Search for Satellites Near Comet 67P/Churyumov-Gerasimenko Using Rosetta/OSIRIS Images

Total Page:16

File Type:pdf, Size:1020Kb

Search for Satellites Near Comet 67P/Churyumov-Gerasimenko Using Rosetta/OSIRIS Images A&A 583, A19 (2015) Astronomy DOI: 10.1051/0004-6361/201525979 & c ESO 2015 Astrophysics Rosetta mission results pre-perihelion Special feature Search for satellites near comet 67P/Churyumov-Gerasimenko using Rosetta/OSIRIS images I. Bertini1, P. J. Gutiérrez2, L. M. Lara2, F. Marzari3, F. Moreno2, M. Pajola1, F. La Forgia3, H. Sierks4, C. Barbieri3, P. Lamy5, R. Rodrigo6;7, D. Koschny8, H. Rickman9;10, H. U. Keller11, J. Agarwal4, M. F. A’Hearn12, M. A. Barucci13, J.-L. Bertaux14, G. Cremonese15, V. Da Deppo16, B. Davidsson9, S. Debei17, M. De Cecco18, F. Ferri1, S. Fornasier13;19, M. Fulle20, L. Giacomini21, O. Groussin22, C. Güttler4, S. F. Hviid23, W.-H. Ip24;25, L. Jorda22, J. Knollenberg23, J. R. Kramm4, E. Kührt23, M. Küppers26, M. Lazzarin3, J. J. Lopez Moreno2, S. Magrin3, M. Massironi21, H. Michalik27, S. Mottola23, G. Naletto28;16;1, N. Oklay4, N. Thomas29, C. Tubiana4, and J.-B. Vincent4 (Affiliations can be found after the references) Received 27 February 2015 / Accepted 11 May 2015 ABSTRACT Context. The European Space Agency Rosetta mission reached and started escorting its main target, the Jupiter-family comet 67P/Churyumov- Gerasimenko, at the beginning of August 2014. Within the context of solar system small bodies, satellite searches from approaching spacecraft were extensively used in the past to study the nature of the visited bodies and their collisional environment. Aims. During the approaching phase to the comet in July 2014, the OSIRIS instrument onboard Rosetta performed a campaign aimed at detecting objects in the vicinity of the comet nucleus and at measuring these objects’ possible bound orbits. In addition to the scientific purpose, the search also focused on spacecraft security to avoid hazardous material in the comet’s environment. Methods. Images in the red spectral domain were acquired with the OSIRIS Narrow Angle Camera, when the spacecraft was at a distance between 5785 km and 5463 km to the comet, following an observational strategy tailored to maximize the scientific outcome. From the acquired images, sources were extracted and displayed to search for plausible displacements of all sources from image to image. After stars were identified, the remaining sources were thoroughly analyzed. To place constraints on the expected displacements of a potential satellite, we performed Monte Carlo simulations on the apparent motion of potential satellites within the Hill sphere. Results. We found no unambiguous detections of objects larger than ∼6 m within ∼20 km and larger than ∼1 m between ∼20 km and ∼110 km from the nucleus, using images with an exposure time of 0.14 s and 1.36 s, respectively. Our conclusions are consistent with independent works on dust grains in the comet coma and on boulders counting on the nucleus surface. Moreover, our analysis shows that the comet outburst detected at the end of April 2014 was not strong enough to eject large objects and to place them into a stable orbit around the nucleus. Our findings underline that it is highly unlikely that large objects survive for a long time around cometary nuclei. Key words. comets: general – comets: individual: 67P/Churyumov-Gerasimenko – planets and satellites: detection – techniques: photometric 1. Introduction to be composed of objects with an orbit intermediate between TNOs and short-period comets (Levison & Duncan 1997). The detection and study of small-body satellites is an important Spacecraft encounters allow satellite searches and discov- tool for investigating the nature, origin, and evolution of aster- eries down to sizes much smaller than possible from Earth, oids and comets. Measuring the orbit of small companions al- which also adds the advantage of effectively investigating the lows determining the mass of the system and of the primary. space closer to the objects. Several satellite searches were per- From this, its bulk density is derived when the volume is known. formed using data from NASA, JAXA, and ESA missions. We This provides hints on the physical composition of the object mention the studies of NASA/Galileo at (951) Gaspra (Belton and its internal structure. Studying the connected systems also et al. 1992) and (243) Ida (Belton et al. 1995), NASA/NEAR at provides clues on the collisional events that occurred during the (253) Mathilde (Veverka et al. 1999) and (433) Eros (Veverka early stages of the formation of the solar system and its subse- et al. 2000), JAXA/Hayabusa at (25143) Itokawa (Fuse et al. quent evolution (Merline et al. 2002). 