Initial Characterization of Interstellar Comet 2I/Borisov
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPECIAL Comet Shoemaker-Levy 9 Collides with Jupiter
SL-9/JUPITER ENCOUNTER - SPECIAL Comet Shoemaker-Levy 9 Collides with Jupiter THE CONTINUATION OF A UNIQUE EXPERIENCE R.M. WEST, ESO-Garching After the Storm Six Hectic Days in July eration during the first nights and, as in other places, an extremely rich data The recent demise of comet Shoe ESO was but one of many profes material was secured. It quickly became maker-Levy 9, for simplicity often re sional observatories where observations evident that infrared observations, es ferred to as "SL-9", was indeed spectac had been planned long before the critical pecially imaging with the far-IR instru ular. The dramatic collision of its many period of the "SL-9" event, July 16-22, ment TIMMI at the 3.6-metre telescope, fragments with the giant planet Jupiter 1994. It is now clear that practically all were perfectly feasible also during day during six hectic days in July 1994 will major observatories in the world were in time, and in the end more than 120,000 pass into the annals of astronomy as volved in some way, via their telescopes, images were obtained with this facility. one of the most incredible events ever their scientists or both. The only excep The programmes at most of the other predicted and witnessed by members of tions may have been a few observing La Silla telescopes were also successful, this profession. And never before has a sites at the northernmost latitudes where and many more Gigabytes of data were remote astronomical event been so ac the bright summer nights and the very recorded with them. -
KAREN J. MEECH February 7, 2019 Astronomer
BIOGRAPHICAL SKETCH – KAREN J. MEECH February 7, 2019 Astronomer Institute for Astronomy Tel: 1-808-956-6828 2680 Woodlawn Drive Fax: 1-808-956-4532 Honolulu, HI 96822-1839 [email protected] PROFESSIONAL PREPARATION Rice University Space Physics B.A. 1981 Massachusetts Institute of Tech. Planetary Astronomy Ph.D. 1987 APPOINTMENTS 2018 – present Graduate Chair 2000 – present Astronomer, Institute for Astronomy, University of Hawaii 1992-2000 Associate Astronomer, Institute for Astronomy, University of Hawaii 1987-1992 Assistant Astronomer, Institute for Astronomy, University of Hawaii 1982-1987 Graduate Research & Teaching Assistant, Massachusetts Inst. Tech. 1981-1982 Research Specialist, AAVSO and Massachusetts Institute of Technology AWARDS 2018 ARCs Scientist of the Year 2015 University of Hawai’i Regent’s Medal for Research Excellence 2013 Director’s Research Excellence Award 2011 NASA Group Achievement Award for the EPOXI Project Team 2011 NASA Group Achievement Award for EPOXI & Stardust-NExT Missions 2009 William Tylor Olcott Distinguished Service Award of the American Association of Variable Star Observers 2006-8 National Academy of Science/Kavli Foundation Fellow 2005 NASA Group Achievement Award for the Stardust Flight Team 1996 Asteroid 4367 named Meech 1994 American Astronomical Society / DPS Harold C. Urey Prize 1988 Annie Jump Cannon Award 1981 Heaps Physics Prize RESEARCH FIELD AND ACTIVITIES • Developed a Discovery mission concept to explore the origin of Earth’s water. • Co-Investigator on the Deep Impact, Stardust-NeXT and EPOXI missions, leading the Earth-based observing campaigns for all three. • Leads the UH Astrobiology Research interdisciplinary program, overseeing ~30 postdocs and coordinating the research with ~20 local faculty and international partners. -
ABCD the 4Th Quarter 2013 Catalog
