Japan's Asteroid Missions Hayabusa and Hayabusa2

Total Page:16

File Type:pdf, Size:1020Kb

Japan's Asteroid Missions Hayabusa and Hayabusa2 Japan's Asteroid Missions Hayabusa and Hayabusa2 COPUOS 2013 February 15, 2013, Vienna, Austria Makoto Yoshikawa Hayabusa & Hayabusa2 Project Team, JAXA Lunar and Planetary Missions of Japan ×LUNAR- Hiten A ×Nozom Moon IKAROS 1985 i Moon Sakigake Kaguya 1990 Mars △Akatsuki 1998 Moon Suisei 2003 Hayabusa Venus 2007 BepiColombo 2010 2014 Comet Halley Asteroid Itokawa Hayabusa2 Mercury Asteroid 1999 JU3 February 15, 2013 COPUOS 2013 2 Challenges of Hayabusa and Hayabusa2 Development of the technology for asteroid sample return •Ion engine •Autonomous navigation •Sample collection system •Reentry capsule Impactor system * Study of the origin and evolution of the solar system Molecular cloud Proto solar system disk Solar system Evolution of planets Minerals, H 2O *, Organic matters * (*Hayabusa2) February 15, 2013 COPUOS 2013 3 History of Hayabusa and Hayabusa2 Idea for sample Serious troubles return began in1985 in Hayabusa Now Year 200 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 0 Sample MUSES-C Hayabusa Analysis ▲ ▲ launch Earth return project Started Hayabusa Mk2 in 1996 Post MUSES-C Post Hayabusa Post Marco Polo Haybusa2 Launch Hyabusa2 Phase-B ▲ Initial proposal in 2006 New proposal in 2009 Copy of Hayabusa but modified Modified Hayabusa adding new challenges Target : C-type asteroid 1999 JU3 Target : C-type asteroid 1999 JU3 Launch: 2010 Launch: 2014 February 15, 2013 COPUOS 2013 4 Starting point of Hayabusa Small Meeting for Asteroid Sample Return Mission ISAS June 29, 1985 Cover of meeting February 15, 2013 COPUOS 2013 5 Mission Scenario of Hayabusa Observations, sampling Earth Swingby Launch 19 May 2004 9 May 2003 Asteroid Arrival 12 Sept. 2005 Earth Return Serious 13 June 2010 troubles February 15, 2013 COPUOS 2013 6 Photo / Koji Ohnishi June 13, 2010 7 Engineering of Hayabusa 2003.05.09 2004.05.19 2005.09.12 2010.06.13 February 15, 2013 COPUOS 2013 8 Images of Itokawa Eastern Side Head Bottom Western Side 9 9 Scientific Results from Remote Sensing Before After •Mass •Shape => volume •Density Pyroxene Olivine Pyroxene and Olivine February 15, 2013 COPUOS 2013 10 Scientific Results from Sample Initial Analysis o LL chondrite LL4 (~600 oC) LL5/6 (~800 oC) Catastrophic planetesimal impact Formation of Thermal Itokawa parental metamorphism body (>20 km) (((<4.562 Ba ))) Escape rate Solar wind Re- (~10 cm/My) Micro- Galactic Re- meteoroids cosmic ray accumulation Itokawa formation Rubble pile asteroid Grain motion Space 100 m (150y~3My ))) weathering February 15, 2013 COPUOS 2013 11 Science Publications 2 June 2006 26 August 2011 February 15, 2013 COPUOS 2013 12 Hayabusa2 Mission Outline June 2018 : Arrival at 1999 JU3 Launch The spacecraft observes the asteroid, 2014 releases the small rovers and the lander, and executes multiple samplings. The spacecraft carries Sample analysis an impactor. New Experiment Earth Return Dec. 2020 Dec. 2019 : Departure The impactor collides with 2019 the surface of the asteroid. Samples will be obtained from the newly created crater. February 15, 2013 COPUOS 2013 13 Hayabusa vs. Hayabusa2 Hayabusa Hayabusa2 Size ::: 1m ×××1.6m ×××1.1 mmm Size ::: 1m ×××1.6m ×××1.25 