2008), ESA/Rosetta at (21) Lutetia (Bertini et al. 2012), and At the time of writing (beginning of May 2015), we know finally NASA/Dawn at (4) Vesta (Memarsadeghi et al. 2013). of 256 small bodies that have companions of different sizes1. Except for the encounter with Ida, which provided the first di- Among them there are 55 near-Earth asteroids (NEAs), 20 Mars- rect and definitive evidence of the existence of asteroid com- crossers, 97 main belt asteroids (MBAs), 4 Jupiter Trojans, and panions with the serendipitous discovery of the small moon 80 trans-Neptunian objects (TNOs). Three TNOs that display Dactyl in 1993, all other searches were unsuccessful in detect- complex systems belong to the Centaur class, which are assumed ing small companions. These studies allowed placing important constraints on the size limit of possible satellites, however, pro- viding hints on the collisional history of the primary bodies. 1 http://www.johnstonsarchive.net/astro/asteroidmoons. A double nucleus with two possibly bound components was html claimed to explain the photometric anisotropies in the inner Article published by EDP Sciences A19, page 1 of8 A&A 583, A19 (2015) coma of the large comet C/1995 O1 Hale-Bopp based on both Short-exposure frames were taken for their relevance if a large ground-based (Marchis et al. 1999) and HST (Sekanina 1997) satellite had been detected, since they would have provided un- data. However, as underlined in Noll et al.(2006), Weaver & saturated views of the object. The NAC broadband orange filter Lamy(1997) reported no evidence of the second companion us- (with a central wavelength and FWHM of 649.2 nm and 84.5 nm, ing the same HST dataset, showing that no final univocal con- respectively) in the visible red domain was chosen to provide clusion on the binary nature of the system could be derived. the best S/N for possible satellites within a fixed exposure time. Decimeter-sized icy particles were found in the close vicinity Considering the image scale, the observed field of view (FoV) of the nucleus of the hyperactive comet 103P/Hartley2 during covered the inner ∼110 km from the comet optocenter. When the flyby of the NASA/EPOXI spacecraft performed on 2010 we mention a distance, it refers to the “projected distance”. November 4 (A’Hearn et al. 2011; Kelley et al. 2013; Hermalyn Assuming a Hill sphere radius of ∼650 km derived from the et al. 2013). Moreover, several cometary nuclei visited by space measurement of the comet mass by the Rosetta Radio Science missions (e.g., 1P/Halley, 19P/Borrelly, 103P/Hartley 2, and Investigation (RSI) instrument, namely 1:0 × 1013 kg (Sierks 67P/Churyumov-Gerasimenko itself) showed complex irregular et al. 2015, and references therein), and from the heliocentric shapes that can be interpreted as the results of the evolution distance-dependent formula in Hamilton & Burns(1991), we of contact binary systems. Despite these interesting consider- note that our FoV intersected a three-dimensional space corre- ations, no classical satellite searches have been performed for sponding to ∼37% of the comet gravitational sphere of influence. comets, as was extensively done for asteroids, and no solid ma- The first and the last images obtained for the satellite search terial larger than ∼1 m orbiting a comet has ever been unambigu- are shown in Fig.1. ously discovered. During the approach to comet 67P/Churyumov- Gerasimenko in July 2014, before the orbit insertion performed 3. Analyzing the data at the beginning of August 2014, the