ABCD springer.com The 4th quarter 2013 catalog Medicine springer.com Dentistry 2 T. Eliades, University of Zurich, Zurich, Switzerland; G. Eliades, Dentistry University of Athens, Athens, Greece (Eds.) Medicine Plastics in Dentistry and K. Rötzscher (Ed.) Estrogenicity J. Sadek, Dalhousie University, Halifax, Canada Forensic and Legal Dentistry A Guide to Safe Practice A Clinician’s Guide to ADHD This book provides a timely and comprehensive This book both explains in detail diverse aspects of review of our current knowledge of BPA release from The Clinician’s Guide to ADHD combines the use- the law as it relates to dentistry and examines key dental polymers and the potential endocrinologi- ful diagnostic and treatment approaches advocated issues in forensic odontostomatology. A central aim cal consequences. After a review of the history and in different guidelines with insights from other is to enable the dentist to achieve a realistic assess- evolution of the issue within the broader biomedical sources, including recent literature reviews and web ment of the legal situation and to reduce uncer- context, the estrogenicity of BPA is explained. The resources. The aim is to provide clinicians with clear, tainties and liability risk. To this end, experts from basic chemistry of the polymers used in dentistry is concise, and reliable advice on how to approach this across the world discuss the dental law in their own then presented in a simplified and clinically relevant complex disorder. The guidelines referred to in com- countries, covering both civil and criminal law and manner. Key chapters in the book carefully evaluate piling the book derive from authoritative sources in highlighting key aspects such as patient rights, insur- the release of BPA from polycarbonate products and different regions of the world, including the United ance, and compensation. -
Early Observations of the Interstellar Comet 2I/Borisov
geosciences Article Early Observations of the Interstellar Comet 2I/Borisov Chien-Hsiu Lee NSF’s National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ 85719, USA; [email protected]; Tel.: +1-520-318-8368 Received: 26 November 2019; Accepted: 11 December 2019; Published: 17 December 2019 Abstract: 2I/Borisov is the second ever interstellar object (ISO). It is very different from the first ISO ’Oumuamua by showing cometary activities, and hence provides a unique opportunity to study comets that are formed around other stars. Here we present early imaging and spectroscopic follow-ups to study its properties, which reveal an (up to) 5.9 km comet with an extended coma and a short tail. Our spectroscopic data do not reveal any emission lines between 4000–9000 Angstrom; nevertheless, we are able to put an upper limit on the flux of the C2 emission line, suggesting modest cometary activities at early epochs. These properties are similar to comets in the solar system, and suggest that 2I/Borisov—while from another star—is not too different from its solar siblings. Keywords: comets: general; comets: individual (2I/Borisov); solar system: formation 1. Introduction 2I/Borisov was first seen by Gennady Borisov on 30 August 2019. As more observations were conducted in the next few days, there was growing evidence that this might be an interstellar object (ISO), especially its large orbital eccentricity. However, the first astrometric measurements do not have enough timespan and are not of same quality, hence the high eccentricity is yet to be confirmed. This had all changed by 11 September; where more than 100 astrometric measurements over 12 days, Ref [1] pinned down the orbit elements of 2I/Borisov, with an eccentricity of 3.15 ± 0.13, hence confirming the interstellar nature. -
How We Found About COMETS
How we found about COMETS Isaac Asimov Isaac Asimov is a master storyteller, one of the world’s greatest writers of science fiction. He is also a noted expert on the history of scientific development, with a gift for explaining the wonders of science to non- experts, both young and old. These stories are science-facts, but just as readable as science fiction.Before we found out about comets, the superstitious thought they were signs of bad times ahead. The ancient Greeks called comets “aster kometes” meaning hairy stars. Even to the modern day astronomer, these nomads of the solar system remain a puzzle. Isaac Asimov makes a difficult subject understandable and enjoyable to read. 1. The hairy stars Human beings have been watching the sky at night for many thousands of