteristics of a separate Ka-band (~32 GHz) downlink system were verified in preparation for an operational demonstration during orbit operations. After a Ka-band hardware anomaly in cruise, the project has elected not to initiate the originally planned operational demonstration (with yet-to-be­ used redundant Ka-band hardware). 201 202 Chapter 6 3) A new-generation ultra-high frequency (UHF) (~400 MHz) system was verified with the Mars Exploration Rovers in preparation for the successful relay communications with the Phoenix lander in 2008 and the later Mars Science Laboratory relay operations.
    [Show full text]
  • Aerothermodynamic Analysis of a Mars Sample Return Earth-Entry Vehicle" (2018)
    Old Dominion University ODU Digital Commons Mechanical & Aerospace Engineering Theses & Dissertations Mechanical & Aerospace Engineering Summer 2018 Aerothermodynamic Analysis of a Mars Sample Return Earth- Entry Vehicle Daniel A. Boyd Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds Part of the Aerodynamics and Fluid Mechanics Commons, Space Vehicles Commons, and the Thermodynamics Commons Recommended Citation Boyd, Daniel A.. "Aerothermodynamic Analysis of a Mars Sample Return Earth-Entry Vehicle" (2018). Master of Science (MS), Thesis, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/xhmz-ax21 https://digitalcommons.odu.edu/mae_etds/43 This Thesis is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. AEROTHERMODYNAMIC ANALYSIS OF A MARS SAMPLE RETURN EARTH-ENTRY VEHICLE by Daniel A. Boyd B.S. May 2008, Virginia Military Institute M.A. August 2015, Webster University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE AEROSPACE ENGINEERING OLD DOMINION UNIVERSITY August 2018 Approved by: __________________________ Robert L. Ash (Director) __________________________ Oktay Baysal (Member) __________________________ Jamshid A. Samareh (Member) __________________________ Shizhi Qian (Member) ABSTRACT AEROTHERMODYNAMIC ANALYSIS OF A MARS SAMPLE RETURN EARTH-ENTRY VEHICLE Daniel A. Boyd Old Dominion University, 2018 Director: Dr. Robert L. Ash Because of the severe quarantine constraints that must be imposed on any returned extraterrestrial samples, the Mars sample return Earth-entry vehicle must remain intact through sample recovery.
    [Show full text]
  • How a Cartoon Series Helped the Public Care About Rosetta and Philae 13 How a Cartoon Series Helped the Public Care About Rosetta and Philae
    How a Cartoon Series Helped the Public Care about Best Practice Rosetta and Philae Claudia Mignone Anne-Mareike Homfeld Sebastian Marcu Vitrociset Belgium for European Space ATG Europe for European Space Design & Data GmbH Agency (ESA) Agency (ESA) [email protected] [email protected] [email protected] Carlo Palazzari Emily Baldwin Markus Bauer Design & Data GmbH EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) [email protected] [email protected] [email protected] Keywords Karen S. O’Flaherty Mark McCaughrean Outreach, space science, public engagement, EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) visual storytelling, fairy-tale, cartoon, animation, [email protected] [email protected] anthropomorphising Once upon a time... is a series of short cartoons1 that have been developed as part of the European Space Agency’s communication campaign to raise awareness about the Rosetta mission. The series features two anthropomorphic characters depicting the Rosetta orbiter and Philae lander, introducing the mission story, goals and milestones with a fairy- tale flair. This article explores the development of the cartoon series and the level of engagement it generated, as well as presenting various issues that were encountered using this approach. We also examine how different audiences responded to our decision to anthropomorphise the spacecraft. Introduction internet before the spacecraft came out of exciting highlights to come, using the fairy- hibernation (Bauer et al., 2016). The four tale narrative as a base. The hope was that In late 2013, the European Space Agency’s short videos were commissioned from the video would help to build a degree of (ESA) team of science communicators the cross-media company Design & Data human empathy between the public and devised a number of outreach activ- GmbH (D&D).
    [Show full text]
  • Exploration of the Moon
    Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms.
    [Show full text]
  • Spacex CRS-4 National Aeronautics and Fourth Commercial Resupply Services Flight Space Administration
    SpaceX CRS-4 National Aeronautics and Fourth Commercial Resupply Services Flight Space Administration to the International Space Station September 2014 OVERVIEW The Dragon spacecraft will be filled with more than 5,000 pounds of supplies and payloads, including critical materials to support 255 science and research investigations that will occur during Expeditions 41 and 42. Dragon will carry three powered cargo payloads in its pressurized section and two in its unpressurized trunk. Science payloads will enable model organism research using rodents, fruit flies and plants. A special science payload is the ISS-Rapid Scatterometer to monitor ocean surface wind speed and direction. Several new technology demonstrations aboard will enable bone density studies, test how a small satellite moves and positions itself in space using new thruster technology, and use the first 3-D printer in space for additive manufacturing. The mission also delivers IMAX cameras for filming during four increments and replacement batteries for the spacesuits. After four weeks at the space station, the spacecraft will return with about 3,800 pounds of cargo, including crew supplies, hardware and computer resources, science experiments, space station hardware, and four powered payloads. DRAGON CARGO LAUNCH ITEMS RETURN ITEMS TOTAL CARGO: 4885 lbs / 2216 kg 3276 lbs / 1486 kg · Crew Supplies 1380 lbs / 626 kg 132 lbs / 60 kg Crew care packages Crew provisions Food · Vehicle Hardware 403 lbs / 183 kg 937 lbs / 425 kg Crew Health Care System hardware Environment Control & Life Support equipment Electrical Power System hardware Extravehicular Robotics equipment Flight Crew Equipment Japan Aerospace Exploration Agency equipment · Science Investigations 1644 lbs / 746 kg 2075 lbs / 941 kg U.S.