two-camera instrument OSIRIS (Keller et al. 2007) onboard Rosetta took several When we analyzed the data, we first estimated the expected images with the purpose of detecting and studying possible results for a potential satellite by performing a Monte Carlo objects orbiting the comet in the vicinity of the nucleus. The simulation. To do this, we selected 50 000 clones randomly lo- search had the additional aim to ensure spacecraft safety. The cated inside the Hill sphere, with a random velocity with a discovery of solid blocks close to the nucleus would have smaller modulus than the escape velocity. We calculated the implied that special care was necessary so that the spacecraft clone positions within the CCD sensor reference frame for the trajectory would not cross any orbiting material. An appropriate time in which the long-exposure images were taken. A value observational strategy was defined so that the data acquisition of 1.0 m s−1 was used for the escape velocity, in accordance and reduction processes were optimized, maximizing the pos- with Sierks et al.(2015). In a first approach, acceleration e ffects sibility of detecting and measuring the orbital arc of a possible on the potential satellite were neglected. The spacecraft posi- small companion. We here present the adopted observational tion and frame orientations were derived using appropriate spice strategy and the data analysis, together with the results of our kernels. investigation. After calculating the clone positions, we measured their dis- placements for three different cases: (1) within a single exposure time to determine whether the potential satellite showed a track 2. Observational strategy in a single frame; (2) between individual images to determine It is well known that satellite searches from spacecraft images whether it was possible to apply median averaging of images are affected by several problems such as the fast motion of the within the same run in order to eliminate possible cosmic rays camera with respect to the target and the bona-fide detection of and spurious signals; (3) between runs of images to limit the ra- interesting point-like objects against background stars, cosmic- dius search for displacements of the potential satellite.
Recommended publications
  • KAREN J. MEECH February 7, 2019 Astronomer
    BIOGRAPHICAL SKETCH – KAREN J. MEECH February 7, 2019 Astronomer Institute for Astronomy Tel: 1-808-956-6828 2680 Woodlawn Drive Fax: 1-808-956-4532 Honolulu, HI 96822-1839 [email protected] PROFESSIONAL PREPARATION Rice University Space Physics B.A. 1981 Massachusetts Institute of Tech. Planetary Astronomy Ph.D. 1987 APPOINTMENTS 2018 – present Graduate Chair 2000 – present Astronomer, Institute for Astronomy, University of Hawaii 1992-2000 Associate Astronomer, Institute for Astronomy, University of Hawaii 1987-1992 Assistant Astronomer, Institute for Astronomy, University of Hawaii 1982-1987 Graduate Research & Teaching Assistant, Massachusetts Inst. Tech. 1981-1982 Research Specialist, AAVSO and Massachusetts Institute of Technology AWARDS 2018 ARCs Scientist of the Year 2015 University of Hawai’i Regent’s Medal for Research Excellence 2013 Director’s Research Excellence Award 2011 NASA Group Achievement Award for the EPOXI Project Team 2011 NASA Group Achievement Award for EPOXI & Stardust-NExT Missions 2009 William Tylor Olcott Distinguished Service Award of the American Association of Variable Star Observers 2006-8 National Academy of Science/Kavli Foundation Fellow 2005 NASA Group Achievement Award for the Stardust Flight Team 1996 Asteroid 4367 named Meech 1994 American Astronomical Society / DPS Harold C. Urey Prize 1988 Annie Jump Cannon Award 1981 Heaps Physics Prize RESEARCH FIELD AND ACTIVITIES • Developed a Discovery mission concept to explore the origin of Earth’s water. • Co-Investigator on the Deep Impact, Stardust-NeXT and EPOXI missions, leading the Earth-based observing campaigns for all three. • Leads the UH Astrobiology Research interdisciplinary program, overseeing ~30 postdocs and coordinating the research with ~20 local faculty and international partners.