m(m(m( body ))) (((body ))) Mass ::: 600kg (((Wet ))) Mass ::: 510kg (((Wet ))) (1) (5) (3) (4) (2) (1) Communication : X-band + Ka-band (2) Ion engine : modified (3) Small lander : MASCOT(Mobile Asteroid Surface Scout ) from DLR (4) AOCS : 4 reaction wheels (5) Impactor February 15, 2013 COPUOS 2013 14 Target Asteroid : 1999 JU3 Current estimate: Orbit Itokawa Rotation period: 7.625 ± 0.003 h * 1 Shape : almost spherical * 1 Mars Size : 0.87 ± 0.03 km * 2 Earth Albedo : 0.070 ± 0.006 * 2 H=18.69 ± 0.07, G=-0.09 ± 0.03 * 1 1.4 IRTF Type : Cg MMT 1 2 * :Kim et al. * :Mueller et al 1.2 1.0 Normalized Reflectance Reflectance Normalized Normalized Normalized Reflectance Reflectance Normalized Normalized 0.8 (by Mueller et al.) 0.5 1.0 1.5 2.0 2.5 Wavelength(Wavelength(μμμμm)m)m)m) February 15, 2013 COPUOS 2013 15 International Cooperation on Hayabusa2 USA NASA Europe DLR CNES Australia SLASO/DIISR DoD/AOSG AQIS/AC February 15, 2013 COPUOS 2013 16 Importance of Small Solar System Bodies Science Spaceguared To study the origin and To protect the earth from evolution of the solar collisions of the small solar system and life system bodies Resource Manned mission To utilize the mineral, To be the target of manned metal and water, etc. mission before manned mission to Mars Engineering To move in the interplanetary space Culture freely To create new culture and educate new generation February 15, 2013 COPUOS 2013 17.
Recommended publications
  • Hayabusa2 and the Formation of the Solar System PPS02-25
    PPS02-25 JpGU-AGU Joint Meeting 2017 Hayabusa2 and the formation of the Solar System *Sei-ichiro WATANABE1,2, Hayabusa2 Science Team2 1. Division of Earth and Planetary Sciences, Graduate School of Science, Nagoya University, 2. JAXA/ISAS Explorations of small solar system bodies bring us direct and unique information about the formation and evolution of the Solar system. Asteroids may preserve accretion processes of planetesimals or pebbles, a sequence of destructive events induced by the gas-driven migration of giant planets, and hydrothermal processes on the parent bodies. After successful small-body missions like Rosetta to comet 67P/Churyumov-Gerasimenko, Dawn to Vesta and Ceres, and New Horizons to Pluto, two spacecraft Hayabusa2 and OSIRIS-REx are now traveling to dark primitive asteroids.The Hayabusa2 spacecraft journeys to a C-type near-earth asteroid (162173) Ryugu (1999 JU3) to conduct detailed remote sensing observations and return samples from the surface. The Haybusa2 spacecraft developed by Japan Aerospace Exploration Agency (JAXA) was successfully launched on 3 Dec. 2014 by the H-IIA Launch Vehicle and performed an Earth swing-by on 3 Dec. 2015 to set it on a course toward its target. The spacecraft will reach Ryugu in the summer of 2018, observe the asteroid for 18 months, and sample surface materials from up to three different locations. The samples will be delivered to the Earth in Nov.-Dec. 2020. Ground-based observations have obtained a variety of optical reflectance spectra for Ryugu. Some reported the 0.7 μm absorption feature and steep slope in the short wavelength region, suggesting hydrated minerals.
    [Show full text]
  • New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
    Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1.