years because it is so beautiful. For one thing, there are thousands of stars scattered over the sky, some brighter than others. These stars make a pattern that is the same night after night and that slowly turns in a smooth and regular way. There is the Moon, which does not seem a mere dot of light like the stars, but a larger body. Sometimes it is a perfect circle of light but at other times it is a different shape—a half circle or a curved crescent. It moves against the stars from night to night. One midnight, it could be near a particular star, and the next midnight, quite far away from that star. There are also visible 5 star-like objects that are brighter than the stars. -
Make a Comet Materials: Students Should First Line Their Mixing Bowls with Trash Bags
Build Your Own Comet Prep Time: 30 minutes Grades: 6-8 Lesson Time: 55 minutes Essential Questions: • What is a comet composed of? • What gives a comet its tail? • What makes a comet different from other Near-Earth Objects (NEOs)? Objectives: • Create a physical representation of a comet and its properties. • Observe distinguishable factors between comets and other NEOs. Standards: • MS – PS1-4: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. • CCSS.ELA-LITERACY.RST.6-8.3 - Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. Teacher Prep: • Materials per comet: o 5 lbs. dry ice, ice chest, paper cups, towels, small container (for scooping), wooden or plastic mixing spoon, trash bag, mixing bowl, heavy work gloves, 1 tablespoon or less of starch, 1 tablespoon or less of dark corn syrup (or soda), 1 tablespoon or less of vinegar, 1 tablespoon or less of rubbing alcohol, large beaker, water, 1 c dirt/sand, 1 L of water. • Additional materials: o Hammer or mallet, paper cups, towels, flashlight, hair dryer. • Most of the dry ice needs to be in a fine powder before the students arrive, so use the hammer to do this ahead of time. There should be about 50-60% fine powder in order to hold the comet together. It is best to separate the dry ice ahead of time with towels. • This can also be done as a class demonstration. Teacher Notes/Background: • This lesson was adapted from NASA’s Make Your Own Comet activity. -
Interstellar Comet 2I/Borisov
Interstellar comet 2I/Borisov Piotr Guzik1*, Michał Drahus1*, Krzysztof Rusek2, Wacław Waniak1, Giacomo Cannizzaro3,4, Inés Pastor-Marazuela5,6 1 Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland 2 AGH University of Science and Technology, al. Mickiewicza 30, Kraków 30-059, Poland 3 SRON, Netherlands Institute for Space Research, Sorbonnelaan, 2, NL-3584CA Utrecht, the Netherlands 4 Department of Astrophysics/IMAPP, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands 5 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands 6 ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands * These authors contributed equally to this work. Interstellar comets penetrating through the Solar System were anticipated for decades1,2. The discovery of non-cometary 1I/‘Oumuamua by Pan-STARRS was therefore a huge surprise and puzzle. Furthermore, its physical properties turned out to be impossible to reconcile with Solar System objects3-5, which radically changed our view on interstellar minor bodies. Here, we report the identification of a new interstellar object which has an evidently cometary appearance. The body was identified by our data mining code in publicly available astrometric data. The data clearly show significant systematic deviation from what is expected for a parabolic orbit and are consistent with an enormous orbital eccentricity of 3.14 ± 0.14. Images taken by the William Herschel Telescope and Gemini North telescope show an extended coma and a faint, broad tail – the canonical signatures of cometary activity. The observed g’ and r’ magnitudes are equal to 19.32 ± 0.02 and 18.69 ± 0.02, respectively, implying g’-r’ color index of 0.63 ± 0.03, essentially the same as measured for the native Solar System comets. -
The April 2017