    [Show full text]
  • How a Cartoon Series Helped the Public Care About Rosetta and Philae 13 How a Cartoon Series Helped the Public Care About Rosetta and Philae
    How a Cartoon Series Helped the Public Care about Best Practice Rosetta and Philae Claudia Mignone Anne-Mareike Homfeld Sebastian Marcu Vitrociset Belgium for European Space ATG Europe for European Space Design & Data GmbH Agency (ESA) Agency (ESA) [email protected] [email protected] [email protected] Carlo Palazzari Emily Baldwin Markus Bauer Design & Data GmbH EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) [email protected] [email protected] [email protected] Keywords Karen S. O’Flaherty Mark McCaughrean Outreach, space science, public engagement, EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) visual storytelling, fairy-tale, cartoon, animation, [email protected] [email protected] anthropomorphising Once upon a time... is a series of short cartoons1 that have been developed as part of the European Space Agency’s communication campaign to raise awareness about the Rosetta mission. The series features two anthropomorphic characters depicting the Rosetta orbiter and Philae lander, introducing the mission story, goals and milestones with a fairy- tale flair. This article explores the development of the cartoon series and the level of engagement it generated, as well as presenting various issues that were encountered using this approach. We also examine how different audiences responded to our decision to anthropomorphise the spacecraft. Introduction internet before the spacecraft came out of exciting highlights to come, using the fairy- hibernation (Bauer et al., 2016). The four tale narrative as a base. The hope was that In late 2013, the European Space Agency’s short videos were commissioned from the video would help to build a degree of (ESA) team of science communicators the cross-media company Design & Data human empathy between the public and devised a number of outreach activ- GmbH (D&D).
    [Show full text]
  • Early Observations of the Interstellar Comet 2I/Borisov
    geosciences Article Early Observations of the Interstellar Comet 2I/Borisov Chien-Hsiu Lee NSF’s National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ 85719, USA; [email protected]; Tel.: +1-520-318-8368 Received: 26 November 2019; Accepted: 11 December 2019; Published: 17 December 2019 Abstract: 2I/Borisov is the second ever interstellar object (ISO). It is very different from the first ISO ’Oumuamua by showing cometary activities, and hence provides a unique opportunity to study comets that are formed around other stars. Here we present early imaging and spectroscopic follow-ups to study its properties, which reveal an (up to) 5.9 km comet with an extended coma and a short tail. Our spectroscopic data do not reveal any emission lines between 4000–9000 Angstrom; nevertheless, we are able to put an upper limit on the flux of the C2 emission line, suggesting modest cometary activities at early epochs. These properties are similar to comets in the solar system, and suggest that 2I/Borisov—while from another star—is not too different from its solar siblings. Keywords: comets: general; comets: individual (2I/Borisov); solar system: formation 1. Introduction 2I/Borisov was first seen by Gennady Borisov on 30 August 2019. As more observations were conducted in the next few days, there was growing evidence that this might be an interstellar object (ISO), especially its large orbital eccentricity. However, the first astrometric measurements do not have enough timespan and are not of same quality, hence the high eccentricity is yet to be confirmed. This had all changed by 11 September; where more than 100 astrometric measurements over 12 days, Ref [1] pinned down the orbit elements of 2I/Borisov, with an eccentricity of 3.15 ± 0.13, hence confirming the interstellar nature.