    [Show full text]
  • Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object
    Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object by Nathan C. Shupe B.A., Swarthmore College, 2005 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Master of Science Department of Aerospace Engineering Sciences 2010 This thesis entitled: Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object written by Nathan C. Shupe has been approved for the Department of Aerospace Engineering Sciences Daniel Scheeres Prof. George Born Assoc. Prof. Hanspeter Schaub Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Shupe, Nathan C. (M.S., Aerospace Engineering Sciences) Orbit Options for an Orion-Class Spacecraft Mission to a Near-Earth Object Thesis directed by Prof. Daniel Scheeres Based on the recommendations of the Augustine Commission, President Obama has pro- posed a vision for U.S. human spaceflight in the post-Shuttle era which includes a manned mission to a Near-Earth Object (NEO). A 2006-2007 study commissioned by the Constellation Program Advanced Projects Office investigated the feasibility of sending a crewed Orion spacecraft to a NEO using different combinations of elements from the latest launch system architecture at that time. The study found a number of suitable mission targets in the database of known NEOs, and pre- dicted that the number of candidate NEOs will continue to increase as more advanced observatories come online and execute more detailed surveys of the NEO population.
    [Show full text]
  • View Conducted by Its Standing Review Board (SRB)
    Science Committee Report Dr. Wes Huntress, Chair 1 Science Committee Members Wes Huntress, Chair Byron Tapley, (Vice Chair) University of Texas-Austin, Chair of Earth Science Alan Boss, Carnegie Institution, Chair of Astrophysics Ron Greeley, Arizona State University, Chair of Planetary Science Gene Levy, Rice University , Chair of Planetary Protection Roy Torbert, University of New Hampshire, Chair of Heliophysics Jack Burns, University of Colorado Noel Hinners, Independent Consultant *Judith Lean, Naval Research Laboratory Michael Turner, University of Chicago Charlie Kennel, Chair of Space Studies Board (ex officio member) * = resigned July 16, 2010 2 Agenda • Science Results • Programmatic Status • Findings & Recommendations 3 Unusual Thermosphere Collapse • Deep drop in Thermospheric (50 – 400 km) density • Deeper than expected from solar cycle & CO2 4 Aeronomy of Ice in the Mesosphere (AIM) unlocking the secrets of Noctilucent Clouds (NLCs) Form 50 miles above surface in polar summer vs ~ 6 miles for “norm79al” clouds. NLCs getting brighter; occurring more often. Why? Linked to global change? AIM NLC Image June 27, 2009 - AIM measured the relationship between cloud properties and temperature - Quantified for the first time, the dramatic response to small changes, 10 deg C, in temperature - T sensitivity critical for study of global change effects on mesosphere Response to Gulf Oil Spill UAVSAR 23 June 2010 MODIS 31 May 2010 ASTER 24 May 2010 Visible Visible/IR false color Satellite instruments: continually monitoring the extent of
    [Show full text]
  • Stardust Comet Flyby
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Stardust Comet Flyby Press Kit January 2004 Contacts Don Savage Policy/Program Management 202/358-1727 NASA Headquarters, Washington DC Agle Stardust Mission 818/393-9011 Jet Propulsion Laboratory, Pasadena, Calif. Vince Stricherz Science Investigation 206/543-2580 University of Washington, Seattle, WA Contents General Release ……………………………………......………….......................…...…… 3 Media Services Information ……………………….................…………….................……. 5 Quick Facts …………………………………………..................………....…........…....….. 6 Why Stardust?..................…………………………..................………….....………......... 7 Other Comet Missions ....................................................................................... 10 NASA's Discovery Program ............................................................................... 12 Mission Overview …………………………………….................……….....……........…… 15 Spacecraft ………………………………………………..................…..……........……… 25 Science Objectives …………………………………..................……………...…........….. 34 Program/Project Management …………………………...................…..…..………...... 37 1 2 GENERAL RELEASE: NASA COMET HUNTER CLOSING ON QUARRY Having trekked 3.2 billion kilometers (2 billion miles) across cold, radiation-charged and interstellar-dust-swept space in just under five years, NASA's Stardust spacecraft is closing in on the main target of its mission -- a comet flyby. "As the saying goes, 'We are good to go,'" said project manager Tom Duxbury at NASA's Jet