The Volume 126 No. 4 April 2017 Bullen Monthly newsleer of the Astronomical Society of South Australia Inc In this issue: ♦ Vera Rubin - the “mother” of dark maer dies ♦ Astronomical discoveries during ASSA’s second decade ♦ Trappist-1 - 7 Earth-sized planets orbit this dim star ♦ Observing Copeland’s Septet in Leo ♦ Registered by Australia Post Visit us on the web: Bullen of the ASSA Inc 1 April 2017 Print Post Approved PP 100000605 www.assa.org.au In this issue: ASSA Acvies 3-4 Details of general meengs, viewing nights etc History of Astronomy 5-6 ASTRONOMICAL SOCIETY of Astronomical discoveries in ASSA’s second decade SOUTH AUSTRALIA Inc Saying Goodbye 7-8 GPO Box 199, Adelaide SA 5001 Vera Rubin, mother of dark maer dies The Society (ASSA) can be contacted by post to the Astro News 9-10 address above, or by e-mail to [email protected]. Latest astronomical discoveries and reports Membership of the Society is open to all, with the only prerequisite being an interest in Astronomy. The Sky this month 11-14 Solar System, Comets, Variable Stars, Deep Sky Membership fees are: Full Member $75 ASSA Contact Informaon 15 Concessional Member $60 Subscribe e-Bullen only; discount $20 Members’ Image Gallery 16 Concession informaon and membership brochures can A gallery of members’ astrophotos be obtained from the ASSA web site at: hp://www.assa.org.au or by contacng The Secretary (see contacts page). Member Submissions Sister Society relaonships with: Submissions for inclusion in The Bullen are welcome Orange County Astronomers from all members; submissions may be held over for later edions. -
Carbon Monoxide in Jupiter After Comet Shoemaker-Levy 9
ICARUS 126, 324±335 (1997) ARTICLE NO. IS965655 Carbon Monoxide in Jupiter after Comet Shoemaker±Levy 9 1 1 KEITH S. NOLL AND DIANE GILMORE Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218 E-mail: [email protected] 1 ROGER F. KNACKE AND MARIA WOMACK Pennsylvania State University, Erie, Pennsylvania 16563 1 CAITLIN A. GRIFFITH Northern Arizona University, Flagstaff, Arizona 86011 AND 1 GLENN ORTON Jet Propulsion Laboratory, Pasadena, California 91109 Received February 5, 1996; revised November 5, 1996 for roughly half the mass. In high-temperature shocks, Observations of the carbon monoxide fundamental vibra- most of the O is converted to CO (Zahnle and MacLow tion±rotation band near 4.7 mm before and after the impacts 1995), making CO one of the more abundant products of of the fragments of Comet Shoemaker±Levy 9 showed no de- a large impact. tectable changes in the R5 and R7 lines, with one possible By contrast, oxygen is a rare element in Jupiter's upper exception. Observations of the G-impact site 21 hr after impact atmosphere. The principal reservoir of oxygen in Jupiter's do not show CO emission, indicating that the heated portions atmosphere is water. The Galileo Probe Mass Spectrome- of the stratosphere had cooled by that time. The large abun- ter found a mixing ratio of H OtoH of X(H O) # 3.7 3 dances of CO detected at the millibar pressure level by millime- 2 2 2 24 P et al. ter wave observations did not extend deeper in Jupiter's atmo- 10 at P 11 bars (Niemann 1996). -
The Comet's Tale
THE COMET’S TALE Journal of the Comet Section of the British Astronomical Association Number 33, 2014 January Not the Comet of the Century 2013 R1 (Lovejoy) imaged by Damian Peach on 2013 December 24 using 106mm F5. STL-11k. LRGB. L: 7x2mins. RGB: 1x2mins. Today’s images of bright binocular comets rival drawings of Great Comets of the nineteenth century. Rather predictably the expected comet of the century Contents failed to materialise, however several of the other comets mentioned in the last issue, together with the Comet Section contacts 2 additional surprise shown above, put on good From the Director 2 appearances. 