The Orbit and Size-Frequency Distribution of Long Period Comets Observed by Pan-STARRS1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
KAREN J. MEECH February 7, 2019 Astronomer
BIOGRAPHICAL SKETCH – KAREN J. MEECH February 7, 2019 Astronomer Institute for Astronomy Tel: 1-808-956-6828 2680 Woodlawn Drive Fax: 1-808-956-4532 Honolulu, HI 96822-1839 [email protected] PROFESSIONAL PREPARATION Rice University Space Physics B.A. 1981 Massachusetts Institute of Tech. Planetary Astronomy Ph.D. 1987 APPOINTMENTS 2018 – present Graduate Chair 2000 – present Astronomer, Institute for Astronomy, University of Hawaii 1992-2000 Associate Astronomer, Institute for Astronomy, University of Hawaii 1987-1992 Assistant Astronomer, Institute for Astronomy, University of Hawaii 1982-1987 Graduate Research & Teaching Assistant, Massachusetts Inst. Tech. 1981-1982 Research Specialist, AAVSO and Massachusetts Institute of Technology AWARDS 2018 ARCs Scientist of the Year 2015 University of Hawai’i Regent’s Medal for Research Excellence 2013 Director’s Research Excellence Award 2011 NASA Group Achievement Award for the EPOXI Project Team 2011 NASA Group Achievement Award for EPOXI & Stardust-NExT Missions 2009 William Tylor Olcott Distinguished Service Award of the American Association of Variable Star Observers 2006-8 National Academy of Science/Kavli Foundation Fellow 2005 NASA Group Achievement Award for the Stardust Flight Team 1996 Asteroid 4367 named Meech 1994 American Astronomical Society / DPS Harold C. Urey Prize 1988 Annie Jump Cannon Award 1981 Heaps Physics Prize RESEARCH FIELD AND ACTIVITIES • Developed a Discovery mission concept to explore the origin of Earth’s water. • Co-Investigator on the Deep Impact, Stardust-NeXT and EPOXI missions, leading the Earth-based observing campaigns for all three. • Leads the UH Astrobiology Research interdisciplinary program, overseeing ~30 postdocs and coordinating the research with ~20 local faculty and international partners. -
Early Observations of the Interstellar Comet 2I/Borisov
geosciences Article Early Observations of the Interstellar Comet 2I/Borisov Chien-Hsiu Lee NSF’s National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ 85719, USA; [email protected]; Tel.: +1-520-318-8368 Received: 26 November 2019; Accepted: 11 December 2019; Published: 17 December 2019 Abstract: 2I/Borisov is the second ever interstellar object (ISO). It is very different from the first ISO ’Oumuamua by showing cometary activities, and hence provides a unique opportunity to study comets that are formed around other stars. Here we present early imaging and spectroscopic follow-ups to study its properties, which reveal an (up to) 5.9 km comet with an extended coma and a short tail. Our spectroscopic data do not reveal any emission lines between 4000–9000 Angstrom; nevertheless, we are able to put an upper limit on the flux of the C2 emission line, suggesting modest cometary activities at early epochs. These properties are similar to comets in the solar system, and suggest that 2I/Borisov—while from another star—is not too different from its solar siblings. Keywords: comets: general; comets: individual (2I/Borisov); solar system: formation 1. Introduction 2I/Borisov was first seen by Gennady Borisov on 30 August 2019. As more observations were conducted in the next few days, there was growing evidence that this might be an interstellar object (ISO), especially its large orbital eccentricity. However, the first astrometric measurements do not have enough timespan and are not of same quality, hence the high eccentricity is yet to be confirmed. This had all changed by 11 September; where more than 100 astrometric measurements over 12 days, Ref [1] pinned down the orbit elements of 2I/Borisov, with an eccentricity of 3.15 ± 0.13, hence confirming the interstellar nature. -
Make a Comet Materials: Students Should First Line Their Mixing Bowls with Trash Bags
Build Your Own Comet Prep Time: 30 minutes Grades: 6-8 Lesson Time: 55 minutes Essential Questions: • What is a comet composed of? • What gives a comet its tail? • What makes a comet different from other Near-Earth Objects (NEOs)? Objectives: • Create a physical representation of a comet and its properties. • Observe distinguishable factors between comets and other NEOs. Standards: • MS – PS1-4: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. • CCSS.ELA-LITERACY.RST.6-8.3 - Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. Teacher Prep: • Materials per comet: o 5 lbs. dry ice, ice chest, paper cups, towels, small container (for scooping), wooden or plastic mixing spoon, trash bag, mixing bowl, heavy work gloves, 1 tablespoon or less of starch, 1 tablespoon or less of dark corn syrup (or soda), 1 tablespoon or less of vinegar, 1 tablespoon or less of rubbing alcohol, large beaker, water, 1 c dirt/sand, 1 L of water. • Additional materials: o Hammer or mallet, paper cups, towels, flashlight, hair dryer. • Most of the dry ice needs to be in a fine powder before the students arrive, so use the hammer to do this ahead of time. There should be about 50-60% fine powder in order to hold the comet together. It is best to separate the dry ice ahead of time with towels. • This can also be done as a class demonstration. Teacher Notes/Background: • This lesson was adapted from NASA’s Make Your Own Comet activity. -