    [Show full text]
  • How a Cartoon Series Helped the Public Care About Rosetta and Philae 13 How a Cartoon Series Helped the Public Care About Rosetta and Philae
    How a Cartoon Series Helped the Public Care about Best Practice Rosetta and Philae Claudia Mignone Anne-Mareike Homfeld Sebastian Marcu Vitrociset Belgium for European Space ATG Europe for European Space Design & Data GmbH Agency (ESA) Agency (ESA) [email protected] [email protected] [email protected] Carlo Palazzari Emily Baldwin Markus Bauer Design & Data GmbH EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) [email protected] [email protected] [email protected] Keywords Karen S. O’Flaherty Mark McCaughrean Outreach, space science, public engagement, EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) visual storytelling, fairy-tale, cartoon, animation, [email protected] [email protected] anthropomorphising Once upon a time... is a series of short cartoons1 that have been developed as part of the European Space Agency’s communication campaign to raise awareness about the Rosetta mission. The series features two anthropomorphic characters depicting the Rosetta orbiter and Philae lander, introducing the mission story, goals and milestones with a fairy- tale flair. This article explores the development of the cartoon series and the level of engagement it generated, as well as presenting various issues that were encountered using this approach. We also examine how different audiences responded to our decision to anthropomorphise the spacecraft. Introduction internet before the spacecraft came out of exciting highlights to come, using the fairy- hibernation (Bauer et al., 2016). The four tale narrative as a base. The hope was that In late 2013, the European Space Agency’s short videos were commissioned from the video would help to build a degree of (ESA) team of science communicators the cross-media company Design & Data human empathy between the public and devised a number of outreach activ- GmbH (D&D).
    [Show full text]
  • Probes to the Inferior Planets – a New Dawn for Neo and Ieo Detection Technology Demonstration from Heliocentric Orbits Interior to the Earth’S?
    PROBES TO THE INFERIOR PLANETS – A NEW DAWN FOR NEO AND IEO DETECTION TECHNOLOGY DEMONSTRATION FROM HELIOCENTRIC ORBITS INTERIOR TO THE EARTH’S? 2011 IAA Planetary Defense Conference 09-12 May 2011 Bucharest, Romania Jan Thimo Grundmann(1), Stefano Mottola(2), Maximilian Drentschew(6), Martin Drobczyk(1), Ralph Kahle(3), Volker Maiwald(4), Dominik Quantius(4), Paul Zabel(4), Tim van Zoest(5) (1)DLR German Aerospace Center - Institute of Space Systems - Department of Satellite Systems Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected], [email protected] (2)DLR German Aerospace Center - Institute of Planetary Research - Department Asteroids and Comets Rutherfordstraße 2, 12489 Berlin, Germany Email: [email protected] (3)DLR German Aerospace Center - Space Operations and Astronaut Training - Space Flight Technology Dept. 82234 Oberpfaffenhofen-Wesseling, Germany Email: [email protected] (4)DLR German Aerospace Center - Institute of Space Systems - Dept. System Analysis Space Segments (SARA) Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected], [email protected], [email protected] (5)DLR German Aerospace Center - Institute of Space Systems - Department of Exploration Systems Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected] (6)ZFT Zentrum für Telematik Allesgrundweg 12, 97218 Gerbrunn, Germany Email: [email protected] ABSTRACT With the launch of MESSENGER and VENUS EXPRESS, a new wave of exploration of the inner solar system has begun. Noting the growing number of probes to the inner solar system, it is proposed to connect the expertise of the respective spacecraft teams and the NEO and IEO survey community to best utilize the extended cruise phases and to provide additional data return in support of pure science as well as planetary defence.