    [Show full text]
  • Science Exploration and Instrumentation of the OKEANOS Mission to a Jupiter Trojan Asteroid Using the Solar Power Sail
    Planetary and Space Science xxx (2018) 1–8 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Science exploration and instrumentation of the OKEANOS mission to a Jupiter Trojan asteroid using the solar power sail Tatsuaki Okada a,b,*, Yoko Kebukawa c,d, Jun Aoki d, Jun Matsumoto a, Hajime Yano a, Takahiro Iwata a, Osamu Mori a, Jean-Pierre Bibring e, Stephan Ulamec f, Ralf Jaumann g, Solar Power Sail Science Teama a Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, 252-5210, Japan b The University of Tokyo, Hongo, Bunkyo, Tokyo, Japan c Faculty of Engineering, Yokohama National University, Japan d Graduate School of Science, Osaka University, Toyonaka, Japan e Institut dʼAstrophysique Spatiale, Orsay, France f German Aerospace Center, Cologne, Germany g German Aerospace Center, Berlin, Germany ARTICLE INFO ABSTRACT Keywords: An engineering mission OKEANOS to explore a Jupiter Trojan asteroid, using a Solar Power Sail is currently under Solar system formation study. After a decade-long cruise, it will rendezvous with the target asteroid, conduct global mapping of the Jupiter trojans asteroid from the spacecraft, and in situ measurements on the surface, using a lander. Science goals and enabling Solar power sail instruments of the mission are introduced, as the results of the joint study between the scientists and engineers Lander from Japan and Europe. Mass spectrometry OKEANOS 1. Introduction ocean water and life. Lucy (Levison et al., 2017), a Jupiter Trojan multi-flyby mission, has Jupiter Trojan asteroids are located in the long-term stable orbits been selected as a NASA Discovery class mission, which aims for un- around the Sun-Jupiter Lagrange points (L4 or L5) Most of them are derstanding the variation and diversity of Jupiter Trojans.
    [Show full text]
  • Planet Earth Taken by Hayabusa-2
    Space Science in JAXA Planet Earth May 15, 2017 taken by Hayabusa-2 Saku Tsuneta, PhD JAXA Vice President Director General, Institute of Space and Astronautical Science 2017 IAA Planetary Defense Conference, May 15-19,1 Tokyo 1 Brief Introduction of Space Science in JAXA Introduction of ISAS and JAXA • As a national center of space science & engineering research, ISAS carries out development and in-orbit operation of space science missions with other directorates of JAXA. • ISAS is an integral part of JAXA, and has close collaboration with other directorates such as Research and Development and Human Spaceflight Technology Directorates. • As an inter-university research institute, these activities are intimately carried out with universities and research institutes inside and outside Japan. ISAS always seeks for international collaboration. • Space science missions are proposed by researchers, and incubated by ISAS. ISAS plays a strategic role for mission selection primarily based on the bottom-up process, considering strategy of JAXA and national space policy. 3 JAXA recent science missions HAYABUSA 2003-2010 AKARI(ASTRO-F)2006-2011 KAGUYA(SELENE)2007-2009 Asteroid Explorer Infrared Astronomy Lunar Exploration IKAROS 2010 HAYABUSA2 2014-2020 M-V Rocket Asteroid Explorer Solar Sail SUZAKU(ASTRO-E2)2005- AKATSUKI 2010- X-Ray Astronomy Venus Meteorogy ARASE 2016- HINODE(SOLAR-B)2006- Van Allen belt Solar Observation Hisaki 2013 4 Planetary atmosphere Close ties between space science and space technology Space Technology Divisions Space
    [Show full text]
  • Science Instruments on Hayabusa Follow-On Missions
    Science Instruments on Hayabusa follow-on missions Yasuhiko Takagi (Aichi Toho University) (prepared by Masanao Abe (JAXA)) 1 Science instruments under examination Others 2 Basic concept of Hayabusa-IF* camera • Use Navigation camera as a scientific imager • Similar optics and CCD as AMICA, but with minor modifications on – Filters • ECAS -> special set for C-type • Remove ND flter , polarizer on CCD – Electronics • More flexible and autonomous operation • More effective compression • Larger onboard storage • Onboard data analysis 3 *Hayabusa-IF: Hayabusa Immediate Follow-on mission AMICA on Hayabysa Polarizer 4 Ground-based ECAS Quasi ECAS filters on AMICA5 A new filter set • Narrower band width (5~20 nm) – Remove ND filter – More accurate colorimetry • UV absorption as a thermal metamorphism indicator? • Phyllosilicate absorption around 700nm (430nm ?) • Nearby reference bands • Wide filter for imaging stars and the artificial orbiters (~TM) • Natural RGB for outreach purpose? • Several common bands with previous missions? (SSI/Galileo, MSI/NEAR, AMICA/Hayabusa, FC/ Dawn, NAC/Stardust, ??