Comet Section Observing Guide
Comet Section Observing Guide 1 The British Astronomical Association Comet Section www.britastro.org/comet BAA Comet Section Observing Guide Front cover image: C/1995 O1 (Hale-Bopp) by Geoffrey Johnstone on 1997 April 10. Back cover image: C/2011 W3 (Lovejoy) by Lester Barnes on 2011 December 23. © The British Astronomical Association 2018 2018 December (rev 4) 2 CONTENTS 1 Foreword .................................................................................................................................. 6 2 An introduction to comets ......................................................................................................... 7 2.1 Anatomy and origins ............................................................................................................................ 7 2.2 Naming .............................................................................................................................................. 12 2.3 Comet orbits ...................................................................................................................................... 13 2.4 Orbit evolution .................................................................................................................................... 15 2.5 Magnitudes ........................................................................................................................................ 18 3 Basic visual observation ........................................................................................................ -
Initial Characterization of Interstellar Comet 2I/Borisov
Initial characterization of interstellar comet 2I/Borisov Piotr Guzik1*, Michał Drahus1*, Krzysztof Rusek2, Wacław Waniak1, Giacomo Cannizzaro3,4, Inés Pastor-Marazuela5,6 1 Astronomical Observatory, Jagiellonian University, Kraków, Poland 2 AGH University of Science and Technology, Kraków, Poland 3 SRON, Netherlands Institute for Space Research, Utrecht, the Netherlands 4 Department of Astrophysics/IMAPP, Radboud University, Nijmegen, the Netherlands 5 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, the Netherlands 6 ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo, the Netherlands * These authors contributed equally to this work; email: [email protected], [email protected] Interstellar comets penetrating through the Solar System had been anticipated for decades1,2. The discovery of asteroidal-looking ‘Oumuamua3,4 was thus a huge surprise and a puzzle. Furthermore, the physical properties of the ‘first scout’ turned out to be impossible to reconcile with Solar System objects4–6, challenging our view of interstellar minor bodies7,8. Here, we report the identification and early characterization of a new interstellar object, which has an evidently cometary appearance. The body was discovered by Gennady Borisov on 30 August 2019 UT and subsequently identified as hyperbolic by our data mining code in publicly available astrometric data. The initial orbital solution implies a very high hyperbolic excess speed of ~32 km s−1, consistent with ‘Oumuamua9 and theoretical predictions2,7. Images taken on 10 and 13 September 2019 UT with the William Herschel Telescope and Gemini North Telescope show an extended coma and a faint, broad tail. We measure a slightly reddish colour with a g′–r′ colour index of 0.66 ± 0.01 mag, compatible with Solar System comets. -
Comet Interceptor: a Mission to an Ancient World
EPSC Abstracts Vol. 14, EPSC2020-574, 2020 https://doi.org/10.5194/epsc2020-574 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Comet Interceptor: A mission to an ancient world Cecilia Tubiana1, Geraint Jones2,3, Colin Snodgrass4, and the the Comet Interceptor Team* 1Max Planck Institute for Solar System Research, Goettingen, Germany ([email protected]) 2Mullard Space Science Laboratory, University College London, Surrey, UK 3The Centre for Planetary Sciences at UCL/Birkbeck, London, UK 4Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh *A full list of authors appears at the end of the abstract Comets are the most pristine objects in our Solar System. Having spent most of their life at large distance from the Sun, where they remained mostly unaffected by solar radiation, comets are the most unaltered remnants from the era of planet formation. In June 2019, a multi-spacecraft project – Comet Interceptor – was selected by the European Space Agency (ESA) as its next planetary mission, and the first in its new class of Fast (F) projects [1]. The mission’s primary science goal is to characterise, for the first time, a long-period comet – preferably one which is dynamically new – or an interstellar object. An encounter with a comet approaching the Sun for the first time will provide valuable data to complement that from all previous comet missions: the surface of such an object would be being heated to temperatures above the its constituent ices’ sublimation point for the first time since its formation. -