    [Show full text]
  • Bepicolombo - a Mission to Mercury
    BEPICOLOMBO - A MISSION TO MERCURY ∗ R. Jehn , J. Schoenmaekers, D. Garc´ıa and P. Ferri European Space Operations Centre, ESA/ESOC, Darmstadt, Germany ABSTRACT BepiColombo is a cornerstone mission of the ESA Science Programme, to be launched towards Mercury in July 2014. After a journey of nearly 6 years two probes, the Magneto- spheric Orbiter (JAXA) and the Planetary Orbiter (ESA) will be separated and injected into their target orbits. The interplanetary trajectory includes flybys at the Earth, Venus (twice) and Mercury (four times), as well as several thrust arcs provided by the solar electric propulsion module. At the end of the transfer a gravitational capture at the weak stability boundary is performed exploiting the Sun gravity. In case of a failure of the orbit insertion burn, the spacecraft will stay for a few revolutions in the weakly captured orbit. The arrival conditions are chosen such that backup orbit insertion manoeuvres can be performed one, four or five orbits later with trajectory correction manoeuvres of less than 15 m/s to compensate the Sun perturbations. Only in case that no manoeuvre can be performed within 64 days (5 orbits) after the nominal orbit insertion the spacecraft will leave Mercury and the mission will be lost. The baseline trajectory has been designed taking into account all operational constraints: 90-day commissioning phase without any thrust; 30-day coast arcs before each flyby (to allow for precise navigation); 7-day coast arcs after each flyby; 60-day coast arc before orbit insertion; Solar aspect angle constraints and minimum flyby altitudes (300 km at Earth and Venus, 200 km at Mercury).
    [Show full text]
  • An Overview of Hayabusa2 Mission and Asteroid 162173 Ryugu
    Asteroid Science 2019 (LPI Contrib. No. 2189) 2086.pdf AN OVERVIEW OF HAYABUSA2 MISSION AND ASTEROID 162173 RYUGU. S. Watanabe1,2, M. Hira- bayashi3, N. Hirata4, N. Hirata5, M. Yoshikawa2, S. Tanaka2, S. Sugita6, K. Kitazato4, T. Okada2, N. Namiki7, S. Tachibana6,2, M. Arakawa5, H. Ikeda8, T. Morota6,1, K. Sugiura9,1, H. Kobayashi1, T. Saiki2, Y. Tsuda2, and Haya- busa2 Joint Science Team10, 1Nagoya University, Nagoya 464-8601, Japan ([email protected]), 2Institute of Space and Astronautical Science, JAXA, Japan, 3Auburn University, U.S.A., 4University of Aizu, Japan, 5Kobe University, Japan, 6University of Tokyo, Japan, 7National Astronomical Observatory of Japan, Japan, 8Research and Development Directorate, JAXA, Japan, 9Tokyo Institute of Technology, Japan, 10Hayabusa2 Project Summary: The Hayabusa2 mission reveals the na- Combined with the rotational motion of the asteroid, ture of a carbonaceous asteroid through a combination global surveys of Ryugu were conducted several times of remote-sensing observations, in situ surface meas- from ~20 km above the sub-Earth point (SEP), includ- urements by rovers and a lander, an active impact ex- ing global mapping from ONC-T (Fig. 1) and TIR, and periment, and analyses of samples returned to Earth. scan mapping from NIRS3 and LIDAR. Descent ob- Introduction: Asteroids are fossils of planetesi- servations covering the equatorial zone were performed mals, building blocks of planetary formation. In partic- from 3-7 km altitudes above SEP. Off-SEP observa- ular carbonaceous asteroids (or C-complex asteroids) tions of the polar regions were also conducted. Based are expected to have keys identifying the material mix- on these observations, we constructed two types of the ing in the early Solar System and deciphering the global shape models (using the Structure-from-Motion origin of water and organic materials on Earth [1].