/Rosetta,etc, ) 6 Ground-based ECAS Thermal alteration Phyllosilicate absorption 7 8 Hayabusa NIRS • Wavelength range: 764-2247nm (△λ23.56nm) • FOV: 0.1x0.1deg(9m@5km distance) • Detector: InGaAs Liner Array (64channels) • F value: 1.00 • Effective diameter: 27mm • Operating temperature: 260K • A/D resolution (dynamic range) : 14bits 1 Average 0.1 Output [V] [V] Output Output 0.01 Standard Deviation 0.001 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 9 Wavelength
    [Show full text]
  • Comets and the Origin of Life from N.J
    540 Nature Vol. 288 11 December 1980 been cloned in Stanford and is being used base pair substitution in this region and by premature transcription; but that these for the analysis of this entire region of the a factor of two in the abudance of their early transcripts are not translated and, genome by S. Beckendorf (University of mRNAs. indeed, decay as development gets under California, Berkeley) and for detailed The egg shell protein genes, under study way. Only at the appropriate develop­ studies of the gene itself by M. Muskavitch by A. Spradling (Carnegie Institution, mental stage several hours later does (Stanford). A surprising result is that the Washington) and in F. C. Kafatos' transcription resume to produce mRNAs transcript of SGS-4 differs in size in laboratory (Harvard) also surprised us for that are subsequently translated. different strains of Drosophila. This they are amplified in the tissue in which What is the meaning of this? It implies results, it would appear, from the fact that they are expressed. Spradling has found some relationship between amplification within the coding sequence there is a 21 that the amount of DNA amplified extends and early transcription and also indicates base pair sequence whose repetition at least 30 kb on each side of the genes the existence of a translational control at frequency can vary between different themselves, but the degree of amplification the early developmental stage. SGS-4 alleles. Although nothing is known falls off, from a peak of some 60 fold, in Like all good meetings, at the end there of the chemistry of the protein this must both directions away from the coding were far more questions than answers.
    [Show full text]
  • Overcoming the Challenges Associated with Image-Based Mapping of Small Bodies in Preparation for the OSIRIS-Rex Mission to (101955) Bennu
    Preprint of manuscript submitted to Earth and Space Science Overcoming the Challenges Associated with Image-based Mapping of Small Bodies in Preparation for the OSIRIS-REx Mission to (101955) Bennu D. N. DellaGiustina1, C. A. Bennett1, K. Becker1, D. R Golish1, L. Le Corre2, D. A. Cook3†, K. L. Edmundson3, M. Chojnacki1, S. S. Sutton1, M. P. Milazzo3, B. Carcich4, M. C. Nolan1, N. Habib1, K. N. Burke1, T. Becker1, P. H. Smith1, K. J. Walsh5, K. Getzandanner6, D. R. Wibben4, J. M. Leonard4, M. M. Westermann1, A. T. Polit1, J. N. Kidd Jr.1, C. W. Hergenrother1, W. V. Boynton1, J. Backer3, S. Sides3, J. Mapel3, K. Berry3, H. Roper1, C. Drouet d’Aubigny1, B. Rizk1, M. K. Crombie7, E. K. Kinney-Spano8, J. de León9, 10, J. L. Rizos9, 10, J. Licandro9, 10, H. C. Campins11, B. E. Clark12, H. L. Enos1, and D. S. Lauretta1 1Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA 2Planetary Science Institute, Tucson, AZ, USA 3U.S. Geological Survey Astrogeology Science Center, Flagstaff, AZ, USA 4KinetX Space Navigation & Flight Dynamics Practice, Simi Valley, CA, USA 5Southwest Research Institute, Boulder, CO, USA 6Goddard Spaceflight Center, Greenbelt, MD, USA 7Indigo Information Services LLC, Tucson, AZ, USA 8 MDA Systems, Ltd, Richmond, BC, Canada 9Instituto de Astrofísica de Canarias, Santa Cruz de Tenerife, Spain 10Departamento de Astrofísica, Universidad de La Laguna, Santa Cruz de Tenerife, Spain 11Department of Physics, University of Central Florida, Orlando, FL, USA 12Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA †Retired from this institution Corresponding author: Daniella N.