Spherex: New NASA MIDEX All-Sky 1-5 Um Spectral Survey
SPHEREx: New NASA MIDEX All-Sky 1-5 um Spectral Survey Designed to Explore ▪ The Origin of the Universe ▪ The Origin and History of Galaxies ▪ The Origin of Water in Planetary Systems ▪ PI Jamie Bock, CalTech The First All-Sky Near-IR Spectral Survey A Rich Legacy Archive for the Astronomy Community with 100s of Millions of Stars and Galaxies Low-Risk Implementation ▪ 2022 NASA MIDEX Launch ▪ Single Observing Mode ▪ Large Design Margins Co-I Carey Lisse, SES/SRE ▪ No Moving Optics NASA SBAG Jun 25, 2019 Copyright 2017 California Institute of Technology. U.S. Government sponsorship acknowledged. New MIDEX SPHEREx (2022-2025): All-Sky 0.8 – 5.0 µm Spectral Legacy Archives Medium- High- Accuracy Accuracy Detected Spectra Spectra Clusters > 1 billion > 100 million 10 million 25,000 All-Sky surveys demonstrate high Galaxies scientiFic returns with a lasting Main data legacy used across astronomy Sequence Brown Spectra Dust-forming Dwarfs Cataclysms For example: > 100 million 10,000 > 400 > 1,000 COBE J IRAS J Stars GALEX Asteroid WMAP & Comet Galactic Quasars Quasars z >7 Spectra Line Maps Planck > 1.5 million 1 – 300? > 100,000 PAH, HI, H2 WISE J Other More than 400,000 total citations! SPHEREx Data Products & Tools: A spectrum (0.8 to 5 micron) for every 6″ pixel on the sky Planned Data Releases Survey Data Date (Launch +) Associated Products Survey 1 1 – 8 mo S1 spectral images Survey 2 8 – 14 mo S1/2 spectral images Early release catalog Survey 3 14 – 20 mo S1/2/3 spectral images Survey 4 20 – 26 mo S1/2/3/4 spectral images Final Release -
Isotopic Ratios in Outbursting Comet C/2015 ER61
Astronomy & Astrophysics manuscript no. draft_Dec_07 c ESO 2018 September 10, 2018 Isotopic ratios in outbursting comet C/2015 ER61 Bin Yang1; 2, Damien Hutsemékers3, Yoshiharu Shinnaka4, Cyrielle Opitom1, Jean Manfroid3, Emmanuël Jehin3, Karen J. Meech5, Olivier R. Hainaut1, Jacqueline V. Keane5, and Michaël Gillon3 (Affiliations can be found after the references) September 10, 2018 ABSTRACT Isotopic ratios in comets are critical to understanding the origin of cometary material and the physical and chemical conditions in the early solar nebula. Comet C/2015 ER61 (PANSTARRS) underwent an outburst with a total brightness increase of 2 magnitudes on the night of 2017 April 4. The sharp increase in brightness offered a rare opportunity to measure the isotopic ratios of the light elements in the coma of this comet. We obtained two high-resolution spectra of C/2015 ER61 with UVES/VLT on the nights of 2017 April 13 and 17. At the time of our observations, the comet was fading gradually following the outburst. We measured the nitrogen and carbon isotopic ratios from the CN violet (0,0) band and found that 12C/13C=100 ± 15, 14N/15N=130 ± 15. 14 15 14 15 In addition, we determined the N/ N ratio from four pairs of NH2 isotopolog lines and measured N/ N=140 ± 28. The measured isotopic ratios of C/2015 ER61 do not deviate significantly from those of other comets. Key words. comets: general - comets: individual (C/2015 ER61) - methods: observational 1. Introduction Understanding how planetary systems form from proto- planetary disks remains one of the great challenges in as- tronomy. -
Comet Prospects for 2017
Comet Prospects for 2017 February could be a busy month with the possibility of three periodic comets visible in binoculars. Three comets in parabolic orbits may also become visible in binoculars. These predictions focus on comets that are likely to be within range of visual observers, though comets often do not behave as expected and can spring surprises. Members are encouraged to make visual magnitude estimates, particularly of periodic comets, as long term monitoring over many returns helps understand their evolution. Please submit your magnitude estimates in ICQ format. Guidance on visual observation and how to submit estimates is given in the BAA Observing Guide to Comets. Drawings are also useful, as the human eye can sometimes discern features that initially elude electronic devices. Theories on the structure of comets suggest that any comet could fragment at any time, so it is worth keeping an eye on some of the fainter comets, which are often ignored. They would make useful targets for those making electronic observations, especially those with time on instruments such as the Faulkes telescopes. Such observers are encouraged to report electronic visual equivalent magnitude estimates via COBS. When possible use a waveband approximating to Visual or V magnitudes. These estimates can be used to extend the visual light curves, and hence derive more accurate absolute magnitudes. Such observations of periodic comets are particularly valuable as observations over many returns allow investigation into the evolution of comets. In addition to the information in the BAA Handbook and on the Section web pages, ephemerides for the brighter observable comets are published in the Circulars, and ephemerides for new and currently observable comets are on the JPL, CBAT and Seiichi Yoshida's web pages. -