2011 L4 (PanSTARRS), 2012 F6 From the Secretary 3 (Lemmon), 2012 S1 (ISON) and 2013 R1 (Lovejoy) all Tales from the past 5 th became brighter than 6 magnitude and 2P/Encke, 2012 RAS meeting report 6 K5 (LINEAR), 2012 L2 (LINEAR), 2012 T5 (Bressi), Comet Section meeting report 9 2012 V2 (LINEAR), 2012 X1 (LINEAR), and 2013 V3 SPA meeting - Rob McNaught 13 (Nevski) were all binocular objects. Whether 2014 will Professional tales 14 bring such riches remains to be seen, but three comets The Legacy of Comet Hunters 16 are predicted to come within binocular range and we Project Alcock update 21 can hope for some new discoveries. We should get Review of observations 23 some spectacular close-up images of 67P/Churyumov- Prospects for 2014 44 Gerasimenko from the Rosetta spacecraft. BAA COMET SECTION NEWSLETTER 2 THE COMET’S TALE Comet Section contacts Director: Jonathan Shanklin, 11 City Road, CAMBRIDGE. CB1 1DP England. Phone: (+44) (0)1223 571250 (H) or (+44) (0)1223 221482 (W) Fax: (+44) (0)1223 221279 (W) E-Mail: [email protected] or [email protected] WWW page : http://www.ast.cam.ac.uk/~jds/ Assistant Director (Observations): Guy Hurst, 16 Westminster Close, Kempshott Rise, BASINGSTOKE, Hampshire. -
Comets-Meteor Copy
• Comet – km-sized bodies with volatiles & refractories Definitions • Asteroid – small planetary bodies orbiting the Comets & Primitive Bodies sun (mostly refractory) • Meteoroid – small (<< km) extra-terrestrial body orbiting the sun Karen J. Meech, Astronomer • Meteor – meteoroid passing through Earth atm Institute for Astronomy • Meteorite/Fall – meteoroid which hits the ground • Fireball – very bright meteor • Find – meteorite found on ground, not associated with a fall • Parent body – comet or asteroid-like body in which the meteoroid formed Comets Inspire Terror Historical Highlights 1066 Halley Wm conqueror 1456 Halley Excommunicated 1531 Halley Observed by Kepler 1744 De Cheseaux 6 tails 1858 Donati Most beautiful 1811 Flaugergeus comet wine Dutch Woodcut (1668) – “Destruction by 4th century comet” 1861 Tebbutt Naked eye, aurorae 1901 Great S Daytime visibility ! Sudden appearance in sky ! Only a few bright naked-eye comets / century ! Tail physically large " millions of km ! Early composition: toxic chemicals Comet of 1577 McNaught 2007 Recent Historical Comet Halley Great Comets Ikeya-Seki, 1957 Hale Bopp 1995 Hayakutake, 1996 Top: Middle / Bottom: • Babylon 164 BC • Giotto Fresco 1301 • 1145 • Chinese 1378 (Halley - periodic) • Korea - 1222 at • 1531 - Peter Apian tail orientation Chomsongdae Obsty • 1759 - Korean observations Comet Halleys Perception: Science & Fear 1680 Alarm 1910 Alarm Historical The Modern Comet Understanding • Nucleus • Solid body, few km radius • H2O ice + dust + other volatiles: CO, CO2 + ! Tycho Brahe -
Comet Interceptor: a Mission to an Ancient World
EPSC Abstracts Vol. 14, EPSC2020-574, 2020 https://doi.org/10.5194/epsc2020-574 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Comet Interceptor: A mission to an ancient world Cecilia Tubiana1, Geraint Jones2,3, Colin Snodgrass4, and the the Comet Interceptor Team* 1Max Planck Institute for Solar System Research, Goettingen, Germany ([email protected]) 2Mullard Space Science Laboratory, University College London, Surrey, UK 3The Centre for Planetary Sciences at UCL/Birkbeck, London, UK 4Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh *A full list of authors appears at the end of the abstract Comets are the most pristine objects in our Solar System. Having spent most of their life at large distance from the Sun, where they remained mostly unaffected by solar radiation, comets are the most unaltered remnants from the era of planet formation. In June 2019, a multi-spacecraft project – Comet Interceptor – was selected by the European Space Agency (ESA) as its next planetary mission, and the first in its new class of Fast (F) projects [1]. The mission’s primary science goal is to characterise, for the first time, a long-period comet – preferably one which is dynamically new – or an interstellar object. An encounter with a comet approaching the Sun for the first time will provide valuable data to complement that from all previous comet missions: the surface of such an object would be being heated to temperatures above the its constituent ices’ sublimation point for the first time since its formation.