    [Show full text]
  • Asteroid Explorer, Hayabusa2, Reporter Briefing
    Asteroid explorer, Hayabusa2, reporter briefing November 30, 2020 JAXA Hayabusa2 Project Topics Regarding Hayabusa2 Results from TCM-3 Details of capsule separation and re-entry Preparation status for capsule collection 2020/11/30 Hayabusa2 reporter briefing 2 Contents 0. Hayabusa2 and mission flow outline 1. Current status and overall schedule of the project 2. Results from TCM-3 3. Details of capsule separation and re-entry 4. Preparation status for capsule collection 5. Outreach 6. Future plans 2020/11/30 Hayabusa2 reporter briefing 3 Overview of Hayabusa2 Objective We will explore and sample the C-type asteroid Ryugu, which is a more primitive type than the S-type asteroid Itokawa that Hayabusa explored, and elucidate interactions between minerals, water, and organic matter in the primitive solar system. By doing so, we will learn about the origin and evolution of Earth, the oceans, and life, and maintain and develop the technologies for deep-space return exploration (as demonstrated with Hayabusa), a field in which Japan leads the world. Expected results and effects By exploring a C-type asteroid, which is rich in water and organic materials, we will clarify interactions between the building blocks of Earth and the evolution of its oceans and life, thereby developing solar system science. Japan will further its worldwide lead in this field by taking on the new challenge of obtaining samples from a crater produced by an impacting device. We will establish stable technologies for return exploration of solar-system bodies. Features: (Illustration: Akihiro Ikeshita) World’s first sample return mission to a C-type asteroid.
    [Show full text]
  • Characterization of the Physical Properties of the ROSETTA Target Comet 67P/Churyumov-Gerasimenko
    Characterization of the physical properties of the ROSETTA target comet 67P/Churyumov-Gerasimenko Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr.rer.nat.) genehmigte Dissertation von Cecilia Tubiana aus Moncalieri/Italien Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. 1. Referentin oder Referent: Prof. Dr. Jürgen Blum 2. Referentin oder Referent: Prof. Dr. Michael A’Hearn eingereicht am: 18 August 2008 mündliche Prüfung (Disputation) am: 30 Oktober 2008 ISBN 978-3-936586-89-3 Copernicus Publications 2008 http://publications.copernicus.org c Cecilia Tubiana Printed in Germany Contents Summary 7 1 Comets: introduction 11 1.1 Physical properties of cometary nuclei . 15 1.1.1 Size and shape of a cometary nucleus . 18 1.1.2 Rotational period of a cometary nucleus . 22 1.1.3 Albedo of cometary nuclei . 24 1.1.4 Bulk density of cometary nuclei . 25 1.1.5 Colors indices and spectra of the nucleus . 25 1.2 Dust trail and neck-line . 27 2 67P/Churyumov-Gerasimenko and the ESA’s ROSETTA mission 29 2.1 Discovery and orbital evolution . 29 2.2 Nucleus properties . 30 2.3 Annual light curve . 32 2.4 Gas and dust production . 32 2.5 Coma features, trail and neck-line . 35 2.6 ESA’s ROSETTA mission . 35 2.7 Motivations of the thesis . 39 3 Observing strategy and performance of the observations of 67P/C-G 41 3.1 Observations: strategy and preparation .