Detection of Exocometary CO Within the 440 Myr Old Fomalhaut Belt: a Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets
UCLA UCLA Previously Published Works Title Detection of Exocometary CO within the 440 Myr Old Fomalhaut Belt: A Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets Permalink https://escholarship.org/uc/item/1zf7t4qn Journal Astrophysical Journal, 842(1) ISSN 0004-637X Authors Matra, L MacGregor, MA Kalas, P et al. Publication Date 2017-06-10 DOI 10.3847/1538-4357/aa71b4 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Astrophysical Journal, 842:9 (15pp), 2017 June 10 https://doi.org/10.3847/1538-4357/aa71b4 © 2017. The American Astronomical Society. All rights reserved. Detection of Exocometary CO within the 440 Myr Old Fomalhaut Belt: A Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets L. Matrà1, M. A. MacGregor2, P. Kalas3,4, M. C. Wyatt1, G. M. Kennedy1, D. J. Wilner2, G. Duchene3,5, A. M. Hughes6, M. Pan7, A. Shannon1,8,9, M. Clampin10, M. P. Fitzgerald11, J. R. Graham3, W. S. Holland12, O. Panić13, and K. Y. L. Su14 1 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK; [email protected] 2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 3 Astronomy Department, University of California, Berkeley CA 94720-3411, USA 4 SETI Institute, Mountain View, CA 94043, USA 5 Univ. Grenoble Alpes/CNRS, IPAG, F-38000 Grenoble, France 6 Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Dr., Middletown, CT 06459, USA 7 MIT Department of Earth, Atmospheric, and -
Comets and the Origin of Life from N.J
540 Nature Vol. 288 11 December 1980 been cloned in Stanford and is being used base pair substitution in this region and by premature transcription; but that these for the analysis of this entire region of the a factor of two in the abudance of their early transcripts are not translated and, genome by S. Beckendorf (University of mRNAs. indeed, decay as development gets under California, Berkeley) and for detailed The egg shell protein genes, under study way. Only at the appropriate develop studies of the gene itself by M. Muskavitch by A. Spradling (Carnegie Institution, mental stage several hours later does (Stanford). A surprising result is that the Washington) and in F. C. Kafatos' transcription resume to produce mRNAs transcript of SGS-4 differs in size in laboratory (Harvard) also surprised us for that are subsequently translated. different strains of Drosophila. This they are amplified in the tissue in which What is the meaning of this? It implies results, it would appear, from the fact that they are expressed. Spradling has found some relationship between amplification within the coding sequence there is a 21 that the amount of DNA amplified extends and early transcription and also indicates base pair sequence whose repetition at least 30 kb on each side of the genes the existence of a translational control at frequency can vary between different themselves, but the degree of amplification the early developmental stage. SGS-4 alleles. Although nothing is known falls off, from a peak of some 60 fold, in Like all good meetings, at the end there of the chemistry of the protein this must both directions away from the coding were far more questions than answers. -
Cliff Collapses on Comet 67P/Churyumov-Gerasimenko Following Outbursts As Observed by the Rosetta Mission
EPSC Abstracts Vol. 13, EPSC-DPS2019-1727-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Cliff Collapses on Comet 67P/Churyumov-Gerasimenko Following Outbursts as Observed by the Rosetta Mission 1 1 M.R. El-Maarry , G. Driver (1) Birkbeck, University of London, WC12 7HX, London, UK ([email protected]) Abstract region. Indeed, a cliff collapse in the so-called Aswan area in the northern hemisphere reported in [3] We are undergoing an intensive search for surface and [4] suggests that it was associated with an changes on comet 67P/Churyumov-Gerasimenko outburst or a dust plume event. We are investigating making use of the wealth of data that was collected the source regions of outbursts that were reported in by the Rosetta mission over more than two years, [2] to look for surface changes that may have which could help constrain the processes that drive occurred as a result of these outbursts so we can surface evolution in comets on a seasonal, and better understand their mechanism, effect on surface possibly longer term, scales. Focusing on regions that evolution, and any potential controls the source have been subjected to strong outbursts gives us the region morphology may have on the morphology or highest chance of detecting surface changes and scale of the outbursts themselves. We focus here on better understanding the effect of sublimation-driven an outburst that occurred in mid September 2015 outgassing on cometary surfaces. Here, we focus on (Figure 1), roughly one month following perihelion. the detection of a previously unobserved cliff collapse event near the sharp boundary of the comet’s northern and southern hemispheres in the small lobe.