    [Show full text]
  • Thermophysical Modeling of 99942 Apophis: Estimations of Surface Temperature During the April 2029 Close Approach
    Apophis T–9 Years 2020 (LPI Contrib. No. 2242) 2069.pdf THERMOPHYSICAL MODELING OF 99942 APOPHIS: ESTIMATIONS OF SURFACE TEMPERATURE DURING THE APRIL 2029 CLOSE APPROACH. K. C. Sorli1 and P. O. Hayne1, 1Laboratory for Atmospheric and Space Physics – University of Colorado Boulder, CO 80303 ([email protected]) Introduction: The April 13, 2029 close approach purposes of calculating temperatures and thermal IR of the ~350-meter asteroid 99942 Apophis offers an fluxes. Our predictions for surface temperatures and unprecedented opportunity to observe a large near-Earth dynamical effects will be directly testable during the asteroid in detail with ground-based observatories. As Janus mission, with an anticipated launch date of 2022. one of the best-studied hazardous objects, with Though the model was constructed with the intent of additional near-miss flybys in coming decades, it is categorizing binary thermal and dynamical behaviors, crucial to planetary defense to understand its properties including binary YORP [5][6], it is easily adaptable to and potential perturbations to its orbit. solitary asteroids. Apophis has been the subject of extensive study, and This model begins by coupling a 1-d thermophysical will continue to be so for years to come. This existing model [7] to a 3-d shape model and computing facet-by- knowledge and the promise of new data makes it an facet temperatures of the surface and near subsurface excellent candidate for modeling subject to during the time period of Apophis’s 2029 close observational constraints. The 2029 close approach will approach. To calculate temperatures, the model is given have a sizable amplifying effect on Apophis’ orbital information about the incoming solar flux on each facet uncertainty, so small dynamical perturbations will be as a function of solar distance and is set to equilibrate required to understand both the conditions of the 2029 for 1 year to allow for subsurface temperature settling.
    [Show full text]
  • NUCLEAR SAFETY LAUNCH APPROVAL: MULTI-MISSION LESSONS LEARNED Yale Chang the Johns Hopkins University Applied Physics Laboratory
    ANS NETS 2018 – Nuclear and Emerging Technologies for Space Las Vegas, NV, February 26 – March 1, 2018, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2018) NUCLEAR SAFETY LAUNCH APPROVAL: MULTI-MISSION LESSONS LEARNED Yale Chang The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723 240-228-5724; [email protected] Launching a NASA radioisotope power system (RPS) trajectory to Saturn used a Venus-Venus-Earth-Jupiter mission requires compliance with two Federal mandates: Gravity Assist (VVEJGA) maneuver, where the Earth the National Environmental Policy Act of 1969 (NEPA) Gravity Assist (EGA) flyby was the primary nuclear safety and launch approval (LA), as directed by Presidential focus of NASA, the U.S. Department of Energy (DOE), the Directive/National Security Council Memorandum 25. Cassini Interagency Nuclear Safety Review Panel Nuclear safety launch approval lessons learned from (INSRP), and the public alike. A solid propellant fire test multiple NASA RPS missions, one Russian RPS mission, campaign addressed the MPF finding and led in part to two non-RPS launch accidents, and several solid the retrofit solid propellant breakup systems (BUSs) propellant fire test campaigns since 1996 are shown to designed and carried by MER-A and MER-B spacecraft have contributed to an ever-growing body of knowledge. and the deployment of plutonium detectors in the launch The launch accidents can be viewed as “unplanned area for PNH. The PNH mission decreased the calendar experiments” that provided real-world data. Lessons length of the NEPA/LA processes to less than 4 years by learned from the nuclear safety launch approval effort of incorporating lessons learned from previous missions and each mission or launch accident, and how they were tests in its spacecraft and mission designs and their applied to improve the NEPA/LA processes and nuclear NEPA/LA processes.
    [Show full text]
  • An Estimate of the Flux of Apophis-Particle Meteors at Earth
    Apophis T–9 Years 2020 (LPI Contrib. No. 2242) 2075.pdf An Estimate of the Flux of Apophis-Particle Meteors at Earth 1 1 2 Robert Melikyan ,​ Beth Ellen Clark ,​ Carl Hergenrother 1 ​ ​ ​ D​ epartment of Physics and Astronomy, Ithaca College, Ithaca, NY, USA. 2 L​ unar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA. Near-Earth asteroid (99942) Apophis is meteoroid stream is propagated between 1900 - predicted to make a close encounter with Earth 2029 using an Apophis ephemeris that places the on April 13, 2029. This close encounter will asteroid at its most likely position for the 2029 bring Apophis within 6 Earth radii from our encounter. Unlike most meteoroid stream geocenter providing an excellent opportunity to evolution studies, our simulations release study and observe the asteroid and any particles from Apophis at a regular (~weekly) subsequent effects of the interaction. Here, we rate around its entire orbit, consistent with the bring to your attention the possibility that the Bennu observations. passage of Apophis will not be the only event worth observing. We predict a rain of Apophis Assuming similar particle production meteors that may be detectable to Earth’s meteor mechanisms at Apophis as observed at Bennu, monitoring systems. Apophis could be producing on order of 104 ​ grams of material continuously throughout its NASA’s OSIRIS-REx mission has orbit. Of that material, we assume 30% will recently shown that near-Earth asteroid (101955) escape on hyperbolic trajectories [6]. This Bennu has been continuously producing results in roughly 3500 grams of new material 4 cm-sized ejecta at rates of ~10 ​ grams per orbit entering the Apophis meteoroid stream annually.
    [Show full text]