    [Show full text]
  • Gudipati Keck Comet Physical and Chemical Composition of Comet
    Present Understanding of Comet Nucleus Physical and Chemical Composition Murthy S. Gudipati Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Keck Study – Comet – June 5, 2017 Outline Comet – Physical Composition Comet - Chemical Composition Comet – History 2 Comet – Physical Composition Physical Composition of Comets 3 Comet Physical Composition Gas (Volatiles, now Super Volatiles) Dust (Silicate Grains) Water (in the form of Ice – major component) The Elephant in the Room: How these three components are put together in a comet’s nucleus? 4 Porosity Science, 349, aab0639, 2015 Dust/Ice = 0.4 – 2.6 Porosity = 75 -85% Enrichment of Dust Regions and vice versa? Dust = Carbonaceous Chondrites (high percentages of water & organics; silicates, oxides, sulfides, olivine, serpentine, etc.) 5 Density Icarus 277 (2016) 257–278 Density = 532 ± 7 kg m−3 Crystalline water-ice = 920 kg m−3 Amorphous water-ice = ~500 - 800 kg m−3 Carbonaceous chondrites = ~3 to 3.7 kg m−3 6 Thermal Inertia Science, 349, aab0464, 2015 Thermal Inertia:85±35 J m-2K-1s-1/2 Thermal gradient? How Deep to reach <30 K? 7 Surface Science, 349, aaa9816, 2015 ~20 cm granular (soft) Below hard crust How thick is the crust – cm range or m range? 8 Simultaneous UV & IR Absorption + Fluorescence Pyrene in H2O Ice UV - PAH IR - Ice Flu - PAH Lignell & Gudipati J. Phys. Chem A. 119 (2015) 2607 9 Are Comets Like Deep Fried Ice Cream? ~0.1 m Comet CG/67P Lignell & Gudipati J. Phys. Chem A. 119 (2015) 2607 10 Comet – Chemical Composition Chemical Composition of Comets 11 Composition of Interstellar Medium At 1 atm.
    [Show full text]
  • Symposium on Telescope Science
    Proceedings for the 26th Annual Conference of the Society for Astronomical Sciences Symposium on Telescope Science Editors: Brian D. Warner Jerry Foote David A. Kenyon Dale Mais May 22-24, 2007 Northwoods Resort, Big Bear Lake, CA Reprints of Papers Distribution of reprints of papers by any author of a given paper, either before or after the publication of the proceedings is allowed under the following guidelines. 1. The copyright remains with the author(s). 2. Under no circumstances may anyone other than the author(s) of a paper distribute a reprint without the express written permission of all author(s) of the paper. 3. Limited excerpts may be used in a review of the reprint as long as the inclusion of the excerpts is NOT used to make or imply an endorsement by the Society for Astronomical Sciences of any product or service. Notice The preceding “Reprint of Papers” supersedes the one that appeared in the original print version Disclaimer The acceptance of a paper for the SAS proceedings can not be used to imply or infer an endorsement by the Society for Astronomical Sciences of any product, service, or method mentioned in the paper. Published by the Society for Astronomical Sciences, Inc. First printed: May 2007 ISBN: 0-9714693-6-9 Table of Contents Table of Contents PREFACE 7 CONFERENCE SPONSORS 9 Submitted Papers THE OLIN EGGEN PROJECT ARNE HENDEN 13 AMATEUR AND PROFESSIONAL ASTRONOMER COLLABORATION EXOPLANET RESEARCH PROGRAMS AND TECHNIQUES RON BISSINGER 17 EXOPLANET OBSERVING TIPS BRUCE L. GARY 23 STUDY OF CEPHEID VARIABLES AS A JOINT SPECTROSCOPY PROJECT THOMAS C.
    [Show full text]