    [Show full text]
  • Achievements of Hayabusa2: Unveiling the World of Asteroid by Interplanetary Round Trip Technology
    Achievements of Hayabusa2: Unveiling the World of Asteroid by Interplanetary Round Trip Technology Yuichi Tsuda Project Manager, Hayabusa2 Japan Aerospace ExplorationAgency 58th COPUOS, April 23, 2021 Lunar and Planetary Science Missions of Japan 1980 1990 2000 2010 2020 Future Plan Moon 2007 Kaguya 1990 Hiten SLIM Lunar-A × Venus 2010 Akatsuki 2018 Mio 1998 Nozomi × Planets Mercury (Mars) 2010 IKAROS Venus MMX Phobos/Mars 1985 Suisei 2014 Hayabusa2 Small Bodies Asteroid Ryugu 2003 Hayabusa 1985 Sakigake Asteroid Itokawa Destiny+ Comet Halley Comet Pheton 2 Hayabusa2 Mission ✓ Sample return mission to a C-type asteroid “Ryugu” ✓ 5.2 billion km interplanetary journey. Launch Earth Gravity Assist Ryugu Arrival MINERVA-II-1 Deployment Dec.3, 2014 Sep.21, 2018 Dec.3, 2015 Jun.27, 2018 MASCOT Deployment Oct.3, 2018 Ryugu Departure Nov.13.2019 Kinetic Impact Earth Return Second Dec.6, 2020 Apr.5, 2019 Target Markers Orbiting Touchdown Sep.16, 2019 Jul,11, 2019 First Touchdown Feb.22, 2019 MINERVA-II-2 Orbiting MD [D VIp srvlxp #534<# Oct.2, 2019 Hayabusa2 Spacecraft Overview Deployable Xband Xband Camera (DCAM3) HGA LGA Xband Solar Array MGA Kaba nd Ion Engine HGA Panel RCS thrusters ×12 ONC‐T, ONC‐W1 Star Trackers Near Infrared DLR MASCOT Spectrometer (NIRS3) Lander Thermal Infrared +Z Imager (TIR) Reentry Capsule +X MINERVA‐II Small Carry‐on +Z LIDAR ONC‐W2 +Y Rovers Impactor (SCI) +X Sampler Horn Target +Y Markers ×5 Launch Mass: 609kg Ion Engine: Total ΔV=3.2km/s, Thrust=5-28mN (variable), Specific Impulse=2800- 3000sec. (4 thrusters, mounted on two-axis gimbal) Chemical RCS: Bi-prop.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Attitude Control Dynamics of Spinning Solar Sail “IKAROS” Considering
    Attitude Control Dynamics of Spinning Solar Sail “IKAROS” Considering Thruster Plume Osamu Mori, Yoji Shirasawa, Hirotaka Sawada, Ryu Funase, Yuichi Tsuda, Takanao Saiki and Takayuki Yamamoto (JAXA), Morizumi Motooka and Ryo Jifuku (Univ. of Tokyo) Abstract In this paper, the attitude dynamics of IKAROS, which is spinning solar sail, is presented. First Mode Model of out-of-plane deformation (FMM) and Multi Particle Model (MPM) are introduced to analyze the out-of-plane oscillation mode of spinning solar sail. The out-of-plane oscillation of IKAROS is governed by three modes derived from FMM. FMM is very simple and valid for the design of attitude controller. Considering the thruster configuration of IKAROS, the force on main body and sail by thruster plume as well as reaction force by thruster are integrated into MPM. The attitude motion after sail deployment or reorientation using thrusters can be analyzed by MPM numerical simulations precisely. スラスタプルームを考慮したスピン型ソーラーセイル「IKAROS」の姿勢制御運動 森 治,白澤 洋次,澤田 弘崇,船瀬 龍,津田 雄一,佐伯 孝尚,山本 高行(JAXA), 元岡 範純,地福 亮(東大) 摘要 本論文ではスピン型ソーラーセイル IKAROS の姿勢運動について示す.スピン型ソーラーセイル を解析するために一次面外変形モデルおよび多粒子モデルを導入する.まず,一次面外変形モデ ルから導出される 3 つのモードが IKAROS の面外運動を支配していることを示す.このモデルは 非常に簡易であり,姿勢制御設計に有効であると言える.一方,多粒子モデルに対しては, IKAROS のスラスタ配置を考慮して,スラスタの反力だけでなくスラスタプルームが本体や膜面 に及ぼす力を組み込み,セイル展開後およびスラスタによるマヌーバ後の姿勢運動を数値シミュ レーションにより詳細に解析する. 1. Introduction for the numerical model. Considering the thruster configuration of IKAROS, the force on main body and A solar sail 1) is a space yacht that gathers energy for sail by thruster plume as well as reaction force by propulsion from sunlight pressure by means of a thruster are integrated into MPM. The Fast Fourier membrane. The Japan Aerospace Exploration Agency Transform (FFT) results from IKAROS flight data are (JAXA) successfully achieved the world’s first solar sail compared with those from simulation data.
    [Show full text]